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Stochastic Assessment of
Special-Rate Life Annuities

Annamaria Olivieri* and Daniela Tabakova'

Abstract

Special-rate life annuities offer customized annuity rates, based on the lifestyle or
health status of the individual. Their main purpose is to encourage the annuity de-
mand, which is still underdeveloped in many markets; as better annuity rates are
quoted for individuals showing a higher mortality profile, the number of individu-
als attracted by life annuities could increase. Providers should then gain larger pool
sizes; however, this is possibly matched by a greater heterogeneity of the pool, due to
several risk classes defined by the annuity design. Heterogeneity emerges not only in
terms of different life expectancies, but also in respect of the dispersion of the lifetime
distribution; indeed, situations resulting in a lower life expectancy also show greater
variability of the lifetime. As it is well-known, pooling effects are reinforced by the
pool size, while they are weakened by its heterogeneity, with a possibly unclear impact
on the overall longevity risk to which the provider is exposed.

In this paper we investigate the longevity risk profile of an annuity pool consist-
ing of several risk classes. We consider both the idiosyncratic and aggregate compo-
nents of the risk, by modelling the random number of deaths and assuming a stochastic
mortality dynamics. The heterogeneity of risk classes is represented alternatively in a
deterministic and stochastic setting.

Our conclusions are in line with similar findings discussed in the literature, but
obtained in a deterministic framework. Results suggest that the longevity risk profile
of the provider is not significantly undermined by a greater pool heterogeneity, with a
prevalence of the aggregate component whatever the pool composition.
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annamaria.olivieri@unipr.it.

fCenter for Insurance Research “Ermanno Pitacco”, MIB Trieste School of Management, Trieste, Italy.
Email: tabakova@mib.edu



Keywords: Underwritten annuities, Standard annuities, Enhanced annuities, Impaired an-
nuities, Preferred risks, Substandard lives, Stochastic mortality, Longevity risk, Hetero-
geneity.

1 Introduction

Lower social security benefits and a general shift from defined benefit to defined contribu-
tion schemes in many pension systems increase the risk of ruin of individuals after retire-
ment, as their personal wealth is more exposed than in the past to financial and longevity
risk.

According to Yaari (1965), the best protection for the individual against the risk of ruin
is offered by the (traditional) annuity product, which provides a lifetime income stream,
independent of interest rates, the lifetime of the individual and the average lifetime of the
population. However, annuity markets remain thin, as people are reluctant to buy annu-
ities. Such a puzzle (the well-known annuity puzzle, see for example Benartzi et al. (2011))
has been largely analysed in the literature. Here, following Pitacco (2021), we note some
features of the standard life annuity that could be considered undesirable by an individ-
ual, thus leading him /her to choices alternative to the life annuity. Because of the financial
and longevity risk taken by the provider, annuities are priced with (possibly high) safety
loadings and strict policy conditions. Considering the latter, for example, we recall that
the annuity can neither be surrendered, nor the individual can apply for a change of the
benefit amount. Thus, the money paid by the individual to purchase an annuity repre-
sents an illiquid and unredeemable investment, unable to adapt to the evolving needs of
the annuitant. As a result, individuals in poor health or with poor lifestyles may refuse to
underwrite an annuity, even if they need to supplement their post-retirement income. This
tavours adverse-selection effects, as individuals attracted by the product are those show-
ing a higher life expectancy than the average. Providers account for such effects in annuity
prices, which are then perceived even higher by many individuals.

Several innovations can be introduced in the annuity design. Those that can lead to
lower prices include: a restriction of the payment period to older ages (resulting in a re-
duced number of payments); a linking of the benefit amount to a longevity experience
(admitting future reductions of the benefit amount in case of unanticipated mortality im-
provements); the introduction of individual risk factors for pricing (resulting in higher
annuity rates for those showing a lower life expectancy). We refer to Pitacco (2021) for an
overview of these alternatives. In this paper we focus on the adoption of risk factors.

Annuities in which the pricing is based on risk factors are known as special-rate or



underwritten annuities. The term “special-rate” comes from offering an annuity rate cus-
tomized to the mortality profile of the individual, with better annuity rates if the lifestyle
or health status suggest a higher probability of early death than the average. The specific
status of the individual is checked via an appropriate underwriting step, which justifies
the alternative expression “underwritten annuities”. Special-rate life annuities have been
adopted in some markets. They are described, for example, in Ainslie (2000), Drinkwater
etal. (2006), Ridsdale (2012), Rinke (2002). Market issues, with particular regard to barriers,
are discussed in Gatzert and Klotzki (2016), while Gracie and Makin (2006), James (2016)
discuss practical aspects about pricing. Alternatives about the risk classification rules are
addressed by Rinke (2002) and summarized in Pitacco (2021).

The pricing of special-rate life annuities requires the identification of a number of risk
classes (or risk groups) when defining the tariff. A specific mortality assumption must
then be adopted for each risk class. Poorer lifestyles or health conditions suggest a lower
life expectancy, which is usually matched by a higher variance of the lifetime distribution,
due to the variety of possible pathologies leading to a specific risk class, as well as to less
data available than for standard annuities. In life insurance, differential mortality is usu-
ally represented in terms of additive or multiplicative adjustments to a baseline mortality
assumptions. A review of the main models can be found, for example, in Olivieri (2006),
Haberman and Olivieri (2014). A multiplicative adjustment coefficient is particularly com-
mon, but also convenient, as it can be extended quite nicely to a stochastic setting. This is,
for instance, the underlying assumption of frailty models, defined by Vaupel et al. (1979).

Special-rate life annuities are designed to make the annuity more attractive and broaden
the number of potential policyholders. Thus, a reasonable expectation for the provider is
about an increase of the pool size. However, a higher degree of heterogeneity of the pool
should also be envisaged, not only among risk classes, but also within classes. Indeed, risk
classes grouping individuals with lower lifestyle standards or poorer health conditions
will reasonably show a lower life expectancy but also a greater dispersion of the lifetime
distribution. The impact of risk classification on the structure of the pool is addressed by
Gatzert et al. (2012), Hoermann and Russ (2008), Olivieri and Pitacco (2016).

The life annuity business is exposed to financial and longevity risk. The latter, in par-
ticular, consists of an idiosyncratic component (due to random fluctuations in the number
of deaths) and an aggregate component (due to the mortality dynamics). While the former
is addressed by modelling the random number of deaths in a pool, in order to represent
the latter it is necessary to adopt stochastic mortality rates. The literature suggest a num-
ber of approaches in this respect; reviews are provided by Cairns et al. (2008) and Hunt
and Blake (2021). A key model is the Lee-Carter one (see Lee and Carter (1992)). Several



authors have discussed either extensions to such a model or have introduced models with
a similar structure; we mention, in particular, the proposal by Brouhns et al. (2002), largely
adopted in actuarial practice.

Like any other insurance business, the management of an annuity pool is based on
pooling arguments, which are related to mortality in the case of annuities. As it is well-
known, the pooling effect is improved when dealing with larger sizes, but reduced when
heterogeneity is greater. A research question then arises about the net impact of these two
opposing effects on the overall risk profile of a pool of special-rate annuities. This prob-
lem has already been addressed by Pitacco and Tabakova (2022); their analysis suggests
that the advantages gained because of a larger size outweigh the adverse effects of greater
heterogeneity. The analysis performed by Pitacco and Tabakova (2022) is developed in a
deterministic setting both in respect of heterogeneity and mortality dynamics. The pur-
pose of this paper is to extend their framework first by introducing stochastic mortality
rates, and then a stochastic level of heterogeneity within each risk class. We think that this
way we can perform a more comprehensive analysis, as stochastic mortality rates allow us
to account for the uncertain mortality dynamics, whereas stochastic assumptions with re-
spect to heterogeneity allow us to address possible lack of knowledge about the risk classes
composition. The results we obtain are anyhow in line with those in Pitacco and Tabakova
(2022).

The remainder of the paper is arranged as follows. In Sect. 2, we describe the special-
rate annuity products and the pool structures analysed in the paper. In Sect. 3 we describe
the mortality and heterogeneity model. In Sect. 4 we define the actuarial quantities anal-
ysed in the numerical implementation, i.e. annuity rates and the present value of future
benefits. In Sect. 5 we discuss the numerical implementation, while in Sect. 6 we conclude
the paper with some summary and final remarks.

2 The products and the structure of the pool

2.1 The products and the related mortality assumptions

The specific labels given to the several types of special-rate annuities are not the same in
all markets. Here, following Ridsdale (2012) and Pitacco (2021), we use the terminology
common in the UK market.

A standard life annuity is priced assuming that the individual is in very good health and
maintains an optimal lifestyle. The mortality assumption accounts for an adverse-selection
effect, by adopting reduced mortality rates in respect of the general population. Further,



mortality is projected to consider its dynamics over time, given the (long) temporal extent
of the benefit.

A lifestyle annuity is priced considering risk factors related to smoking, drinking and
eating habits, marital status, occupation, physical features such as height and weight,
blood pressure and cholesterol levels. When compared to standard annuities, these are
features that suggest a shorter life expectancy. While mortality is projected, mortality rates
are assumed to be slightly higher than for standard annuities, resulting in a higher annuity
rate.

An enhanced life annuity is priced based on the personal history of medical conditions,
resulting in a reduced life expectancy. Mortality rates are projected, but they are assumed
to be higher than for standard and lifestyle annuities.

An impaired life annuity is addressed to individuals whose medical conditions signif-
icantly shorten the expected lifetime (because, for example, of diabetes, chronic asthma,
cancer, etc.). Given the mortality dynamics, mortality rates are assumed to be much higher
than for standard annuities and higher than for enhanced annuities.

Finally, a care annuity is addressed to individuals with very serious impairments or in
a senescent-disability (or long-term care) state. These products are typically classified as
long-term care insurance. Because of the critical health situation of the individual, a lower
life expectancy than for the other annuities is adopted.

Thus, moving from standard to care annuities, shorter life expectancies are assumed,
resulting in higher annuity rates. Clearly, the provider can decide to offer just part of such
products, based on commercial or other considerations.

The personal situation of the individual must be ascertained at issue, via a question-
naire (in particular, about his/her lifestyle), and a medical examination (in particular, when
the individual suffers from critical illnesses). In life insurance, an individual showing
extra-mortality is classified as a substandard risk; this is why impaired and care annuities
are also called substandard life annuities.

2.2 The structure of the pool

We consider pools of annuities arranged into three classes: standard, enhanced and im-
paired life annuities. The label C; is adopted to denote risk class i, where

- 1 = 1: Standard annuity;
- 1 = 2: Enhanced annuity;

- 1 = 3: Impaired annuity.



The pool is considered at an initial time 0, when annuities are issued. Whatever the risk
class, annuitants are all age xg at policy issue; thus, they belong to the same cohort. We do
not consider new entries after time 0; thus, the pool consists of a generation of policies.

The size at issue of risk class C; is n;, with n = ny + ny + n3 the total pool size at time
0. The number of survivors in risk class C; at time ¢, t > 0, is random, as a result of
mortality. We use the notation Nj; for the number of survivors in risk class C; at time ¢,
while N} = N1 + Nip + N3 is the total number of survivors in the pool at the same time.
We set Ny = n and Ny; = n;.

A lifetime fixed-amount annuity in arrears is paid to each annuitant, i.e. with payments
at the end of each year. Each annuitant pays an initial capital S to the provider, and will
get the annual amount b; if placed in class C;. The annuity rate % is assessed as defined in

Sect. 4. Here we just note that, due to the mortality assumptions, it will turn out b; < by <
bs.

3 The mortality model

3.1 Baseline mortality

When modelling the lifetime of annuitants, whatever the type of annuity (either standard
or special-rate), we need assumptions about the possible future mortality trend; further,
when dealing with special-rate annuities we also need assumptions about the different
mortality levels of the several risk classes, and the possible heterogeneity of each risk class.

As far as the mortality trend is concerned, we assume that all risk classes share a com-
mon mortality dynamics, which is measured on a reference population. We denote the re-
lating mortality rates as g, ;pase and refer to them as the baseline mortality. As we comment
below, the mortality rate in risk class C; is obtained by adjusting the baseline mortality rate
qx,tbase-

We model g, 1.5 by adopting the Poisson Lee-Carter model proposed by Brouhns et al.
(2002). In such a model, the instantaneous force of mortality (in our case, for the reference
population) is modelled as follows:

Hx tbase = exp(ﬂx + by - kt) 3.1)

where a, measures the average age-pattern of mortality over time, k; describes the change
in time in the level of mortality and b, measures how such a change impacts the average
mortality at age x. Errors in the representation of mortality are modelled by assuming a



Poisson distribution for the number of deaths, i.e.
Dx,t;base ~ POisson(ETRx,t;base : ,ux,t;base) ’ (32)

where ETR| ;pase is the central number of exposed to risk in the reference population. Pa-
rameters are subjected to the constraints ) ;k; = 0, ), Bx = 1. Parameter estimation
requires stochastic simulation; we make use of the demography (see Hyndman (2023))
and StMoMo R packages (see Villegas et al. (2022)). The dataset we adopt is described in
Sect. 5.1.

We note that (3.2) is based on the assumption of a piece-wise constant force of mortality;
we then obtain the mortality rate as gy t.pase = €XP(—Jx tbase)-

3.2 Mortality in the risk classes

The mortality rate for risk class C; is assumed to be proportional to baseline mortality,
with a proportionality coefficient that is lower or higher depending on the risk class. This
is in line with many practical implementations of differential mortality; see, for example,
Haberman and Olivieri (2014).

The proportionality coefficient can be assumed either deterministic or stochastic. The
former choice is rather common when accounting for differential mortality due to observ-
able risk factors. The latter, is at the basis of the frailty modelling (formally defined by
Vaupel et al. (1979)), and represents an appropriate setting for unobservable risk factors.

In the paper, we test both choices. In both cases, the proportionality coefficient is as-
sumed to be class-dependent, but age-independent. In a deterministic setting, we then
assume that the mortality rate for risk class C; is obtained as follows:

Qxtii = Zi " Gx,tbase s (3.3)

with z; < zp < z3; in particular, z; < 1, considering the adverse-selection effect which is
typical of standard annuities.

In a stochastic setting, the proportionality coefficient is random; we denote it as Z;.
Then, the mortality rate for risk class C; is obtained as:

x,ti = Zi " x,tbase - (34)

A stochastic coefficient accounts, in particular, for the heterogeneity within the risk class,
that is reasonably stronger for enhanced and impaired lives in respect of standard lives,
due to the spectrum of diseases entitling to a common annuity rate. A stochastic coeffi-
cients also accounts for a greater uncertainty about the mortality level, originated by a lack
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of data about some groups of the population. It must also be noted that the underwriting
process can miss or misunderstand some features of the risk. Some level of heterogeneity
should then be expected in all risk classes (i.e., also in the class of standard risks).

We note that according to (3.4), the mortality rate of a risk class is affected by two
sources of uncertainty: the mortality dynamics of the reference population and the het-
erogeneity in the risk class. Under the Lee-Carter model, a similar structure has been
considered by Li et al. (2009) and Jarner (2021). Their purpose, however, is not to address
the different heterogeneity levels of different risk groups, but to improve goodness-of-fit
and the estimate of mortality improvements by accounting for the overall heterogeneity of
the population (an aspect which is disregarded in the classical Lee-Carter model).

Similarly to the literature on frailty, and similarly to Li et al. (2009) and Jarner (2021),
we assume for Z; a Gamma probability distribution. Contrarily to frailty models, how-
ever, we assume fixed parameters for the probability distribution, i.e. we assume Z; ~
Gamma(w;, B;) at all ages. Indeed, with Z; we do not mean to measure the frailty of the
population, but more simply the heterogeneity of the risk group, as it is defined by the
underwriting process at issue. We recall that E[Z;] = % and CV[Z;] = \/Lai ;
&

5, between the parameters of the Gamma distribution describes the average level of differ-

thus, the ratio

ential mortality in risk class C; with respect to the reference population, while parameter «;
describes the level of dispersion because of risk factors, namely the degree of heterogeneity
within the risk class.

3.3 Modelling the number of deaths and the number of survivors

We assume that, conditional on the mortality dynamics (i.e., on the trajectory of the mor-
tality rate over time), annuitants have independent lifetimes.
Under assumption (3.3), for any given trajectory of the mortality rates, that we denote
]

as (. ,pase- the number of deaths in year (t — 1, t) follows a binomial distribution:

D;_1;; ~ Bin(N;_1;;, z; - qﬁfgﬂ,llt,l) , (3.5)

where N;_1,; must be replaced with the number of survivors observed at time t — 1, and
Nt;i - Nt—l;i - Dt—l;z’-

Under assumption (3.4), first we approximate (3.5) with a Poisson distribution, i.e. we
assume that (for each trajectory qj[g(]) 4+_1,_1 of baseline mortality) conditional on the re-
alization z; of the random coefficient Z;, the number of deaths in year (¢t — 1,f) can be
approximated with a Poisson distribution:

Di_1;i ~ Poisson(Ni_y;i -z 47 1, 1) (3.6)
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Such an approximation is widely adopted in the actuarial literature (see, for example, Ger-
ber (2013), Panjer and Willmot (1992)). Once we assign a Gamma(«;, ;) distribution to Z;,
we can easily find that the unconditional distribution of the number of deaths follows a
Negative Binomial distribution (see, again, Gerber (2013), Panjer and Willmot (1992)):

Bi/ (N—1;i, 2 - qa[c](])+t—1,t—1)
1+ Bi/ (Ne—v;i zi - qa[c](])+t—1,t—1)

where «;, B; are the parameters of the Gamma distribution for Z; (for the computations of

D;_1,; ~ NegBin | «;, , (3.7)

the parameters of the Negative Binomial distribution, see also Olivieri and Pitacco (2016)).
We note that in (3.7), as in (3.5), N;_1; must be replaced with the number of survivors
observed at time t — 1, having N;; = N;_1,; — D;_1.;.

4 Annuity rates and present value of future benefits

We aim at investigating the impact of the pool size and composition on the probability
distribution of the total payout of the pool, with particular regard to its dispersion.
We first define the present value at time 0 of future benefits for risk class C; as follows:

w—Xq

PVFBg,; = Y bj-Nyi-o(t), 4.1
t=1

where v(t) is the discount factor and w is the maximum attainable age (and, therefore, w —
xp is the maximum attainable payment duration). We restrict our attention to longevity
risk, and introduce a deterministic financial setting. Financial risk is clearly an important
matter in the risk management of an annuity pool; however, it is not impacted by the pool
composition. In order to have a better and more immediate understanding of the results
affected by longevity risk, we then prefer to disregard financial risk. This way, PVFB,; is
random because the numbers of survivors Nj,;’s are random, as it is described in Sect. 3.3.
As far as the maximum attainable age w is concerned, we assume a fixed value, as it is
common in many actuarial applications.

The present value at time 0 of future benefits for the whole pool is:

PVFBy = } PVFBy, . (4.2)
i

The annuity rate g for risk class C; is obtained in a traditional way, i.e. as the actuarial
value at time 0 of future benefits, using best-estimate assumptions:

0

b= 2 Py (), (4.3)
l t=1



where ; pgg] is obtained from the best-estimate trajectory of baseline mortality rates (that
we assume to correspond to the median of their probability distribution), multiplied by z;
under assumption (3.3) and by E[Z;] under assumption (3.4). We note that in the actuarial
literature an annuity rate obtained as in (4.3) is usually denoted as a,, (symbol that we
do not use explicitly, having used a, to represent a parameter of the Lee-Carter model;
see (3.1)). We also note that by using best-estimate assumptions no premium loading is
included in (4.3), contrarily to what is usual in the traditional actuarial pricing model.

In order to analyse the risk profile of the pool, we assess the ¢ quantiles of the present
value at time 0 of the future benefits for the whole pool, PVFPy, that we denote as PVFP;,.
We consider alternative pool sizes and compositions. The difference PVFPj — 1 - S (where
n - S represents the total amount of money cashed by the provider from annuitants at time
0) can be interpreted as an additional amount required in consideration of the risks to
which the pool is exposed. In our setting, risks are due to mortality and their magnitude
is affected by the pool size and composition. It is a provider’s decision how to cover
this additional amount, in particular how much with premium loading to be charged to
annuitants and how much with equity. This choice is not discussed in this paper.

5 Implementation: Results and discussion

5.1 Parameters

We consider individuals age xp = 65 at time 0, born in year 1958. Baseline mortality
is calibrated on Italian data extracted from the Human Mortality Database. Mortality of
the male population is considered. To avoid the impact of major random fluctuations
at the oldest ages, the maximum attainable age is set w = 100 years. The Poisson Lee-
Carter model described in Sect. 3.1 is calibrated on calendar years (1960,2019) (this choice
of the time-frame has provided better fit than alternative periods). Projections are then
obtained until the assumed life limit of the cohort. As already mentioned, for calibration
and projection we use the demography (by Hyndman (2023)) and StMoMo R packages (by
Villegas et al. (2022)). We identify the best-estimate mortality as the median of the projected
mortality rates. According to the best-estimate trajectory, the remaining expected lifetime
(at age 65) of the cohort in the reference population is 22.975 years.

Mortality of standard, enhanced and impaired risks is obtained as a proportion of base-
line mortality, as we have discussed in Sect. 3.2. The level of mortality in the various classes
depends, in particular, on the risk factors chosen by the provider for underwriting pur-
poses. We assume that mortality of standard risks is lower than baseline mortality; this is
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in line with empirical evidence in many markets. Conversely, we assume that enhanced
and impaired risks have higher mortality levels than baseline mortality; this is consistent
with the features of such risks. As to the coefficients z;’s in a deterministic setting and the
parameters of the Gamma distribution for coefficients Z;’s in a stochastic setting, we make
the assumptions summarized in Table 1, in terms of the fixed value of deterministic coeffi-

cients z;’s, and the expected value and coefficient of variation of the stochastic coefficients
Zi’S.

Table 1: Parameters describing the mortality of risk classes in relation to baseline mortality.

Risk class ~ Deterministic coefficients Stochastic coefficients Remaining expected lifetime

C zZ; E[Z] CV|[Z;] (best-estimate scenario)
Cy: Standard 0.7 0.7 3.16% 25.529
C,: Enhanced 2 2 8.16% 17.907
C3: Impaired 4 4 11.18% 13.146

First, we note that the parameters of the Gamma distribution are chosen so that the
expected value of the coefficients Z;’s is the same as the fixed value of the corresponding
deterministic coefficients z;’s. This way, the expected lifetime for each group in the best-
estimate scenario is the same under a deterministic and stochastic heterogeneity frame-
work. Life expectancies for the various risk classes are listed in the last column of Table 1.
We also note that an assumption of a mortality level for standard risk which is on average
70% of baseline mortality is in line with similar (average) assumptions adopted in market
tables for standard annuities (for example, in the Italian market). Assumptions about en-
hanced and impaired lives imply life expectancies whose difference in respect of the life
expectancy of standard risks is in line with what assumed by Pitacco and Tabakova (2022).
When we consider stochastic coefficients, we assume some heterogeneity also in the class
of standard risks. This is reasonable, as pools in practice are never perfectly homogeneous.
The level of heterogeneity for enhanced and impaired lives is assumed to be higher, due to
the spectrum of illnesses leading to such classes (as well as to some uncertainty originated
by fewer data available).

As for the pool size and composition, we test some of the cases considered in Pitacco
and Tabakova (2022). Indeed, as we stated in Sect. 1, we aim at extending the analysis dis-
cussed in such paper, by considering a stochastic mortality and heterogeneity framework.
Table 2 lists the pools whose risk profile is analysed in the numerical implementation.

11



Table 2: Pool structures.

Size

Pool label ClassC; ClassC, ClassC3  Pool
Standard Enhanced Impaired

P01 10000 0 0 10000
P02 10000 100 0 10100
P03 10000 500 0 10500
P04 10000 1000 0 11000
P05 10000 0 100 10100
P06 10000 0 500 10500
P07 10000 0 1000 11000
P08 10000 500 250 10750
P09 10000 1000 500 11500
P10 9750 500 250 10500
P11 9500 1000 500 11000

Pool P01 only consists of standard annuities; thus, it is a traditional annuity pool, and
we use it as a reference for interpreting in comparative terms the risk profiles of pools also
including other risk classes. Pools P02-P04 also include enhanced annuities, with a dif-
ferent size of such a risk class. Similarly, pools P05-P07 also include impaired annuities,
in addition to standard annuities. Considering pools including, apart from standard an-
nuities, only enhanced or only impaired annuities allows us to interpret more clearly the
impact on the pool’s total riskiness of some types of risks. Pools P08-P11 include all risk
classes, with different possible sizes of each risk class. In particular, pools P10-P11 take
into account possible “cannibalization effects”, i.e. a reduction of the number of standard
annuities, emerging if some annuitants willing to underwrite a standard annuity are clas-
sified as enhanced or impaired life or if they simply decide not to take the annuity, when
they compare prices of the different risk classes. In all cases, the standard annuity risk
class is the largest in the portfolio, as it is reasonable (and as it is assumed by Pitacco and
Tabakova (2022)).

As to the discount factor, we set a flat 2% discount rate. The initial capital paid by
each annuitant is set to S = 1000 monetary units (in the following, to make it short, when
quoting amounts we will leave out the reference to “monetary units”). Table 3 quotes the

12



amount of the annuity benefit for each risk class, obtained using annuity rates (4.3).

Table 3: Annuity benefit amount for an initial capital S = 1000.

Risk class Benefit amount

C; b;
Cy: Standard 52.49
C,: Enhanced 70.85
C3: Impaired 93.49

Clearly, the different benefit amounts are a result of the different assumptions about the
mortality levels in each class; see, in particular, the values of the life expectancy quoted in
Table 1.

5.2 Risk profile of the pool: Numerical results and discussion

Tables 4 and 5 quote the &€ quantiles of the present value at time 0 of future benefits for
the whole pool, as a % of the total initial capital, i.e. 1 - S, assessed in different situations
regarding the components of longevity risk and the heterogeneity of the risk classes, as we
will comment later. Here we comment on how we have chosen e. We focus on the right tail
of the probability distribution of PVFBy, and then we consider high values for ¢, namely

e = 0.9 and e = 0.995. Chosen ¢, higher values of P\fSB 0 express greater exposure to adverse

fluctuations for the provider. The value 1 — & = 0.005 can be referred to as an acceptable
level of default probability. In this view, PVFB)*° represents the total amount of resources
the provider needs to hold in order to cover, with probability 0.5%, its obligations. As
already noted, it is a decision of the provider how to fund such resources, in particular how
much via premiums and how much with equity. The quantity PVFBY)? could, for example,
represent the amount to be covered with the premiums (by charging to annuitants and
additional amount on top of S or by reducing the annuity rate so that the total initial capital

corresponds to PVFBY?). Then, PVFB)?* — PVFBY? would be covered with equity. In this

0.9
interpretation, the higher P\;FEO , the higher the required premium loading. Conversely,

the higher the difference PVFB}** — PVFB)?, the higher the required equity.
Table 4 quotes PVFB)? and PVFB)**° as a % of the total initial capital amount 7 - S. We
consider fixed coefficients for differential mortality, i.e. model (3.3).

In case a, we only consider the best-estimate of mortality rates, whereas the number of
deaths is modelled (and simulated) with the Binomial distribution. We can then interpret
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Table 4: £ quantiles of PVFBy, as a percentage of the total initial capital # - S:

differential mortality.

PZ_FSB 0. 100. Fixed coefficient for

Pool Case a Caseb Case c
Label Size e=09 =099 =09 =099 =09 =099
PO1 10000 100.395% 100.786% 102.159% 104.160% 102.188% 104.233%
P02 10100 100.396% 100.798% 102.172% 104.194% 102.202% 104.263%
P03 10500 100.394% 100.780% 102.221% 104.317% 102.253% 104.373%
P04 11000 100.388% 100.761% 102.279% 104.445% 102.314% 104.487%
PO5 10100 100.398% 100.788% 102.182% 104.221% 102.211% 104.280%
P06 10500 100.399% 100.804% 102.266% 104.405% 102.300% 104.462%
P07 11000 100.408% 100.791% 102.364% 104.604% 102.400% 104.677%
P08 10750 100.398% 100.786% 102.272% 104.428% 102.308% 104.480%
P09 11500 100.392% 100.755% 102.373% 104.627% 102.410% 104.691%
P10 10500 100.387% 100.816% 102.275% 104.433% 102.315% 104.478%
P11 11000 100.400% 100.807% 102.383% 104.646% 102.423% 104.716%

Case a: Deterministic baseline mortality rates (best-estimate trajectory); Binomial distribution for the number
of deaths.

Case b: Stochastic baseline mortality rates; for each trajectory, number of deaths equal to the expected value
for each trajectory.

Case c: Stochastic baseline mortality rates; for each trajectory, Binomial distribution for the number of deaths.

the values of quantiles as being affected only by the random fluctuations of the number of
deaths. When there are several risk classes, there is a bit more dispersion (as it emerges, for
example, if we compare the quantiles of pool P04 with pool P11: these are two pools of the
same size, but of different composition). A trade-off between pool size and heterogeneity
emerges in many situations. For example, quantiles for pool P02 are higher than pool P01
(which is smaller), while quantiles for pool P03 are lower than pool P01. On the other
hand, pools P05-P07 show increasing quantile values, despite the increase of the pool size.
Overall, however, the change of the value of quantiles appears to be little.

In case b, we consider stochastic baseline mortality rates, whereas for the number of
deaths we take them to be the same as their expected value in each trajectory. Thus, we
can interpret the values of the quantiles as being affected only by systematic fluctuations,
originated by the uncertain mortality dynamics. Comparing these quantiles to the cor-
responding ones in case a, higher values emerge, in particular at the very right tail (i.e.,
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when we consider higher values for ¢€). This witnesses the higher impact of aggregate
than idiosyncratic longevity risk. The effect of heterogeneity emerges when comparing
the quantiles obtained for different pools. It is useful to point out that higher values of
mortality rates imply a larger dispersion of the lifetime distribution. Thus, even if at this
stage we are only taking a deterministic description of heterogeneity, the distribution of
the lifetime of enhanced and impaired lives is anyhow more dispersed than for standard
lives, due to the higher level of mortality rates.

In case ¢, we both consider stochastic baseline mortality rates and, for each trajectory,
the number of deaths is modelled (and simulated) with the Binomial distribution. We
point out that in this case we perform a two step simulation: one step is for the baseline
mortality rate and, nested on that, one step is for the number of deaths. In this case, we
can interpret the values of quantiles as being affected both by random fluctuations and
systematic deviations. Clearly, the values taken by quantiles are the highest among the
three cases. Interpretations are in line with what commented for cases a and b.

In Table 5 we consider random coefficients for differential mortality, i.e. model (3.4).

In case d, again we only consider the best-estimate of mortality rates, but this time the
number of deaths is modelled (and simulated) with the Negative Binomial distribution,
which accounts for the heterogeneity in the various risk classes. Again, quantiles only
capture random fluctuations, that impact a little bit more than case a in Table 4 as a conse-
quennce of greater heterogeneity. A trade-off between pool size and composition emerges,
but overall quantiles look very similar for the various pools.

Case e includes both random fluctuations and systematic deviations (again, we perform
a two step simulation). If we compare this case to case c in Table 4, we find higher values
for the quantiles, but with slight differences.

We point out that Table 5 does not include a situation with only systematic deviations,
as (given the choice of parameters) we would find what depicted by case b in Table 4.

As we have noted, the level of heterogeneity of each risk class is in particular a con-
sequence of the risk factors adopted by the provider for the underwriting process. It is
interesting to test an alternative situation about the level of heterogeneity, that could result
from adopting different underwriting rules in respect of those underlying the summary
statistics for the Z;’s reported in Table 1. More specifically, we now consider parameters
for the coefficients Z;’s describing a greater heterogeneity than what considered before.
The assumptions are summarized in Table 6 in terms of expected value and coefficient of
variation of the Z;’s.

Table 7 quotes the quantiles of the present value at time 0 of future benefits for the
whole pool obtained with this alternative set of parameters.
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Table 5: € quantiles of PVFB, as a percentage of the total initial capital n - S:

for differential mortality.

PV

Pool Cased Casee
Label Size e=09 =099 =09 =099
PO1 10000 100.421% 100.840% 102.196% 104.239%
P02 10100 100.422% 100.829% 102.209% 104.267%
P03 10500 100.420% 100.834% 102.261% 104.370%
P04 11000 100.420% 100.858% 102.320% 104.494%
P05 10100 100.420% 100.854% 102.219% 104.291%
P06 10500 100.441% 100.850% 102.307% 104.471%
P07 11000 100.455% 100.886% 102.411% 104.690%
P08 10750 100.426% 100.855% 102.314% 104.482%
P09 11500 100.429% 100.852% 102.417% 104.693%
P10 10500 100.435% 100.869% 102.318% 104.488%
P11 11000 100.441% 100.888% 102.431% 104.722%

n_FSB 0. 100. Random coefficient

Case d: Deterministic baseline mortality rates (best-estimate trajectory); Negative Binomial distribution for
the number of deaths.
Case e: Stochastic baseline mortality rates; for each trajectory, Negative Binomial distribution for the number

of deaths.

We compare Table 7 to Table 5. The greater assumed heterogeneity clearly implies
higher values for the quantiles, but the change is not dramatic. Other comments are in line
with those already discussed before.

6 Conclusions

Due to ongoing changes in the area of post-retirement benefits, caused by the demographic
dynamics and new risks, great efforts are dedicated to finding new solutions that can rec-
oncile individuals” needs with providers” requirements. Indeed, it is likely that individ-
uals and providers have opposing viewpoints. Restricting our attention to life annuities,
we note that several innovations have been addressed in the literature, including topics
such as rider benefits, restrictions to the payment period, linking the annuity benefit to a
longevity experience and customizing prices to the specific risk profile of the individual.
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Table 6: Alternative parameters for the stochastic coefficients Z;’s.

Risk class Stochastic coefficients

Ci E[Z]] CV(Zj]
C;: Standard 0.7 5%
C,: Enhanced 2 10%
Cs: Impaired 4 15.81%

In this paper, we focus on the latter topic, considering the so-called special-rate annuities.

When offering special-rate annuities, the target of the provider is to increase the pool
size. Indeed, individuals in poor health or with poor lifestyle may reject standard annu-
ities, as they are priced with reference to healthy individuals with very good lifestyles. In-
dividuals in poor health or with poor lifestyle could instead accept annuities rated consid-
ering their features, i.e. higher mortality. The availability of special-rate annuities should
then favour the increase of the demand for annuities.

In terms of the risk management of the pool, a larger size is usually considered to be
advantageous, as it improves pooling effects, while greater heterogeneity (which is intro-
duced when structuring the pool in several risk classes) is considered to be disadvanta-
geous, as it increases the dispersion of the provider’s total payout.

An analysis of these two opposing effects has already been considered in Pitacco and
Tabakova (2022). The aim of this paper is to extend their investigation, by addressing a
stochastic mortality dynamics and stochastic levels of heterogeneity in the risk classes. In
their conclusions, Pitacco and Tabakova (2022) actually mentioned stochastic mortality as
an interesting extension of their work.

As far as the trade-off between size and heterogeneity is concerned, our findings are
in line with those of Pitacco and Tabakova (2022): heterogeneity worsen the risk profile
of the provider’s obligations, but this is usually mitigated by a larger size. Special-rate
annuities, then, can really represent a way for the provider to extend the annuity business
keeping exposure to risk at levels similar to less heterogeneous pools. As an addition to
the findings in Pitacco and Tabakova (2022), our conclusion is that, above all, the aggregate
longevity risk proves to be the most significant source of risk for the provider, and in
relative terms it is little affected both from the pool size and heterogeneity. Because of its
systematic nature, its management actually requires innovative actuarial principles and

market solutions. The research in this area is very rich, as it is well documented by Blake
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Table 7: € quantiles of PVFB, as a percentage of the total initial capital n - S:

PVF
n-S

for differential mortality, with parameters expressing greater heterogeneity.

Pool Case f Caseg
Label Size =09 =099 =09 =099
P01 10000 100.474% 100.954% 102.207% 104.255%
P02 10100 100.471% 100.938% 102.219% 104.278%
P03 10500 100.464% 100.935% 102.269% 104.383%
P04 11000 100.466% 100.914% 102.329% 104.505%
P05 10100 100.471% 100.954% 102.229% 104.299%
P06 10500 100.484% 100.993% 102.317% 104.487%
P07 11000 100.515% 100.996% 102.423% 104.710%
P08 10750 100.473% 100.945% 102.321% 104.491%
P09 11500 100.470% 100.961% 102.426% 104.710%
P10 10500 100.467% 100.903% 102.328% 104.501%
P11 11000 100.489% 100.978% 102.439% 104.727%

B . 100. Random coefficient

Case f: Deterministic baseline mortality rates (best-estimate trajectory); Negative Binomial distribution for
the number of deaths, with alternative parameters.
Case g: Stochastic baseline mortality rates; for each trajectory, Negative Binomial distribution for the number

of deaths, with alternative parameters.

et al. (2023). It is worth noting that, similarly to Pitacco and Tabakova (2022), we have
disregarded financial risk, being concerned about longevity risk. However, financial risk
is clearly an important risk source in an annuity pool, and requires appropriate decisions
when designing the overall risk management strategy of the provider.

Declarations

Funding: Annamaria Olivieri acknowledges partial funding from the University of Parma
(Azione A Bando di Ateneo per la Ricerca 2022, Project “Robust statistical methods for
the detection of frauds and anomalies in complex and heterogeneous data”) and from the
Italian MUR (PRIN 2022, Project “Building resilience to emerging risks in financial and
insurance markets”).

Dedication: This paper is dedicated to prof. Ermanno Pitacco.

18



References

Ainslie, R. (2000). Annuity and insurance products for impaired lives. Working Paper.
Presented to the Staple Inn Actuarial Society.

Benartzi, S., Previtero, A., and Thaler, R. H. (2011). Annuitization puzzles. Journal of
Economic Perspectives, 25(4):143-164.

Blake, D., Cairns, A. J., Kallestrup-Lamb, M., and Rangyvid, J. (2023). Longevity risk and
capital markets: the 2021-22 update. Journal of Demographic Economics, 89(3):299-312.

Brouhns, N., Denuit, M., and Vermunt, J. K. (2002). A Poisson log-bilinear regression ap-
proach to the construction of projected lifetables. Insurance: Mathematics and Economics,
31(3):373-393.

Cairns, A. ]. G,, Blake, D. P,, and Dowd, K. (2008). Measurement, modelling and manage-
ment of mortality risk: A review. Scandinavian Actuarial Journal, 2008(2 - 3):79-113.

Drinkwater, M., Montminy, J. E., Sondergeld, E. T., Raham, C. G., and Runchey,
C. R. (2006). Substandard Annuities. Technical report, LIMRA International Inc.
and the Society of Actuaries, in collaboration with Ernst & Young LLP. Available
at: https:/ /www.soa.org/Files/Research/007289-Substandard-annuities-full-rpt-REV-
8-21.pdf.

Gatzert, N. and Klotzki, U. (2016). Enhanced annuities: Drivers of and barriers to supply
and demand. The Geneva Papers on Risk and Insurance - Issues and Practice, 41(1):53-77.

Gatzert, N., Schmitt-Hoermann, G., and Schmeiser, H. (2012). Optimal risk classifica-
tion with an application to substandard annuities. North American Actuarial Journal,
16(4):462-486.

Gerber, H. U. (2013). Life insurance mathematics. Springer Science & Business Media.

Gracie, S. and Makin, S. (2006). The price to pay for en-
hanced annuities. Healthcare Conference  2006. Available  at:
https:/ /www.actuaries.org.uk/system/files/documents/pdf/Gracie.pdf.

Haberman, S. and Olivieri, A. (2014). Risk classification / life. Wiley StatsRef: Statistics
Reference Online.

19



Hoermann, G. and Russ, J. (2008). Enhanced annuities and the impact of individual under-
writing on an insurer’s profit situation. Insurance: Mathematics & Economics, 43(1):150—
157.

Hunt, A. and Blake, D. (2021). On the structure and classification of mortality models.
North American Actuarial Journal, 25(sup1):5215-5234.

Hyndman, R. (2023). demography:  Forecasting Mortality, Fertility, ~Migra-
tion and  Population Data. https:/ /pkg.robjhyndman.com/demography/,
https:/ /github.com/robjhyndman/demography.

James, M. (2016). Enhanced annuities: Caring for at-retirement needs. Reinsurance News,
March 2016:24-27.

Jarner, S. F. (2021). Stochastic frailty models for modeling and forecasting mortality. arXiv
preprint arXiv:2109.02584.

Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U. S. mortality. Journal of the
American Statistical Association, 87(419):659-671.

Li, J. S.-H., Hardy, M. R., and Tan, K. S. (2009). Uncertainty in mortality forecasting: an
extension to the classical lee-carter approach. ASTIN Bulletin: The Journal of the IAA,
39(1):137-164.

Olivieri, A. (2006). Heterogeneity in survival models. applications to pension and life
annuities. Belgian Actuarial Bulletin, 6:23-39.

Olivieri, A. and Pitacco, E. (2016). Frailty and risk classification for life annuity portfolios.
Risks, 4(4):39. Available at: http:/ /www.mdpi.com/2227-9091/4/4/39.

Panjer, H. H. and Willmot, G. E. (1992). Insurance risk models. Society of Actuaries.
Pitacco, E. (2021). Life Annuities. Risk Books.

Pitacco, E. and Tabakova, D. Y. (2022). Special-rate life annuities: analysis of portfolio risk
profiles. Risks, 10(3):65.

Ridsdale, B. (2012). = Annuity underwriting in the United Kingdom. Note for
the International Actuarial Association Mortality Working Group. Available at:
http:/ /www.actuaries.org/mortality /Item10_Annuity_underwriting.pdf.

Rinke, C. R. (2002). The variability of life reflected in annuity products. Hannover Re’s
Perspectives - Current Topics of International Life Insurance. Issue No. 8.

20



Vaupel, ]. W, Manton, K. G., and Stallard, E. (1979). The impact of heterogeneity in indi-
vidual frailty on the dynamics of mortality. Demography, 16(3):439-454.

Villegas, A., Millossovich, P., Kaishev, V., and Villegas, M. A. (2022). Package ‘StMoMo’.
http:/ /github.com /amvillegas/StMoMo.

Yaari, M. E. (1965). Uncertain lifetime, life insurance, and the theory of the consumer. The
Review of Economic Studies, 32(2):137-150.

21



