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Abstract

The pricing of longevity-linked securities depends not only on the stochastic uncer-
tainty of the underlying risk factors, but also the attitude of investors towards those
factors. In this research, we investigate how to estimate the market risk premium of
longevity risk using investable retirement indexes, incorporating uncertain real inter-
est rates using an affine dynamic Nelson-Siegel model. A multi-cohort aggregate, or
systematic, continuous time affine mortality model is used where each risk factor is
assigned a market price of mortality risk. To calibrate the market price of longevity
risk, a common practice is to make use of market prices, such as longevity-linked se-
curities and longevity indices. We use the BlackRock CoRI Retirement Indexes, which
provides a daily level of estimated cost of lifetime retirement income for 20 cohorts
in the U.S. Although investment in the index directly is not possible, individuals can
invest in funds that track the index. For these 20 cohorts, we assume risk premiums for
the common factors are the same across cohorts, but the risk premium of the factors
for a specific cohort is allowed to take different values for different cohorts. The market
prices of longevity risk are then calibrated by matching the risk-neutral model prices
with BlackRock CoRI index values. Closed-form expressions and prices for European
options on longevity zero-coupon bonds are derived using the model and compared to
prices for standard options on zero coupon bonds. The impact of uncertain mortality
on long term option prices is quantified and discussed.
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1 Introduction

Life insurance companies and defined benefit (DB) pension plans are exposed to systematic

longevity risk which is the unanticipated changes in mortality rates that cannot be averaged

out by applying the law of large numbers. This risk should be reflected in market pricing of

longevity–linked products. Changes in accounting and solvency regulatory requirements have

shifted the focus to the market valuation of these liabilities, yet there remains no actively

traded market to price the systematic risk.

The development of longevity-linked securities and derivatives aims to allow the management

of this risk as well as provide market based prices. For example, Blake and Burrows (2001)

propose the transfer of this risk to the financial market using longevity bonds. Other pro-

posed instruments include survivor swaps (Dowd et al., 2006), q-forwards (Coughlan et al.,

2007) and mortality linked options (Bauer et al., 2010). Financial markets have the capacity

and experience in risk management to take on longevity risk which in the past has mostly

been reinsured.

The pricing of longevity-linked securities depends not only on the stochastic process for the

underlying risk factors, but also the attitude of investor towards the risk of those factors.

The Life & Longevity Markets Association (LLMA) has identified the market risk premium

of longevity risk as one of the key inputs in a longevity pricing framework1. To determine

the market risk premium, a common practice is to use available market prices, such as

life annuities, longevity-linked securities and longevity indices. The longevity market is

however incomplete due to the lack of traded assets, and calibration of market prices of risk

is problematic.

In an incomplete market, longevity-linked derivatives pricing usually involves making as-

sumptions about the market risk premium of bearing longevity risk directly or implicitly.

Lin and Cox (2005) propose to use a Wang transform for the securitization of longevity risk,

1LLMA(2010). Longevity Pricing Framework. [www.llma.org]

2



and the market price is defined as the shift parameter in the Wang transform to risk adjust

a survival distribution based on 1996 IAM 2000 Basic Table and annuity quotes. A different

approach is taken in Bauer and Ruß (2006) and Chigodaev et al. (2016), who propose to

derive parameter values for stochastic mortality models using survival probabilities implied

by annuity prices, so that the market price of longevity risk is implicitly included in these

parameter values. The Wang transform has limitations in pricing longevity risk (Bauer et al.,

2010). There remains no well accepted method to calibrate and incorporate the market price

of longevity risk into mortality dynamics under a risk-neutral measure for market valuation

that can be used in modelling and pricing of longevity-linked products.

The present paper aims to fill this gap using a pricing framework for stochastic mortality

based on affine processes which have been used extensively in modelling interest rate dy-

namics (Duffie et al., 1996; Dai and Singleton, 2000; Duffee, 2002), as well as for stochastic

mortality (Blackburn and Sherris, 2013; Jevtic et al., 2013; Xu et al., 2015). The benefits

of these processes are in the analytical tractability and ease of application to valuation and

risk management of longevity linked product and financial instruments.

We are the first to derive the market risk premium of longevity risk using investable retire-

ment indices. The BlackRock CoRI Retirement Indexes provide a daily level of the estimated

cost of lifetime retirement income for 20 cohorts in the U.S. The CoRI Indexes are designed

to help investors estimate the cost of providing retirement income and assist in planning for

future income goals. Key factors taken into account in the indices include current interest

rates, inflation expectations and life expectancy. Investors can use the CoRI Indices as a

risk metric directly or can invest in the BlackRock CoRI Funds that track the indices.

Since the CoRI Indexes consist of 20 cohorts, we use the multi-cohort mortality model

developed by Xu et al. (2015), in which the dynamics of each cohort are driven by two

common factors and a cohort specific factor. In the financial literature, the market price

of risk is normally obtained by specifying the dynamics of state variables under both an
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objective probability measure and an equivalent martingale measure. The affine mortality

model allows us to calibrate the market price of longevity risk in a similar way. To change

between the best-estimate measure and the risk-neutral measure, we assign each factor a

market price of risk. Since the instantaneous volatility of each factor is assumed to be

constant, the subtraction of the product of market price of risk and volatility from the drift

under the best-estimate measure results in a process that is also affine.

Option-type longevity derivatives are considered in Bauer et al. (2010), where the under-

lying asset is the survival probability at maturity. Bauer et al. (2010) note that options

are desirable hedging instruments and significantly reduce the committed capital compared

to longevity bonds. With calibrated market price of longevity risk, we derive closed-form

expressions for prices of options on longevity zero-coupon bonds and discuss the impact of

stochastic mortality on these option prices. We show that call prices on longevity bonds

are increasing functions of the option maturity. However, with an increase in bond matu-

rity, call prices increase first and decrease thereafter. We compare the prices of longevity

zero-coupon bond options with the prices of zero-coupon bond options. For shorter bond

maturities zero-coupon bond options are lower while for longer maturities longevity linked

zero-coupon bond options are lower.

The paper will introduce the modelling framework and the structure of the longevity indexes,

which is a sum of longevity bonds with different maturities. We will present the estimation

results for mortality and interest rate models, and calibrate the market prices of longevity

risk using the CoRI Retirement Indexes. We present derivations in closed-form for prices of

longevity bond options expressions and discuss the impact of stochastic mortality on these

options.

4



2 Blackrock CORI Retirement Indexes

We use the BlackRock CoRI Retirement Indexes to imply a market price of longevity risk,

which can then be used to assess the risk premiums for mortality risk when pricing derivative

securities written on longevity-linked instruments. BlackRock, which is one of the leading

global asset manager, has tried for many years to introduce new and innovative approaches to

address the challenge of converting retirement savings account balances into lifetime income

streams. In June 2013, BlackRock introduced the CoRI Indexes to help investors estimate

and track the cost of $1 of annual lifetime income at retirement. The CoRI consists of twenty

indexes corresponding to twenty cohorts born from 1941 to 1960 in U.S. For cohorts with

an age below 65 the index is the discounted cost of purchasing inflation-adjusted lifetime

retirement income at age 65, and for other cohorts it is the cost of purchasing inflation-

adjusted retirement income for remaining life.

The CoRI indexes aim to help investors improve the way they plan for retirement. Investors

can use the CoRI index as a risk metric directly or invest in the BlackRock CoRI Funds

that track the index. To help investors prepare for retirement, BlackRock also launched five

CoRI funds. The CoRI funds are comprised of CoRI 2015, 2017, 2019, 2021, and 2023 funds

that track the corresponding CoRI indexes. The CoRI indexes are constructed based on

real-time market data, and they do not include any fees or premium taxes that would be

associated with the price of an annuity. Although the indexes are not tradeable, they can

be invested in and provide a more suitable basis for implying market prices of risk than life

annuity quotes.

BlackRock do not provide the details of the cash flow modelling and actuarial techniques

used to construct the indexes. The funds that track the Indexes are constructed using

liability-driven investment techniques. They consist of investment grade corporate bonds,

U.S. government bonds and U.S. Treasury STRIPS and take into account the factors that

life annuity providers use including life expectancy, interest rates and inflation expectations.
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We use market based models for stochastic mortality taking into account longevity expec-

tations as well as models of the term structure of real interest rates accounting for inflation

expectations. The models are calibrated to historical U.S. cohort mortality data and market

based U.S. real interest rates. These are used to construct indexes that reflect the same

factors as the BlackRock indexes.

3 Longevity Index Construction

The Indexes are constructed on complete filtered probability space (Ω,F ,F, P ), where Ω is

the set of possible states of nature, F = {Ft}0≤t≤T , and P is interpreted as the objective

probability measure. We assume that F is the natural filtration generated by two indepen-

dent multi-dimensional standard Wiener processes Wr and Wµ. Set Ft = Gt ∨ Ht where Gt

and Ht contain the information concerning the financial and mortality markets, respectively.

Thus G and H are independent and generated by Wr and Wµ respectively.

The longevity index requires a market model for mortality and real interest rates. These are

used to determine the value of zero coupon longevity bonds that have a payment based on

the realised proportion of survivors of a particular cohort at a specified future time. The

value of the stream of the lifetime income stream that forms the index is just a sum of these

zero coupon longevity bonds. We first specify the models.

3.1 Mortality Model

We use the multi-cohort mortality model developed by Xu et al. (2015). The model is a

three-factor affine mortality model in which the mortality intensity process for each cohort

i aged x+ t at time t is modelled via

µi(x, t) = X1(t) +X2(t) + Zi(t), (1)
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where X1(t), X2(t) are two common factors and Zi(t) is the cohort specific factor. The

model is parsimonious and provides closed form solutions for survival probabilities allowing

efficient calibration and computation of zero coupon longevity bond prices.

Under the best-estimate measure, which reflects future expected mortality based on historical

trends, Q̄, the state variables (X1(t), X2(t), Zi(t)) have the following dynamics

dXj(t) = −φjXj(t)dt+ σjdW
Q̄
j (t), j = 1, 2, (2)

dZi(t) = −φi3Zi(t)dt+ σi3dW
Q̄,i
3 (t), (3)

where φ1, φ2, φi3, σ1, σ2 and σi3 are constants, and W Q̄
1 (t), W Q̄

2 (t) and W Q̄,i
3 (t) are standard

Wiener processes under Q̄.

Denote the best-estimate survival probability by SQ̄,i(x, t, T ) for cohort i aged x at time t

over duration T − t. From Xu et al. (2015), this probability has a closed-form solution such

that

SQ̄,i(x, t, T ) = EQ̄[e−
∫ T
t µi(x,s)ds|Ft]

= eB1(t,T )X1(t)+B2(t,T )X2(t)+Bi3(t,T )Zi(t)+Ai(t,T ), (4)

where

B1(t, T ) = −1− e−φ1(T−t)

φ1

, B2(t, T ) = −1− e−φ2(T−t)

φ2

, Bi
3(t, T ) = −1− e−φi3(T−t)

φi3
,

Ai(t, T ) =
1

2

2∑
j=1

σ2
j

φ3
j

[
1

2
(1− e−2φj(T−t))− 2(1− e−φj(T−t)) + φj(T − t)

]
+

1

2

(σi3)2

(φi3)3

[
1

2
(1− e−2φi3(T−t))− 2(1− e−φi3(T−t)) + φi3(T − t)

]
. (5)

As discussed in Xu et al. (2015), so far the dynamics are specified under the best-estimate

measure Q̄ and the parameters are estimated using observed mortality data. In order to
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account for a risk premium, we use the Girsanov’s theorem to change to the pricing risk-

neutral measure Q. We assume Λi = (λµ,1, λµ,2, λ
i
µ,3)T to be the vector of market price of risk

associated with cohort i (see the completely affine market price of risk specification in Dai

and Singleton (2000) and Duffee (2002)). The market prices of longevity risk, λµ,1 and λµ,2

are assumed to be the same across cohorts as they are associated with the common factors,

but λiµ,3 is allowed to take different values for different cohorts. By using the Girsanov’s

Theorem we have

dWQ
j (t) = dW Q̄

j (t) + λµ,jdt, j = 1, 2 (6)

dWQ,i
3 (t) = dW Q̄,i

3 (t) + λiµ,3dt (7)

where WQ
1 (t), WQ

2 (t) and WQ,i
3 (t) are standard Wiener processes under the risk-neutral

measure Q. Thus the dynamics of mortality intensity under the risk-neutral measure Q are

given by

dµi(x, t) =
[
−φ1X1(t)− φ2X2(t)− φi3Zi(t)− σ1λµ,1 − σ2λµ,2 − σi3λiµ,3

]
dt

+ σ1dW
Q
1 (t) + σ2dW

Q
2 (t) + σi3dW

Q,i
3 (t). (8)

The risk-neutral survival probability is

SQ,i(x, t, T ) = EQ
[
e−

∫ T
t µi(x,s)ds|H(t)

]
= eB1(t,T )X1(t)+B2(t,T )X2(t)+Bi3(t,T )Zi(t)+Ai(t,T )+Ci(t,T )

= SQ̄,i(x, t, T )eC
i(t,T ), (9)

where

Ci(t, T ) =
2∑
j=1

σjλµ,j
φ2
j

[
φj(T − t)−

(
1− e−φj(T−t)

)]
+
σi3λ

i
µ,3

(φi3)2

[
φi3(T − t)−

(
1− e−φ

i
3(T−t)

)]
.
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3.2 Interest Rate Model

For interest rates, we choose the arbitrage-free Nelson-Siegel (AFNS) model developed by

Christensen et al. (2011) due to its good empirical fit and arbitrage-free property. Diebold

and Li (2006) introduce dynamics to the yield curve model of Nelson and Siegel (1987)

and show that this model provides a good empirical fit. Based on Diebold and Li (2006),

Christensen et al. (2011) prove that with a time-invariant yield-adjustment term the empir-

ical successful dynamic Nelson-Siegel (DNS) model can be made arbitrage-free. The AFNS

model combines the DNS factor loading structure and the arbitrage-free property of an affine

term structure model. We use the independent-factor AFNS model since it outperforms the

correlated-factor AFNS model in out-of-sample forecasts (Christensen et al., 2011).

Let P (t, T ) denote the price of a discount bond with maturity of T − t, and y(t, T ) be its

continuously compounded yield to maturity, then by definition we have

P (t, T ) = e−(T−t)y(t,T ). (10)

Christensen et al. (2011) propose the following representation for the yield function,

y(t, T ) = L(t) +
1− e−λ(T−t)

λ(T − t)
S(t) +

[
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
C(t)− V (t, T )

T − t
, (11)

where λ is the Nelson-Siegel parameter, and −V (t,T )
T−t is the yield-adjustment term. In the
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independent-factor case the yield-adjustment term is

−V (t, T )

T − t
=− (T − t)2

6
(s1)2

−
[

1

2(λ)2
− 1

(λ)3

1− e−λ(T−t)

(T − t)
+

1

4(λ)3

1− e−2λ(T−t)

(T − t)

]
(s2)2

−
[

1

2(λ)2
+

1

(λ)2
e−λ(T−t) − 1

4λ
(T − t)e−2λ(T−t) − 3

4(λ)2
e−λ(T−t)

− 2

(λ)3

1− e−λ(T−t)

(T − t)
+

5

8(λ)3

1− e−2λ(T−t)

(T − t)

]
(s3)2,

where s1, s2 and s3 are volatility parameters.

In the above equation, L(t), S(t) and C(t) are the time-varying level, slope and curvature

factors with the following dynamics under the risk-neutral Q-measure


dL(t)

dS(t)

dC(t)

 = −


0 0 0

0 λ −λ

0 0 λ



L(t)

S(t)

C(t)

 dt+


s1 0 0

0 s2 0

0 0 s3



dW̃Q

1 (t)

dW̃Q
2 (t)

dW̃Q
3 (t)

 , (12)

while under the real-world probability measure these factors evolve as follows


dL(t)

dS(t)

dC(t)

 =


κ1 0 0

0 κ2 0

0 0 κ3




θ1

θ2

θ3

−

L(t)

S(t)

C(t)


 dt+


s1 0 0

0 s2 0

0 0 s3



dW̃ P

1 (t)

dW̃ P
2 (t)

dW̃ P
3 (t)

 , (13)

where κ1, κ2, κ3, θ1, θ2 and θ3 are real-world parameters.

3.3 The Longevity Index

We define a longevity zero-coupon bond P̄ i
x(t, T ), which pays the realized proportion of the

initial population in cohort i that is alive at time T , as our basic instrument. The definition

of P̄ i
x(t, T ) is similar to the definition of a defaultable zero-coupon bond (as defined in
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Schönbucher (2003)), where the mortality intensity corresponds to the default intensity.

The price of a longevity zero-coupon bond can be explicitly represented as

P̄ i
x(t, T ) = EQ

[
e−

∫ T
t (r(s)+µi(x,s))ds|F(t)

]
= EQ

[
e−

∫ T
t r(s)ds|G(t)

]
EQ
[
e−

∫ T
t µi(x,s)ds|H(t)

]
= P (t, T )SQ,i(x, t, T ), (14)

since we assume that the dynamics of the mortality rates and the dynamics of the interest

rates are independent.

Taking the longevity zero-coupon bond as a starting point, a longevity index that pays the

discounted value of lifetime annual income of $1 for cohort i is just a portfolio of longevity

bonds of different maturities. Thus the value of the longevity index can be represented as a

sum of longevity bond prices

I ix(t) =
x∗−x∑
j=1

P̄ i
x(t, t+ j), (15)

where x∗ is the maximum age.

4 Model Estimation and Market Price of Risk for

Longevity

We provide the estimation results for the multi-cohort mortality model and the AFNS interest

rate model which we use to contruct the Longevity Indexes. We derive the implied market

prices of longevity risk from the CoRI Retirement Indexes.
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4.1 Estimation of the Mortality Model

We use the U.S. male mortality data from Human Mortality Database from 1934 to 2013,

aged 50 to 100. The mortality data is restructured on a cohort basis. The observed survival

probability for cohort i aged x at time t over duration T − t is calculated by

S̃i(x, t, T ) =
T−t∏
s=1

(1− q̃ix(t+ s− 1)), (16)

where q̃ix(t) is the observed death rate at time t. The corresponding observed average force

of mortality is defined as

µ̃i(x, t, T ) = − 1

T − t
logS̃i(x, t, T ). (17)

Figure 1 shows the average force of mortality in U.S. for cohorts born between 1884 and

1913, aged 50 to 100.

1913
1908

1903

Cohort

1898
1893

1888
188350

60
70

80

Age

90

0.1

0.15

0.05

0
100

Figure 1: Male average force of mortality in U.S. for cohorts born between 1884 and 1913,
aged 50 to 100.

The parameters for two common factors are estimated using a Kalman filter method (max-
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imum likelihood). The measurement equation can be represented as

yt = −BXt − A+ εt, εt ∼ N(0, H), (18)

where

B = −



1−e−φ1
φ1

1−e−φ2
φ2

1−e−2φ1

2φ1
1−e−2φ2

2φ2

...
...

1−e−nφ1
nφ1

1−e−nφ2
nφ2


, A =



1
2

∑2
i=1

σ2
i

φ3i
[1
2
(1− e−2φi)− 2(1− e−φi) + φi]

1
2

∑2
i=1

σ2
i

2φ3i
[1
2
(1− e−4φi)− 2(1− e−2φi) + 2φi]

...

1
2

∑2
i=1

σ2
i

nφ3i
[1
2
(1− e−2nφi)− 2(1− e−nφi) + nφi]


,

and where H is the covariance matrix for the Gaussian observation noise. Since the volatility

of the measurement error varies with age, we assume H to be an n-dimensional diagonal

matrix with elements σ2
ε(i) (i = 1, 2, ..., n) taking an exponential form,

σ2
ε(i) = ε1exp(ε2i), (19)

where ε1 and ε2 are two constants. With this specification the volatility of the measurement

error is exponentially increasing with age.

The state variables evolve on the time dimension, and the transition equation can be repre-

sented as

Xt = ΦXt−1 + ηt, ηt ∼ N(0, Q), (20)

where Φ =

e−φ1 0

0 e−φ2

, Q =

 σ2
1

2φ1
(1− e−2φ1) 0

0
σ2
2

2φ2
(1− e−2φ2)

.

Using the Kalman filter method, we obtain the estimation results of the two common factors

as shown in Table 1. The model captures the improvement trend with mean reverting factors

as well as the exponentially increasing “Poisson” variation in the measurement equation.

The parameters associated with cohort factors are estimated by minimising the calibration
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Table 1: Kalman filter parameter estimates, log likelihood and RMSE.

φ1 -0.14313
φ2 -0.07904
σ1 0.00006
σ2 0.00018
ε1(×107) 2.74881
ε2(×107) 1.99699
Log likelihood 24440
RMSE 0.00051

error given the common factors. We assume the values of these parameters remain the same

across 10 cohorts to reduce the number of parameters and improve estimation efficiency.

Cohorts close together exhibit similar mortality improvements. We show estimation results

for cohorts with a 10-year interval in Table 2. Trend and volatility parameters have reduced

for later cohorts. The most recent 1904–1913 group of 10 cohorts have the lowest estimated

volatility reflecting changes in cohort mortality. We use these most recent parameters in our

market price of risk estimation.

Table 2: Estimation results for cohort specific factors with a 10-year interval.

i cohort φi3 σi3 Zi

1884-1893 0.06791 0.00558 0.00163
1894-1903 0.05228 0.00719 0.00106
1904-1913 0.05463 0.00122 -0.00079

Figure 2 plots the mean absolute percentage error (MAPE) per age of the estimated survival

probabilities for all the cohorts. The MAPEs are low even at very high ages, which indicates

a good empirical fit of the model. One factor that accounts for these older age variations is

mortality heterogeneity that is not captured in models of systematic mortality.
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Figure 2: Mean percentage error of estimated survival probabilities.

4.2 Estimation of the Interest Rate Model

As mortality-linked claims are long dated and the lifetime income stream is indexed to

inflation, we take into account changes in inflation in the modelling framework. We model

real interest rates and use end-of-month observations for real yields on Treasury Inflation

Protected Securities (TIPS) interpolated by the U.S. Treasury. TIPS are indexed to inflation

as defined by the Consumer Price Index (CPI) so that they eliminate the inflation risk and

provide a real rate of return. Until the end of January 2010, the U.S. Treasury issued TIPS

at fixed maturities, 5, 7, 10 and 20 years. On February 22, 2010, they sold a new TIP

security with a maturity time of 30 years. We use the Treasury real yield curve rates at 5

maturities of 5, 7, 10 20, and 30 years from February 2010 to March 2015.

Figure 3 shows the monthly yield curve rates and Table 3 presents corresponding descriptive

statistics. We see that during this period real interest rates were negative and there has been

auto–regressive behaviour across the term structure.

The AFNS model is represented in a state-space form and estimated using a Kalman filter
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Figure 3: Time series of U.S. real yield curve rates, from February 2010 to March 2015.

Table 3: Descriptive statistics of U.S. real yield curve rates, ρ̂(i) denotes the sample auto-
correlation with a time-lag of i months.

Maturity Mean Std. Dev. Min. Max. ρ̂(1) ρ̂(6) ρ̂(12)

5Y -0.4497 0.5955 -1.49 0.72 0.9037 0.5825 0.1160
7Y -0.0461 0.6281 -1.22 1.23 0.9163 0.5814 0.0607
10Y 0.2984 0.6245 -0.79 1.60 0.9204 0.5568 0.0619
20Y 0.8790 0.5834 -0.09 1.99 0.9180 0.5715 0.0356
30Y 1.1452 0.5284 0.32 2.16 0.9137 0.5183 0.0094
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algorithm. The measurement equation is

yt = −BYt − A+ εt, εt ∼ N(0, H), (21)

where

yt =


yt(τ1)

...

yt(τk)

 , B = −


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1
...

...
...

1 1−e−λτk
λτk

1−e−λτk
λτk

− e−λτk

 , Yt =


L(t)

S(t)

C(t)

 , A =


V (τ1)
τ1

...

V (τk
τk

 .

The state transition equation is

Yt = (I − e−K∆t)Θ + e−K∆tYt−1 + ηt, ηt ∼ N(0, Q), (22)

where

K =


κ1 0 0

0 κ2 0

0 0 κ3

 , Θ =


θ1

θ2

θ3

 ,

and Q =
∫ ∆t

0
e−KsΣΣTe−(KTs)ds with

Σ =


s1 0 0

0 s2 0

0 0 s3

 .

Since we use monthly data, ∆t = 1
12

.

Estimates for the independent-factor AFNS model are given in Table 4. For the in-sample

fit, residual means and their root mean square errors (RMSEs) are provided in Table 5.

The RMSEs are consistent with the results obtained in Christensen et al. (2011), which

are typically less than ten basis points. There is no apparent maturity-dependent trend in
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RMSEs, which indicates that the model fits yields with long maturities as well as shorter

maturities. Using the estimates from Table 4, Figure 4 plots the mean fitted curve for the

independent-factor AFNS model. The figure shows small differences between the AFNS mean

yield curve and the observed mean yield curve, which also indicates model goodness-of-fit.

For the AFNS model, after having calibrated the model, the evolution of future yield curve

can be forecast using Equation (11). Figure 5 shows the forecast yield curve at the end of

March 2015.

Table 4: Estimated independent-factor AFNS model. The estimated λ is 0.7204, and the
maximized log likelihood is 1622.75.

i κi θi si

1 0.0458 0.0723 0.0061
2 0.1958 -0.0231 0.0047
3 1.2237 -0.0134 0.0059

Table 5: Residual means and their root mean square errors for maturities measured in years.
Means and RMSE’s are in basis points.

Maturity Mean RMSE

5Y -2.16 6.76
7Y 1.28 7.87

10Y 2.46 6.11
20Y 6.97 5.58
30Y -8.69 6.36

4.3 Market Price of Longevity Risk

The BlackRock CoRI index levels are based on real-time market data and are calculated using

a variety of factors including starting level, inflation, risk, interest rates and life expectancy.

The CoRI index level reflects current market information about what insurers are charging

to manage similar risks. We take into account all of these factors. In order to imply market
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Figure 4: Empirical mean yield curve and the fitted AFNS mean yield curve, average from
February 2010 to March 2015. Mean yields are in decimals.
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Figure 5: Empirical yield rates and the fitted AFNS yield curve at the end of March 2015.
Yields are in decimals.
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prices of longevity risk from the CORI indexes, we minimize differences between our longevity

index values and the CoRI index values as given in Equations (23) and (24).

The CoRI indexes do not differentiate index values for males and females. We use male

mortality data since it is common practice to treat males and females separately in mortality

models. Using male mortality data results in lower annuity values and higher market prices

of longevity risk since calibrated risk-neutral survival probabilities will be higher and enables

us to obtain upper bounds of market prices of longevity risk.

With the assumption that the dynamics of mortality rates are independent of that of interest

rates, the BlackRock CORI indexes for the cohorts we will use for determining implied market

prices of risk are for cohorts born in i = 1951, ..., 1960

ICoRI,ix (0) =
x∗−65∑
j=1

P̄ i
x(0, 65− x+ j)

=
x∗−65∑
j=1

P (0, 65− x+ j)SQ,i(x, 0, 65− x+ j), (23)

and for cohorts born in i = 1941, ..., 1950

ICoRI,ix (0) =
x∗−x∑
j=0

P̄ i
x(0, j)

=
x∗−x∑
j=0

P (0, j)SQ,i(x, 0, j), (24)

where x∗ is the maximum age, and is set to 115 by BlackRock.

The market price of longevity risk in the survival function SQ,i (see Equation (9)), can be

implied from market prices. Though the longevity market is incomplete, Cairns et al. (2006)

suggest that the choice of Λi should be consistent with the limited market information. For

this reason we calibrate λµ,1, λµ,2, λiµ,3 (i = 1941, ..., 1960) by minimizing differences between

our model prices and the BlackRock CORI index values using values at the end of March
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2015.

From Equation (9) we see that the risk-neutral survival curve is the best-estimate survival

curve multiplied by an adjustment term eC
i(t,T ), where Ci(t, T ) is a function of the market

prices of longevity risk. We continue to group similar cohorts and assume that cohorts born

from 1941 to 1950 share the same λ1
µ,3 while cohorts born from 1951 to 1960 share the same

λ2
µ,3. We solve for λµ,1, λµ,2, λ1

µ,3 and λ2
µ,3 using the following steps:

• calculate yield rate at the end of March 2015 with maturity 1-, 2-, ... 60-year using

the AFNS model presented in Equation (11), and then calculate the corresponding

discount bond prices;

• simulate best-estimate survival curves for the 20 cohorts born from 1941 to 1960;

• use λµ,1, λµ,2, λ1
µ,3 and λ2

µ,3 to adjust the best-estimate survival curves and compute

index levels for the 20 cohorts;

• find the best λ̂µ,1, λ̂µ,2, λ̂1
µ,3 and λ̂2

µ,3 that enable the calculated index level closely

match the CoRI index level.

Explicitly we calibrate market price of longevity risk by minimizing the following error term,

Λ̂ = argmin
Λ

√√√√ 1960∑
i=1941

(
Î ix(0)− ICoRI,ix (0)

)2

. (25)

The calibrated risk premiums are given in Table 6. We see that the first common factor has

the highest price of risk. The prices of risk for the second common factor and the two cohort

factors are similar with both cohort factors very similar. We note that the CORI indexes

imply a higher risk premium for the older cohorts compared to the younger cohorts, which

would reflect that the older cohorts are at ages 65 to 74 whose mortality experiences are

more volatile.

The resulting risk-neutral model index levels and the values of CoRI indexes published by
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BlackRock on 31 March 2015 are shown in Table 7. With the obtained risk premiums, the

risk-neutral index level produced by our model closely matches the index level provided by

BlackRock. However, there are differences between risk-neutral index level and CoRI index

level. The difference decreases across the ten older cohorts and increases across the ten

younger cohorts. This suggests an anomaly between our market model and the assumptions

underlying the CORI Indexes. This could reflect the higher volatility of mortality of older

cohorts, which may lead to a higher longevity risk premium, offset by the decreasing length

of payments with the increase in age for the cohorts over an age of 65, which tends to reduce

the volatility. The results in Table 7 may reflect that for cohorts born from 1941 to 1950 the

second effect dominates while for cohorts born from 1951 to 1960 the first effect dominates.

We analyse the sensitivity of the index level by varying the risk premiums. The cohort

survival curve is affected by three market prices of longevity risk. To show this we use

scenarios where we vary one market price of longevity risk by 0.01 and fix the other two. (λ̂1
µ,3

and λ̂2
µ,3 are changed together since they affect different cohorts). The results are presented

in Table 8. Higher market prices of longevity risk, corresponding to higher risk-neutral

survival probabilities, results in higher risk-neutral index levels, and vice versa. Among the

three market prices of longevity risk, λ̂µ,1 has the greatest impact on the index level and the

impact of varying λ̂µ,2 is relatively small. In Figure 6, we also show the differences between

the CoRI index level and the risk-neutral index level, at calibrated market prices of longevity

risk (given in Table 6) and market prices of longevity risk specified in Scenarios 1 to 6 (given

in Table 8). From Figure 6 we observe the same trend that the differences decrease first and

increase thereafter, reflecting almost parallel shifts in the index values as the market prices

of risk are changed. Varying the first common factor market price of longevity risk causes

the greatest change in the differences, which confirms that λ̂µ,1 is the most important in

determining risk premiums.
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Table 6: Calibrated market price of longevity risk.

λ̂µ,1 λ̂µ,2 λ̂1
µ,3 λ̂2

µ,3

0.3601 0.0892 0.1099 0.0973

Table 7: CoRI index level and the risk-neutral index level at the market prices of longevity
risk given in Table 6.

Cohort Age Name Index level Risk-neutral index level Difference

1941 74 CoRI Index 2005 15.26 15.96 0.70
1942 73 CoRI Index 2006 15.94 16.41 0.47
1943 72 CoRI Index 2007 16.61 16.89 0.28
1944 71 CoRI Index 2008 17.28 17.40 0.12
1945 70 CoRI Index 2009 17.95 17.93 -0.02
1946 69 CoRI Index 2010 18.60 18.48 -0.12
1947 68 CoRI Index 2011 19.26 19.05 -0.21
1948 67 CoRI Index 2012 19.93 19.64 -0.29
1949 66 CoRI Index 2013 20.59 20.24 -0.35
1950 65 CoRI Index 2014 21.25 20.85 -0.40
1951 64 CoRI Index 2015 22.19 21.03 -1.16
1952 63 CoRI Index 2016 21.50 20.66 -0.84
1953 62 CoRI Index 2017 20.93 20.29 -0.64
1954 61 CoRI Index 2018 20.35 19.93 -0.42
1955 60 CoRI Index 2019 19.73 19.57 -0.16
1956 59 CoRI Index 2020 19.11 19.21 0.10
1957 58 CoRI Index 2021 18.52 18.85 0.33
1958 57 CoRI Index 2022 17.98 18.50 0.52
1959 56 CoRI Index 2023 17.50 18.13 0.63
1960 55 CoRI Index 2024 16.93 17.77 0.84

*The CoRI Index data is obtained from BlackRock on 31 March 2015.
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Table 8: CoRI index level and the risk-neutral index level at various assumptions for the
market prices of longevity risk

Scenarios

1 2 3 4 5 6

λ̂µ,1 0.3601 0.3701 0.3501 0.3601 0.3601 0.3601 0.3601

λ̂µ,2 0.0892 0.0892 0.0892 0.0992 0.0792 0.0892 0.0892

λ̂1
µ,3 0.1099 0.1099 0.1099 0.1099 0.1099 0.1199 0.0999

λ̂2
µ,3 0.0973 0.0973 0.0973 0.0973 0.0973 0.1073 0.0873

Cohort Risk-neutral index level CoRI index level

1941 15.96 16.96 15.17 16.13 15.79 16.26 15.67 15.26
1942 16.41 17.36 15.67 16.57 16.25 16.71 16.12 15.94
1943 16.89 17.79 16.18 17.05 16.74 17.20 16.59 16.61
1944 17.40 18.25 16.73 17.55 17.25 17.71 17.10 17.28
1945 17.93 18.74 17.29 18.08 17.79 18.25 17.62 17.95
1946 18.48 19.25 17.87 18.62 18.35 18.81 18.17 18.60
1947 19.05 19.79 18.47 19.19 18.92 19.38 18.73 19.26
1948 19.64 20.34 19.09 19.77 19.51 19.98 19.31 19.93
1949 20.24 20.90 19.71 20.36 20.12 20.58 19.91 20.59
1950 20.85 21.48 20.35 20.97 20.73 21.20 20.51 21.25
1951 21.03 21.59 20.59 21.15 20.93 21.38 20.70 22.19
1952 20.66 21.19 20.24 20.76 20.55 21.00 20.32 21.50
1953 20.29 20.79 19.89 20.39 20.19 20.64 19.95 20.93
1954 19.93 20.40 19.55 20.02 19.83 20.28 19.58 20.35
1955 19.57 20.01 19.21 19.66 19.47 19.92 19.22 19.73
1956 19.21 19.63 18.88 19.30 19.12 19.57 18.86 19.11
1957 18.85 19.25 18.54 18.94 18.77 19.21 18.51 18.52
1958 18.50 18.87 18.20 18.58 18.42 18.85 18.15 17.98
1959 18.13 18.48 17.86 18.21 18.06 18.49 17.79 17.50
1960 17.77 18.10 17.51 17.84 17.70 18.12 17.43 16.93

Total 376.78 389.17 367.01 379.16 374.48 383.54 370.24 377.41
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Figure 6: Differences between the CoRI index level and the risk-neutral index level, at
calibrated market prices of longevity risk and market prices of longevity risk specified in
Scenario 1 to 6.
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5 Options on Longevity Bonds

A valuable feature of the continuous time affine mortality model is its tractability in pricing

derivatives. In the affine framework, the derivation simplifies considerably and analytical

pricing formulas can be obtained. We derive closed–form expressions for prices of European

call options written on the longevity zero-coupon bond, P̄ i
x(t, T ), as defined in Section 3.3.

5.1 Option Pricing

Consider the value of a call option at time t denoted by Call(r, µ, t, TC , T ), where TC is the

exercise date of the option and T is the maturity time of the underlying longevity bond.

Note that the underlying asset for the longevity bond option is the longevity zero-coupon

bond maturing after the option expires (T > TC). The payoff function for the TC-maturity

call option is

Call(r, µ, TC , TC , T ) =
(
P̄ i
x(TC , T )−K

)+
, (26)

where K is the strike price of the option. The price of the longevity bond option at any time

t prior to maturity can be represented as

Call(r, µ, t, TC , T ) = EQ
[
e−

∫ TC
t (r(s)+µi(x,s))ds (P̄ i

x(TC , T )−K
)+ |F(t)

]
, (27)

where EQ[·] denotes the expectation under the risk-neutral measure.

Following Jamshidian (1989) and Geman et al. (1995), we need to remove the stochastic

discount factor inside the conditional expectation in Equation (27). This is accomplished by

effecting a measure change from the risk-neutral measure to the TC-forward measure which

are linked by the Radon-Nikodym derivative

dQTC

dQ
=

exp{−
∫ TC

0
(r(s) + µi(x, s))ds}
P̄ i
x(0, TC)

. (28)
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Thus, the price of the longevity bond option at time t becomes

Call(r, µ, t, TC , T ) = P̄ i
x(t, TC)ETC

[(
P̄ i
x(TC , T )−K

)+ |F(t)
]
, (29)

where ETC [·] denotes the expectation under the TC-forward measure.

Proposition 1 The price of a European call option with maturity T and strike K, written

on the longevity zero-coupon bond with maturity TC can be represented as

Call(r, µ, t, TC , T ) = P̄ i
x(t, TC)ETC

[(
P̄ i
x(TC , T )−K

)+ |F(t)
]

= P̄ i
x(t, TC)

[
eMp+ 1

2
V 2
p Φ

(
Mp − lnK + V 2

p

Vp

)
−KΦ

(
Mp − lnK

Vp

)]
, (30)

where Φ(·) is the standard normal cumulative distribution function

Mp = V (TC , T ) + Ai(TC , T ) + Ci(TC , T )− (T − TC)ETC [L(TC)|F(t)]

−
[

1− e−λ(T−TC)

λ

]
ETC [S(TC)|F(t)]−

[
1− e−λ(T−TC)

λ
− e−λ(T−TC)(T − TC)

]
ETC [C(TC)|F(t)]

+B1(TC , T )ETC [X1(TC)|F(t)] +B2(TC , T )ETC [X2(TC)|F(t)] +Bi
3(TC , T )ETC

[
Zi(TC)|F(t)

]
,

(31)

and

(Vp)
2 = s2

1(T − TC)2(TC − t)

+

[
1− e−λ(T−TC)

λ

]2 [
s2

2

2λ

(
1− e−2λ(TC−t)

)
+ λ2s2

3

∫ TC

t

(TC − v)2e−2λ(TC−v)dv

]
+
s2

3

2λ

[
1− e−λ(T−TC)

λ
− e−λ(T−TC)(T − TC)

]2 (
1− e−2λ(TC−t)

)
+

σ2
1

2φ3
1

(
1− e−φ1(T−TC)

)2 (
1− e−2φ1(TC−t)

)
+

σ2
2

2φ3
2

(
1− e−φ2(T−TC)

)2 (
1− e−2φ2(TC−t)

)
+

(σi3)2

2(φi3)3

(
1− e−φi3(T−TC)

)2 (
1− e−2φi3(TC−t)

)
(32)
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with

∫ TC

t

(TC − v)2e−2λ(TC−v)dv = − 1

2λ
(TC − t)2e−2λ(TC−t) − 1

2λ2
(TC − t)e−2λ(TC−t)

+
1

4λ3

[
1− e−2λ(TC−t)

]
.

Proof. See Appendix B.

Proposition 2 The price of a European call option with maturity T and strike K, written

on the zero-coupon longevity bond with maturity TC can be written as

Call(r, µ, t, TC , T ) = P̄ i
x(t, T )Φ

 ln P̄ ix(t,T )

KP̄ ix(t,TC)

Vp
+

1

2
Vp

− P̄ i
x(t, TC)KΦ

 ln P̄ ix(t,T )

KP̄ ix(t,TC)

Vp
− 1

2
Vp

 .

(33)

Proof. Noting that P̄ ix(t,T )

P̄ ix(t,TC)
is a martingale under QTC , we have

P̄ i
x(t, T )

P̄ i
x(t, TC)

= ETC
[
P̄ i
x(TC , T )|F(t)

]
= eMp+ 1

2
V 2
p . (34)

Substituting Equation (34) into Equation (30) gives the result in the above proposition.

Proposition 3 Following put-call parity,

Call(r, µ, t, TC , T ) +KP̄ i
x(t, TC) = Put(r, µ, t, TC , T ) + P̄ i

x(t, T ), (35)

the price of a European put option with maturity T and strike K, written on the longevity

zero-coupon bond with maturity TC is given by

Put(r, µ, t, TC , T ) = −P̄ i
x(t, T )Φ

 lnKP̄
i
x(t,TC)

P̄ ix(t,T )

Vp
− 1

2
Vp

+ P̄ i
x(t, TC)KΦ

 lnKP̄
i
x(t,TC)

P̄ ix(t,T )

Vp
+

1

2
Vp

 .

(36)
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5.2 Options on Zero Coupon Longevity Bonds

Options on zero–coupon longevity bonds differ from those on zero–coupon bonds because of

the inclusion of stochastic mortality. Although adding stochastic mortality should increase

total volatility and would normally be expected to increase option prices, the effect is more

complex than this. Insurers and pension providers who are exposed to longevity risk can

reduce their risk by taking long positions in these options.

The closed-form expressions for longevity bond option prices allow us to numerically assess

the properties of these derivative prices, which have applications in the hedging of longevity

risk. We calculate prices of call options on longevity zero-coupon bonds for the cohort of

starting age 55 in 2015, with option maturity being 1-, 2-, 5- and 10-year and bond maturity

being 10-, 15-, 20- and 25-year, at parameter values given in Table 1 and 5. We show results

of at-the-money (ATM) options together with in-the-money (ITM) and out-of-the-money

(OTM) options. When the strike price equals the market price of the underlying longevity

zero-coupon bond, the option is at-the-money. The in-the-money strike price is set at 95% of

the at-the-money strike price and the out-of-the-money strike price is set at 105% of the at-

the-money strike price. Numerical results are given in Table 9. The prices of longevity zero-

coupon bond options are compared with the prices of real-rate zero-coupon bond options,

the underlying assets of which are real-rate zero-coupon bonds without stochastic mortality.

The impact of stochastic mortality on option prices reflects a number of factors some of which

are offsetting and which vary with whether the option is a call option or a put option as well

as whether the option is in or out of the money. As noted already stochastic mortality adds

to interest rate volatility resulting in higher zero coupon longevity bond call option prices

compared to zero coupon bond call option prices. The impact of adding in mortality rates is

equivalent to an effective increase in the interest rate for the bond option and higher interest

rates mean higher zero coupon longevity bond call option prices with larger increases for in-

the-money options and, smaller increases for out-of-the-money options. With the addition
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of mortality, zero coupon longevity bonds have lower values compared to zero coupon bonds

which produces lower strike prices and hence lower call option prices for zero coupon longevity

bond call option prices. This effect is larger effect for longer bond maturities.

We see in Table 9 that zero coupon longevity bond call option prices are slightly hump

shaped in bond maturity, increasing at first then decreasing, whereas zero coupon bond

call option prices are increasing. The difference between the zero coupon bond call options

and zero coupon longevity bond call options reduces with option maturity and for a given

longevity bond maturity, the bond call option prices increase with increasing option maturity.

When option maturity is fixed the price of bond calls increases with bond maturity first and

decreases thereafter.

For example, comparing Table 9 with Table 10, we note that for shorter bond maturities,

such as 10 and 15 years, real-rate zero-coupon bond options are cheaper than longevity zero-

coupon bond options since bond option prices are decreasing functions of the volatility of

underlying processes. However, for longer maturities, for example 25 years, longevity zero-

coupon bond options become cheaper. The decreasing survival probability reduces the strike

price of longevity zero-coupon bond options, which tends to reduce the call option price.

The price of a 25-year real-rate zero-coupon bond is 0.8678 while the price of a longevity

zero-coupon bond is only 0.5582 with the same maturity.

6 Conclusion

In this paper, we have applied a continuous time affine multi–cohort mortality model along

with an AFNS interest rate model to imply market prices of longevity risk from the Black-

Rock CoRI Retirement Indexes. Our models are affine and allow closed-form expressions for

survival probabilities and zero-coupon bond prices. Market prices of longevity risk can be

readily incorporated in this model framework since we have formula for arbitrage–free prices
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Table 9: Prices of a set of call options on longevity zero-coupon bonds for the cohort of
starting age 55 in 2015, at the market price of longevity risk given in Table 6.

Option maturity

Bond maturity Zero-coupon longevity bond 1 2 5 10

ATM
10 0.9203 0.0303 0.0394 0.0488 -
15 0.8397 0.0396 0.0530 0.0717 0.0830
20 0.7197 0.0435 0.0589 0.0829 0.0993
25 0.5582 0.0407 0.0556 0.0800 0.0986
ITM
10 - 0.0593 0.0675 0.0797 -
15 - 0.0639 0.0763 0.0954 0.1132
20 - 0.0632 0.0778 0.1015 0.1201
25 - 0.0555 0.0697 0.0935 0.1129
OTM
10 - 0.0127 0.0204 0.0267 -
15 - 0.0226 0.0352 0.0524 0.0578
20 - 0.0285 0.0436 0.0670 0.0811
25 - 0.0291 0.0438 0.0681 0.0859

Table 10: Prices of a set of call options on real-rate zero-coupon bonds in 2015, without
mortality component.

Option maturity

Bond maturity Zero-coupon bond 1 2 5 10

ATM
10 0.9859 0.0208 0.0255 0.0258 -
15 0.9596 0.0319 0.0412 0.0511 0.0437
20 0.9210 0.0417 0.0553 0.0739 0.0767
25 0.8678 0.0498 0.0670 0.0930 0.1050
ITM
10 - 0.0531 0.0556 0.0563 -
15 - 0.0604 0.0680 0.0771 0.0740
20 - 0.0675 0.0796 0.0972 0.1014
25 - 0.0731 0.0890 0.1139 0.1263
OTM
10 - 0.0054 0.0090 0.0090 -
15 - 0.0143 0.0229 0.0320 0.0229
20 - 0.0238 0.0369 0.0551 0.0567
25 - 0.0324 0.0494 0.0753 0.0867
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of longevity-linked products.

The models allow us to imply market prices of risk from the BlackRock CORI indexes for

both common factors and cohort based factors in our mortality model. We show that there

are differences between our risk-neutral model index values and the CORI indexes. For both

younger and older cohorts the CORI Indexes are lower than our values and higher for cohorts

around age 65. We explain this by potential differences in the treatment of mortality risk in

the computation of the CORI indexes.

Closed-form pricing formulas are derived for longevity zero-coupon bond options. We show

that the impact of stochastic mortality on option prices on longevity bonds is complex and

requires the consideration of effects from stochastic mortality arising from volatility, effective

interest rates, and strike prices. We show this by comparing the prices of longevity zero-

coupon bond options with the prices of real-rate zero-coupon bond options. For shorter

bond maturities real-rate zero-coupon bond options are cheaper while for longer maturities

longevity zero-coupon bond options become cheaper.
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Appendix

A. Kalman Filter Algorithm

The measurement equation is

yt = −BYt − A+ εt, εt ∼ N(0, H), (37)

where A and B are given by (18) and (21), H is a diagonal matrix with elements σ2
ε(τi). The

state transition equation can be represented as

Yt = a+ bYt−1 + ηt, ηt ∼ N(0, Q), (38)

where a, b and Q are given by (20) and (22).

Denote the filtered values of the state variables and their corresponding covariance matrix

by Yt|t and St|t, and further denote the unknown parameters by θ. In the forecasting step,

we forecast unknown values of state variables conditioning on the information at time t− 1

such that

Yt|t−1 = a+ bYt−1|t−1, (39)

St|t−1 = b′St−1|t−1b+Qt(θ). (40)

In the next step we use the information at time t to update our forecasts

Yt|t = Yt|t−1 − St|t−1B(θ)F−1
t|t−1vt|t−1, (41)

St|t = St|t−1 − St|t−1B(θ)F−1
t|t−1B(θ)′St|t−1, (42)
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where

vt|t−1 = yt + A(θ) +B(θ)Xt|t−1,

Ft|t−1 = B(θ)′St|t−1B(θ) +H.

Every iteration will yield a value for the log-likelihood function shown below

log l(y1, ..., yT ; θ) =
T∑
t=1

(
−N

2
log(2π)− 1

2
log(Ft|t−1)− 1

2
v′t|t−1F

−1
t|t−1vt|t−1

)
, (43)

where N is the number of observed time series. The estimated parameter set θ̂ is determined

as the one which maximizes the log-likelihood function.

B. Proof of Proposition 1

The following derivations are based on Theorem 4.2.2 in Brigo and Mercurio (2013). From

Equation (14) we know that

P̄ i
x(TC , T ) = P (t, T )SQ,i(x, t, T )

= exp

{
V (TC , T )− (T − TC)L(TC)− 1− e−λ(T−TC)

λ
S(TC)

−
[

1− e−λ(T−TC)

λ
− e−λ(T−TC)(T − TC)

]
C(TC)

+Ai(TC , T ) + Ci(TC , T ) +B1(TC , T )X1(TC) +B2(TC , T )X2(TC) +Bi
3(TC , T )Zi(TC)

}
,

(44)

where L(TC), S(TC) and C(TC) are the values of level, slope and curvature factors of the

interest rate dynamics at time TC , andX1(TC), X2(TC) and Zi(TC) are the values of mortality

factors at time TC .

As a result, under the TC-forward measure the logarithm of P̄ i
x(TC , T ) conditional on F(t)
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is normally distributed with mean

Mp = V (TC , T ) + Ai(TC , T ) + Ci(TC , T )− (T − TC)ETC [L(TC)|F(t)]

−
[

1− e−λ(T−TC)

λ

]
ETC [S(TC)|F(t)]−

[
1− e−λ(T−TC)

λ
− e−λ(T−TC)(T − TC)

]
ETC [C(TC)|F(t)]

+B1(TC , T )ETC [X1(TC)|F(t)] +B2(TC , T )ETC [X2(TC)|F(t)] +Bi
3(TC , T )ETC

[
Zi(TC)|F(t)

]
(45)

and variance

(Vp)
2 = s2

1(T − TC)2(TC − t)

+

[
1− e−λ(T−TC)

λ

]2 [
s2

2

2λ

(
1− e−2λ(TC−t)

)
+ λ2s2

3

∫ TC

t

(TC − v)2e−2λ(TC−v)dv

]
+
s2

3

2λ

[
1− e−λ(T−TC)

λ
− e−λ(T−TC)(T − TC)

]2 (
1− e−2λ(TC−t)

)
+

σ2
1

2φ3
1

(
1− e−φ1(T−TC)

)2 (
1− e−2φ1(TC−t)

)
+

σ2
2

2φ3
2

(
1− e−φ2(T−TC)

)2 (
1− e−2φ2(TC−t)

)
+

(σi3)2

2(φi3)3

(
1− e−φi3(T−TC)

)2 (
1− e−2φi3(TC−t)

)
, (46)

where

∫ TC

t

(TC − v)2e−2λ(TC−v)dv = − 1

2λ
(TC − t)2e−2λ(TC−t) − 1

2λ2
(TC − t)e−2λ(TC−t)

+
1

4λ3

[
1− e−2λ(TC−t)

]
. (47)

Since

∫ +∞

−∞

1√
2πVp

(ez −K)+ e
− (z−Mp)2

V 2
p dz

= eMp+ 1
2
V 2
p Φ

(
Mp − lnK + V 2

p

Vp

)
−KΦ

(
Mp − lnK

Vp

)
, (48)
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we have that

Call(r, µ, t, TC , T ) = P̄ i
x(t, TC)ETC

[(
P̄ i
x(TC , T )−K

)+ |F(t)
]

= P̄ i
x(t, TC)

[
eMp+ 1

2
V 2
p Φ

(
Mp − lnK + V 2

p

Vp

)
−KΦ

(
Mp − lnK

Vp

)]
, (49)

where Φ(·) is the standard normal cumulative distribution function.
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