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Abstract

This paper proposes a multi-state model of both functional disability and health
status in the presence of systematic trend and uncertainty. We classify each indi-
vidual observation along two dimensions: health status (other than disability) and
disability and use the multi-state latent factor intensity (MLFI) model to estimate
the transitions rates. The model is then used to calculate (healthy) life expectancy
and price a variety of insurance products. We illustrate the importance of vari-
ous factors and quantify the potential losses from model misspecification. Our
results suggest that insurers should pay great attention to health status, trend, and
systematic uncertainty in disability/mortality modeling and insurance pricing. We
also find that integrating LTC insurance with life annuity can help to reduce the
systematic uncertainties.
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1 Introduction

This paper develops a multi-state model to study the joint dynamics of functional dis-

ability and health status in the presence of deterministic trend and systematic uncer-

tainty. We illustrate how (healthy) life expectancy varies according to various factors

such as age, gender, health status, trend, and systematic uncertainty. To further high-

light the importance of these factors, we use the model to price long-term care insurance

and annuity products.

This is motivated by the recent advancement in multi-state models for disability.

Multi-state Markov chain models are widely used for long-term care (LTC) insurance

modeling. Olivieri and Pitacco (2001) consider a model with a single level of disability.

Rickayzen and Walsh (2002) develop a multiple state model to project the number of

people with disabilities in the UK. Pritchard (2006) estimates the transition intensity for

a seven-state disability model. Stallard (2011) performs multi-state life-table analysis

to measure the related LTC costs. Recently, Fong et al. (2015) use the generalized

linear model (GLM) to estimate a three-state functional disability model that allows

for discovery. Shao et al. (2017) further consider a four-state model and apply it to

estimate premiums and solvency capital requirements for a wide range of LTC insurance

products.

Despite rich research in this strand, the current literature is quite restrictive. Their

limitations stem from at least two aspects. The first aspect is that almost all previous

work on functional disability tend to group all non-disabled people together without any

consideration to health status other than disability, while there is some evidence that

health status (especially chronic illness) is significantly correlated with disability and

mortality (Brown and Warshawsky, 2013; Koijen et al., 2016; Yogo, 2016). Second,

most models tend to ignore the trend and systematic uncertainty in the disability rates

which prove to be significant in mortality models (Lee and Carter, 1992; Cairns et al.,

2006). Two recent advancements were made by Brown and Warshawsky (2013) and
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Li et al. (2017). Brown and Warshawsky (2013) classify individuals into eleven states

along three dimensions: disability status, health history, and self-reported health status

and estimate the associated transition rates. They show that the premiums of LTC insur-

ance and life annuity vary significantly according to initial health status and the life care

annuity-an integration of the life annuity with LTC insurance-is attractive to pool the

different risks. However, their model does not include systematic trend and uncertainty.

Moreover, the model in Brown and Warshawsky (2013) does not fully separate health

status from disability. For example, individuals who have two or more activities of daily

living (ADL) limitation belong to the same risk category whether they are healthy or

not. The other breakthrough was made by Li et al. (2017) who incorporate the system-

atic trend and uncertainty to the multi-state functional disability model in Fong et al.

(2015) but without any reference to the health status other than disability.

Against this background we aim to incorporate the systematic trend and uncertainty

into a multi-state model that includes both a health status (reflecting relative mortality)

and a functional disability status (reflecting ADLs). At each level of functional disabil-

ity we then distinguish between differing health states in terms of mortality rates rather

than just having one level of mortality. This provides a richer classification allowing

for both health status (mortality) and functional disability. We measure an individual’s

health status through medical history of major chronic illness as this can affect an indi-

vidual’s likelihood of obtaining long-term care insurance and claiming benefits (Brown

and Warshawsky, 2013). Moreover, Koijen et al. (2016) and Yogo (2016) also pro-

vide evidence that chronic illness is correlated with disability and significantly affects

mortality. Disability status is determined by the number of difficulties in ADLs as in

the most literature. In contrast to the setting where various health factors, includ-

ing chronic illness, disability and others, are incorporated in the classification of health

states, as adopted by Brown and Warshawsky (2013), Koijen et al. (2016), and Yogo

(2016), we model the chronic illness status as an independent health state. This allows

us to better understand the interaction between chronic illness and functional disability,
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e.g., the impact of chronic illness on disability (recovery) rate and mortality rate, and

the impact of disability status on chronic illness rate and mortality rate. We assume

the transitions rates between different states follow a multi-state latent factor intensity

(MLFI) model. In addition to standard covariates such as age and gender, we further

include a trend index and a common stochastic factor (which is also referred to as a

frailty) to account for systematic trend and uncertainty, respectively. This formulation

allows us to jointly model the dynamics of chronic illness, disability, and mortality, and

investigate how they are affected by the systematic trend and uncertainty.

We estimate the model based on the Health and Retirement Study (HRS) and il-

lustrate the impact of health status and various covariates. We find that the transition

rates from and into disability vary greatly depending on the health status. An individual

who has ever been diagnosed with a major illness (chronic illness) is more likely to

become disabled and less likely to recover from disability. Moreover, people who are

disabled and/or in ill health, i.e., with chronic illness, have higher mortality rates. Age

is another important factor as the disability, ill health, and mortality rates increase with

age while recovery rates from disability decrease. The disability and mortality rates are

significantly affected by gender. Females have higher risks of becoming disabled and

lower mortality rates than males but there is a lack of significant difference between

males and females in terms of recovery rates from disability. The analysis of the time

trend illustrates that there has been a significant mortality and disability improvement

trend but also an ill health expansion for the healthy population. In contrast, the ef-

fect of systematic uncertainty is less pronounced. There is enough evidence to support

the presence of uncertainty only in the disability rates for people in ill health, the ill

health rates for the disabled, and the recovery rates from the disability for the entire

population.

We then use simulations to examine the (healthy) life expectancy. It demonstrates

that life expectancy and time spent in each state for individuals aged 65 vary greatly

with respect to gender, initial health status, trend, and systematic uncertainty. For indi-
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viduals who are healthy at 65: females have longer life expectancy but also more time

spent in disability; males become disabled and/or ill health earlier than females and

spent less time in the healthy state; males have a lower proportion of life expectancy

that is healthy. The presence of time trend increases the life expectancy, time with dis-

ability, and time in ill health and delayed the time of first becoming disabled and/or

ill health significantly, for both males and females. It also reduces the proportion of

healthy life expectancy. In contrast, the systematic uncertainty slightly reduces the

life expectancy but increases the time spent in disability. Moreover, the frailty process

results in considerable uncertainties in almost all statistics. The life expectancy for in-

dividuals in ill health is greatly reduced with more time spent in disability, compared

to individuals in good health. The impacts of trend and frailty are similar among indi-

viduals in ill health. We also witness an interesting observation that people with major

illnesses typically become disabled at earlier ages than individuals in good health.

To make meaningful comparisons with Li et al. (2017), we use the updated HRS data

to re-estimate the three-state models in Li et al. (2017), which ignore the health sta-

tus other than disability, and calculate corresponding summary statistics. We find that

ignoring the health status may significantly overestimate the proportion of healthy life

expectancy.

The usefulness of our model is further highlighted by its ability to illustrate the im-

pact of various factors in the fair pricing of insurance products including LTC insurance,

life annuity, and life care annuity. The premiums for these products depend heavily on

the gender and initial health status. In general, the prices of all three products are higher

for females as they have a longer life expectancy and also more time spent in disability.

The cost of LTC insurance to the ill health is 20% higher as they spend more time in

disability. In contrast, life annuity and life care annuity are around 10% more expensive

to the good health since they have a longer life expectancy.

We also investigate the roles of systematic trend and uncertainty. These factors are

of great importance as they cannot be eliminated by pooling. The time trend greatly
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affects almost all insurance prices and ignoring trend can result in considerable losses,

especially for life annuity and life care annuity. For example, the time trend can con-

tribute to around 30% in the premiums of life annuity and life care annuity. In con-

trast, the systematic uncertainty increases the prices of LTC products by around 10%

but slightly decrease the premiums of other products. Our results suggest that insurers

should consider time trend in the insurance policy pricing and systematic uncertainty

in the LTC product design. We also quantify the uncertainties of the premiums arising

from the systematic risk. It demonstrates that combining the LTC insurance and life

annuity can significantly reduce the systematic uncertainties as the premium of life care

annuity has much smaller standard deviation than the sum of the stand-alone policies’

standard deviations. This is because the frailty process has opposite effects on the pre-

miums of the LTC insurance and life annuity. Therefore, our results indicate that the life

care annuity can not only pool different risks to address adverse selection but also help

to reduce systematic risks. To our best knowledge, this feature has not been observed

in the previous literature.

To further highlight the significance of health status, we use the disability model

in Li et al. (2017) to price insurance products and compare prices to those obtained

from our model. This allows us to quantify the potential losses the insurer may suffer

from model incompleteness. Because the three-state model ignores the health status,

the insurance prices lie between corresponding premiums for the good health and the

ill health in our model that incorporates the health status. The insurer who ignores the

health status overestimates the LTC premiums for the good health by around 10% and

underestimates the premiums for the ill health by up to 15%. People in good health

will find the LTC insurance too expensive and the insurer can lose 15% of premiums

for policies sold to the ill health. In contrast, the ill health will not purchase the

annuities and the insurer is likely to lose up to 5% of premiums for policies sold to

the good health. These results attest the importance of incorporating health status

into disability/mortality modeling as ignoring health status can result in considerable
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welfare costs.

The rest of the paper is organized as follows. Section 2 presents our five-state model.

Section 3 describes the methodologies used in the estimation. Section 4 presents the

results. In Section 5, we use our model to price related insurance products. Section 6

concludes. Appendix A and B contain additional information.

2 Model

We extend the multi-state LTC model in Fong et al. (2015); Li et al. (2017) by incorpo-

rating the respondents’ health status. Specifically, we classify individual observations

along two dimensions: disability status and health status. We classify each individual

as functionally disabled (not functionally disabled) according to the number of ADLs

and good health (ill health) according to the health history of major illnesses, leaving

us with five states:

1. H-good health and not functionally disabled;

2. M-ill health and not functionally disabled;

3. D-good health and functionally disabled;

4. MD-ill health and functionally disabled.

5. Dead.

An individual is considered to be in ill health if he or she has ever had one of the

following illness: heart problems, diabetes, lung diseases, and stroke as these diseases

were also considered by Brown and Warshawsky (2013); he or she is classified as in

good health otherwise. Moreover, following Li et al. (2017), we classify an individual

as disabled if there are two or more difficulties in any of the six ADLs. It should be

noted that recovery from disability is allowed while recovery from ill health is not
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Table 1: Types of transitions
Type of Transition H M D MD Dead
H 1 2 3 4
M 5 6
D 7 8 9 10
MD 11 12

Notes: This table numbers each type of transition. Each number represents a transition from
the state labeled by the row name to the state labeled by the column name.

H

MD MD

Dead

Figure 1: A proposed five-state transition model

included as we are using the medical history of major illnesses.1 There are twelve types

of transitions which are summarized in Table 1. Figure 1 depicts our multi-state model.

We adopt the proportional hazard specification in Li et al. (2017), which is a varia-

tion on the credit-rating transitions model used in Koopman et al. (2008). More specifi-

cally, the transition intensity for transition type s for an individual k at time t is assumed

to be of the form

λk,s(t) = exp{βs + γ′swk(t) + αsψ(t)}, (1)

where βs is the baseline log-intensity for transition type s, independent of time and

common across all individuals. The vector wk(t) contains the observed predictors for

each individual k, and we restrict our predictors to gender and age. ψ(t) is a stochastic

1Our approach is in accordance with Brown and Warshawsky (2013) who argues that the health
history of a major illness can affect an individual’s likelihood of obtaining long-term care insurance
and claiming benefits.
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latent process that drives systematic uncertainties, also known as a frailty. The parame-

ter vector γs and scalar αs measure the sensitivities of logarithm of λk,s(t) with respect

to wk(t) and ψ(t).

Remark 2.1. Although the GLM approach adopted in Fong et al. (2015) is flexible to

include additional covariates such as polynomial terms of age (Fong et al., 2015) and

age-time interactions (Hanewald et al., 2019), it is unable to capture uncertainty in the

transition density which has been documented in the literature. In contrast, the MLFI

approach used in this paper and also Li et al. (2017) includes a stochastic factor (frailty)

to model the uncertainty in the health dynamics. The analysis in later sections attests

the importance of the frailty factor. Moreover, our model is also flexible to include

additional covariates such as the age-time interactions and polynomial terms of age and

time trend.

The transition rates ln{λk,s(t)} introduced above change continuously, resulting in

difficulties in estimation and application. For tractability, we assume the transition rates

are piece-wise constant. Before we present the exact functional form of the piece-wise

constant transition rates, let us first introduce several notations:

s s-th transition type, s = 1, · · · , S;

k k-th individual, k = 1, · · · , K;

Fk k-th individual’s gender, Fk = 1 if the k-th individual is female and 0 otherwise;

i i-th interview, i = 1, · · · , I;

t time (measured in years);

xk(t) k-th individual’s age at time t;

tk,i the time of i-th interview for the k-th individual;
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t̂k,i the time of transition between the i-th and the i + 1-th interview for the k-th

individual, should it occur; t̂k,i is the exact death time if the k-th individual died

during this period; otherwise, t̂ki = (tk,i + tk,i+1)/2, the mid-time of the i-th and

the i+ 1-th interview for k-th individual.

It should be emphasized that in the HRS data the exact death time is recorded should

it occur, while the exact time of other types of transitions is unavailable. Therefore, if

a transition (other than death) occurs between two consecutive interviews, we approx-

imate the transition time with t̂k,i, the mid-time of the two interviews. The exact time

for death is used.

Following Li et al. (2017), we consider three models: no-frailty model, no-frailty

model with a linear time trend, and the frailty model with the time trend.

1. In the “no-frailty” model, the transition rate λk,s(t) is assumed to be dependent

on age and sex only

ln{λk,s(t)} = βs + γages xk(t) + γfemale
s Fk, (2)

where βs is the reference level of λk,s(t) and varies by transition type, xk(t) is

the k-th individual’s age at time t, and Fk is an indicator variable whether the k-th

individual is female. γages and γfemale
s measure the sensitivity of ln{λk,s(t)} with

respect to age and sex, respectively.

2. To model the systematic time trend in λk,s(t), we include the linear time index

ln{λk,s(t)} = βs + γages xk(t) + γfemale
s Fk + φsi, tk,i ≤ t < tk,i+1, (3)

where φs measures the the sensitivity of ln{λk,s(t)} with respect to the time trend

(wave index).

3. We then add the latent factor ψi to ln{λk,s(t)} to account for the systematic un-
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certainty

ln{λk,s(t)} = βs + γages xk(t) + γfemale
s Fk + φsi+ αsψi, tk,i ≤ t < tk,i+1, (4)

where αs measures the the sensitivity of ln{λk,s(t)} with respect to the latent

factor. The latent factor ψ is modeled as a simple random walk

ψi = ψi−1 + εi, εi ∼ NIID(0, 1), ψ0 = 0. (5)

For simplicity, we assume that the transitions rates are only updated at either the

time of survey (tk,i) or the time of transition (t̂k,i).

3 Estimation

3.1 Data

We use the Health and Retirement Study (HRS) data from the University of Michigan,

which is a comprehensive and ongoing U.S. national longitudinal household survey

of people aged 50 and above starting from 1992. The surveys are conducted every

two years and include questions on respondents’ health histories, health statuses, and

physical and cognitive disability statuses. We use data from wave 1998 onward because

there were inconsistencies in the survey questions before wave 1998 (Fong et al., 2015).

The latest wave available now is in 2014, leaving us with 9 waves in total (wave 4-12).

Table 2 gives information on each concerned variable in the HRS data.

We use maximum-likelihood method to estimate the model parameters and then

recover the frailty process via Kalman filter and smoother.
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Table 2: HRS data variable description
Variable Description

HHIDPN HHID is the 6-character HRS household identifier, and PN is the 3-character person number.
RAGENDER Gender
RABMONTH Birth month.
RABYEAR Birth year.
RADMONTH Death month.
RADYEAR Death year.
WAVE The number of wave.
RxIWSTAT Wave x interview status.
RxIWENDM Wave x interview end month.
RxIWENDY Wave x interview end year.
RxAGEM E Age (months) at interview end date for wave x.
RxAGEY E Age (years) at interview end date for wave x.
RxWALKR Difficulty-Walk across room.
RxDRESS Difficulty-Dressing.
RxBATH Difficulty-Bathing or showirng.
RxEAT Difficulty-Eating.
RxBED Difficulty-Get in/out of bed.
RxTOILT Difficulty-Using the toilet.
RxDIABE Ever had diabetes.
RxLUNGE Ever had lung disease.
RxHEARTE Ever had heart problems.
RxSTROKE Ever had stroke.

3.2 Maximum-likelihood estimation

We use maximum likelihood to estimate our models. Before we proceed, let us first

introduce several notations:

Yk,s,i Yk,s,i = 1 if k-th individual experiences a transition of type s between i-th and

i+ 1-th interview and 0 otherwise;

Rk,s(t) Rk,s(t) = 1 if k-th individual is exposed to transition type of s at time t and 0

otherwise;

Fi information available immediately after the i-th wave.

Let θ denote the parameters of interest, then the likelihood functions of the no-frailty

model and the no-frailty model with the time trend are

L(θ|FI) =
K∏
k=1

I∏
i=1

S∏
s=1

exp{Yk,s,i ln{λk,s(t̂k,i)} −Rk,s(tk,i)(t̂k,i − tk,i)λk,s(tk,i)

−Rk,s(t̂k,i)(tk,i+1 − t̂k,i)λk,s(t̂k,i)},

(6)
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where the corresponding λk,s(t) should be inserted, i.e., (2) for the “no-frailty” model

and (3) for the “no-frailty” model with time trend.

The likelihood function of the frailty model conditional on Ψ, the complete path of

ψ(t), is

L(θ|FI ,Ψ) =
K∏
k=1

I∏
i=1

S∏
s=1

exp{Yk,s,i ln{λk,s(t̂k,i)} −Rk,s(tk,i)(t̂k,i − tk,i)λk,s(tk,i)

−Rk,s(t̂k,i)(tk,i+1 − t̂k,i)λk,s(t̂k,i)},

(7)

where λk,s(t) is given by (4), and the likelihood function of the frailty model is

L(θ|FI) =

∫
L(θ|FI ,Ψ)dP (Ψ). (8)

The high-dimensional integral makes the MLE evaluation computationally inten-

sive. We instead use Monte Carlo and simulateN paths of Ψ denoted by Ψ[1], · · · ,Ψ[N ].

We then construct the MC estimator of (8) as

L̂(θ|FI) =
1

N

N∑
n=1

L(θ|FI ,Ψ
[n]) (9)

for parameter estimation.

We would like to comment on the computational efficiency of the GLM approach

adopted in Fong et al. (2015) and our approach. The GLM approach is computationally

more efficient and the computation can be done typically within a few seconds, making

model comparison and selection easy. For our approach, the no trend and no frailty

model can be estimated efficiently (within a few minutes). In contrast, the inclusion

of the frailty factor ψ in the frailty model requires extra computational costs to eval-

uate the sum (9). The process can take more than hundreds of hours. Therefore, our

model adds flexibility (to model the uncertainty) at the expense of extra computational

cost. Nevertheless, noting the fact that each summand in (9) is independent from others
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thanks to the independence between different paths of ψ, we can make use of the paral-

lel computing to evaluate the sum, greatly facilitating the numerical optimization of the

likelihood function.

3.3 Recovery of the frailty process

We modify the approach in Li et al. (2017) to recover the frailty process. The main idea,

proposed by Durbin and Koopman (1997); Koopman et al. (2008), is to approximate the

distribution of Yk,s,i with Gaussian distribution as close as possible.

Consider the following state-space representation


ψi = ψi−1 + εi, εi ∼ NIID(0, 1), ψ0 = 0,

yk,s,i = αsψi + ξk,s,i, ξk,s,i ∼ NIID(ck,s,i, Ck,s,i), if Rk,s(tk,i) = 1,

(10)

where

yk,s,i = Yk,s,i −
(
βs + γages xk(t̂k,i) + γfemale

s Fk + φsi
)
. (11)

We use the state space model (10) to estimate the path of the systematic latent factor

given the observations and the MLE estimates of the parameters

{
β1, · · · , βS, γage1 , · · · , γageS , γfemale

1 , · · · , γfemale
S , φ1, · · · , φS, α1, · · · , αS

}
. (12)

The observation equation is equivalent to Yk,s,i = ln{λk,s(t̂k,i)}+ ξk,s,i, which maps the

observation Yk,s,i to the corresponding log-transition-rate, if the individual is exposed

to the risk.

The state-space model (10) differs from that of Li et al. (2017) in two aspects. First,

we only include ψ as the state variable as other parameters are already known from the

MLE estimate. Second, we include only the observations such that the individual is

exposed to that particular type of transition.

In order to make the model parsimonious, we assume that Ck,s,i = κ2i and ck,s,i =
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ζi. Following Durbin and Koopman (1997), we choose κ2i and ζi such that the non-

Gaussian density and the approximating Gaussian density are as close as possible in the

neighborhood of ψi. This requires

∂li(v)

∂ψi

= 0, (13)

∂2li(v)

∂ψ2
i

= 0, (14)

where li(v) = ln pi(Y |v,FI)− ln gi(Y |v,FI),

pi(Y |v,FI) =
K∏
k=1

S∏
s=1

exp{Yk,s,i ln{λk,s(t̂k,i)} −Rk,s(tk,i)(t̂k,i − tk,i)λk,s(tk,i)

−Rk,s(t̂k,i)(tk,i+1 − t̂k,i)λk,s(t̂k,i)},

(15)

and

gi(Y |v,FI) =
K∏
k=1

S∏
s=1

1√
2π
e
−

(yk,s,i−αsψi−ζi)
2

2κ2
i Rk,s(tk,i). (16)

We then use the Kalman filter and smoother to compute the posterior mean and

variance of ψ. We will not treat the filtering and smoothing of multivariate series in the

traditional way by taking the entire observational vector {yk,s,i} as the items for analy-

sis. There are two reasons. First, s× k is typically a large number, making the problem

intractable. Second, because an observation yk,s,i is included only if Rk,s(tk,i) = 1, the

dimensionality of {yk,s,i} varies over time.

We follow Koopman and Durbin (2000) to introduce the elements of the observa-

tional vectors one at a time into the filtering and smoothing processes, thus in effect

converting the original multivariate time series into a univariate time series. This device

offers significant computational gains. We briefly describe the filtering and smoothing

procedures in Algorithm 1 and Algorithm 2 in Appendix A. Algorithm 3 in Appendix

A gives the ψ̂i = E(ψi|FI) and variance Vi = Var(ψi|FI).

To estimate the complete path of ψ, we start with an initial guess for ψ, compute κ2i
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and ζi, use Kalman filter and smoother to generate the next estimate for ψ, and repeat

until convergence. This is summarized in Algorithm 4 in Appendix A.

4 Results

4.1 Estimated coefficients

Based on the methods described in Section 3.2, we obtain the MLE estimates for the

coefficients in three models. For the frailty models, we simulate 1,000 paths for the

frailty factor. Table 3 and 4 report the parameter estimates of our model. There are

several interesting observations.

Table 3: Parameter estimations (Monte Carlo MLE)
Transition Type H-M H-D H-MD H-Dead M-MD M-Dead

s = 1 2 3 4 5 6

No Frailty βs -4.8548*** -9.8826*** -12.2934*** -11.1331*** -7.2304*** -9.2935***
(0.016) (0.0261) (0.0479) (0.0252) (0.0176) (0.0170)

γages 0.0268*** 0.0768*** 0.0936*** 0.1006*** 0.0523*** 0.0841***
(0.0002) (0.0003) (0.0006) (0.0003) (0.0002) (0.0002)

γfemale
s -0.3174*** 0.2679*** 0.1402** -0.5518*** 0.3831*** -0.2716***

(0.0213) (0.0312) (0.0581) (0.0350) (0.0225) (0.0252)
Log Likelihood -77041

No Frailty with Trend βs -4.8565*** -9.8825*** -12.2934*** -11.1325*** -7.2309*** -9.2923***
(0.016) (0.0261) (0.0479) (0.0252) (0.0176) (0.0170)

γages 0.0251*** 0.0793*** 0.0965*** 0.1042*** 0.054*** 0.088***
(0.0002) (0.0003) (0.0006) (0.0003) (0.0002) (0.0002)

γfemale
s -0.3201*** 0.2683*** 0.1403** -0.5510*** 0.3837*** -0.2702***

(0.0213) (0.0312) (0.0582) (0.0351) (0.0225) (0.0252)
φs 0.0306*** -0.0475*** -0.0558*** -0.0721*** -0.0282*** -0.0719***

(0.0035) (0.0059) (0.0107) (0.0057) (0.0036) (0.0036)
Log Likelihood -76941

Frailty βs -4.8819*** -9.8858*** -12.2858*** -11.1111*** -7.2376*** -9.2753***
(0.0160) (0.0261) (0.0479) (0.0252) (0.0176) (0.0170)

γages 0.0254*** 0.0792*** 0.0979*** 0.1039*** 0.054*** 0.0875***
(0.0002) (0.0003) (0.0006) (0.0003) (0.0002) (0.0002)

γfemale
s -0.3234*** 0.2712*** 0.1458** -0.5462*** 0.3852*** -0.2676***

(0.0213) (0.0311) (0.0573) (0.0350) (0.0225) (0.0252)
φs 0.0328*** -0.0427*** -0.0908*** -0.0715*** -0.0269*** -0.0643***

(0.0035) (0.0059) (0.0110) (0.0057) (0.0036) (0.0036)
αs -0.0108 -0.0235 0.0454 -0.0014 -0.0058 -0.0358**

(0.0118) (0.0217) (0.0402) (0.0027) (0.0100) (0.0153)
Log Likelihood -76928

Notes: λk,s(t) calculated from above figures are annual rates, and for the frailty model
N = 1000. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01. Standard errors of the estimation are
displayed in the parentheses.
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Table 4: Parameter estimations (Monte Carlo MLE) cont’d
Transition Type D-H D-M D-MD D-Dead MD-M MD-Dead

s = 7 8 9 10 11 12

No Frailty βs 0.4045*** -1.9752*** -4.3002*** -7.9428*** -0.0146 -6.2404***
(0.0351) (0.0864) (0.0603) (0.0406) (0.0249) (0.0195)

γages -0.0323*** -0.0229*** 0.0144*** 0.0736*** -0.0302*** 0.0578***
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)

γfemale
s -0.0318 -0.1688 0.1459** -0.4648*** 0.0016 -0.3129***

(0.0415) (0.1042) (0.0692) (0.0497) (0.0306) (0.0250)
Log Likelihood -77041

No Frailty with Trend βs 0.4042*** -1.9753*** -4.3003*** -7.9431*** -0.0155 -6.2411***
(0.0351) (0.0864) (0.0603) (0.0406) (0.0248) (0.0195)

γages -0.0317*** -0.0218*** 0.0142*** 0.0741*** -0.0307*** 0.0588***
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)

γfemale
s -0.0320 -0.1688 0.1458** -0.4650*** 0.0009 -0.3139***

(0.0415) (0.1042) (0.0691) (0.0497) (0.0306) (0.0250)
φs -0.0128 -0.0220 0.0035 -0.0092 0.0101* -0.0182***

(0.0085) (0.0208) (0.0134) (0.0088) (0.0053) (0.0041)
Log Likelihood -76941

Frailty βs 0.4088*** -1.9761*** -4.3012*** -7.9530*** -0.0150 -6.2490***
(0.0351) (0.0863) (0.0603) (0.0406) (0.0211) (0.0195)

γages -0.0312*** -0.0195*** 0.0147*** 0.0741*** -0.0300*** 0.0591***
(0.0005) (0.0012) (0.0008) (0.0005) (0.0003) (0.0002)

γfemale
s -0.0300 -0.1695* 0.1451** -0.4672*** 0.0011 -0.3161***

(0.0397) (0.0982) (0.0666) (0.0496) (0.0022) (0.0250)
φs -0.0296*** -0.0691*** -0.0135 -0.0041 -0.0115** -0.0238***

(0.0084) (0.0219) (0.0119) (0.0054) (0.0052) (0.0040)
αs 0.0855*** -0.0667 0.1024* -0.0375 0.1029*** 0.0282

(0.0320) (0.0716) (0.0540) (0.0329) (0.0226) (0.0173)
Log Likelihood -76928

Notes: λk,s(t) calculated from above figures are annual rates, and for the frailty model
N = 1000. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01. Standard errors of the estimation are
displayed in the parentheses.
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Baseline intensity

The examination of βs reveals the fact that an individual with major illness history is

more likely to become disabled and less likely to recover from disability. Moreover,

people who are disabled and/or in ill health have higher mortality rates, in line with the

results in Brown and Warshawsky (2013).

Age

All transition rates are age-dependent and consistent with the results in Fong et al.

(2015) and Li et al. (2017). The inspection of signs of γages shows that disability (H-D,

H-MD, and M-MD), ill health (H-M, H-MD, and D-MD), and mortality rates (H-Dead,

M-Dead, D-Dead, and MD-Dead) increase with age while recovery rates from disability

(D-H, D-M, and MD-M) decrease. An exception is the transition rate from disability to

ill health (D-M), which decreases with age.

Gender

Gender has strong impacts on disability, ill health, and mortality rates. On average,

females have higher risks of becoming disabled and lower mortality rates than males.

There is no significant difference between males and females in terms of recovery from

disability. These results are consistent with the conclusions in Fong et al. (2015) and

Li et al. (2017). However, the ill health rate is ambiguous. Healthy females are less

likely to become ill health while disabled females are exposed to greater ill health

risks. Given the gender patterns, we can expect that women have longer life expectancy

but also spend more time in disability states. We confirm this via simulations in Section

4.3.
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Table 5: Posterior mean and variance of ψ
Year 1998 2000 2002 2004 2006 2008 2010 2012

Mean 0.0762 -0.8107 0.2578 0.1151 1.3856 -0.1952 2.2714 0.3587
Variance 0.1222 0.1350 0.1542 0.1611 0.1657 0.1706 0.2023 0.2666

Trend

Similar to Li et al. (2017), the time trend plays a significant role in most transitions.

There has been a significant mortality and disability improvement trend but also an ill

health expansion trend for the healthy population. The no-frailty model also shows

the improvement trend in mortality and disability for the ill health. Incorporating the

systematic uncertainty, the frailty model suggest that there has been a deterministic

improvement in the recovery rates from disability.

Systematic uncertainty

We find that the frailty affects the mortality rate only for the ill health and the ill health

rate for the disabled. The recovery rates from disability for the entire population also

have significant uncertainties. These results are somehow in contrast to Li et al. (2017)

who documented the uncertainties in the disability and recovery rates.

4.2 Posterior mean of the frailty

Based on these estimated parameters and the algorithms discussed in Section 3.3, Table

5 reports the posterior mean and variance of ψ. Figure 2 shows the posterior mean and

the corresponding 95% confidence interval of the frailty process. Each year on the x

axis represents a wave starting from that year.

The posterior mean of the frailty process fluctuates around 0 in the past years and

we can claim, with 95% confidence, that the frailty factor is negative in 2000-2002 and

is positive in 2006-2008 and 2010-2012.
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Figure 2: Posterior mean of the latent frailty process ψ
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4.3 Life expectancy and distribution of disability

We further perform micro-simulations to generate individual life histories and quantify

future lifetime and time spent in each state. We use the parameter estimates from the

three models to simulate the life path for each combination of genders (male and female)

and initial states ( good health: state 1 and ill health: state 2).

The simulation is run monthly to be consistent with the fact that the insurance payout

is typically on a monthly basis.2 Although the health transition matrix is estimated

annually, we run the simulation monthly by assuming the transition intensity is constant

within a year. This assumption has also been used by Shao et al. (2017). Moreover, in

mortality modeling it is also common to assume the force of mortality is piece-wise

constant.

The initial age is 65 and the maximum age is 100. For the models without frailty,

we consider 10,000 homogeneous lives. For the frailty model, we first simulate 1,000

paths of the frailty process and consider 10,000 homogeneous lives for each path of the

frailty process. The initial value of the simulated frailty process is set to the posterior

mean of ψ in 2012. The setting corresponds to an individual aged 65 in 2012.

Table 6 presents summary statistics for healthy males and females under three mod-

els. The life expectancy and time spent in each state of individuals aged 65 vary greatly

with respect to gender and the model specification. Consistent with intuition, females

have longer life expectancy but also more time spent in disability. However, males spent

less time in the healthy state (state 1). The eleventh row shows the proportion of life

expectancy that is healthy, which is defined as the following ratio

HLE
TLE

=
healthy life expectancy (time in state 1)

total life expectancy
.

Interestingly, males have lower HLE/TLE under three models. The last two rows report

2We also perform the simulation on a yearly basis. The relative differences are small and all results
are qualitatively the same.
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respectively the first age of becoming disabled and ill health. Males become disabled

and/or ill health earlier than females. Inspection of different columns allows us to

examine the importance of time trend and/or systematic uncertainty on (healthy) life

expectancy. The presence of time trend increases the life expectancy, time with disabil-

ity, and time in ill health and delayed the time of becoming disabled and/or ill health

significantly, for both males and females. It also reduces the proportion of healthy life

expectancy. In contrast, the systematic uncertainty slightly reduces the life expectancy

but increases the time spent in disability. The frailty process also has marginal effects

on the proportion of healthy expectancy and the expected first ages of becoming dis-

abled or ill health. The 95% confidence intervals are reported in the parentheses.3 It

demonstrates that the presence of frailty process leads to considerable uncertainties.

Table 7 reports corresponding findings for males and females in ill health (state 2)

under three models. The life expectancy for individuals in ill health is greatly reduced

with more time spent in disability, compared to people in good health. An interesting

observation is that people with major illnesses become disabled at earlier ages than

people in good health, which is consistent with the result in Brown and Warshawsky

(2013). These results suggest that expected lifetime and time with disability vary greatly

depending on the initial health status. The impacts of trend and frailty are similar among

individuals in ill health.

To make meaningful comparisons with Li et al. (2017) and further highlight the ef-

fect of health status, we re-estimate the three-state models in Li et al. (2017) but with

the updated HRS data. The models have three states: H-healthy, D-disabled, and Dead.

The estimated parameters are reported in Table 15 in Appendix B. Table 8 presents the

corresponding summary statistics. Because these models ignore the health status other

than disability, the statistics lie between corresponding entries for good health individ-

uals in Table 6 and ill health individuals in Table 7. A comparison between HLE/TLE

3We focus on the uncertainty arising from the frailty process and abstract away from the simulation
error, in other words, the confidence intervals reported here are based on the estimate Var(E[X|Ψ]) where
X is the corresponding statistic.
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in Table 6 and 8 reveals the fact that ignoring the health status may significantly overes-

timate the proportion of healthy life expectancy. This further highlights the importance

of health status. Examination of different columns shows that the time trend has a large

impact while including the frailty process leads to considerable uncertainties.

5 Pricing related insurance products

In this section, we use micro-simulations to estimate the actuarially fair values of LTC

insurance, life annuity, and life care annuity under different models. We aim to measure

the impact of trend and systematic uncertainty on insurance pricing and quantify how

the expected costs of these insurance products vary according to initial health status.

5.1 Impacts of trend, uncertainty, and health status

Similar to Brown and Warshawsky (2013) and Shao et al. (2017), we first create an

LTC policy that pays $3,000 a month while the insured is disabled. We impose a 3-

month waiting period, which is common among LTC insurance policies. In addition,

we consider a life annuity that pays $1,000 while the insured is alive. Finally, we create

a synthetic life care annuity that pairs the above life annuity with the aforementioned

LTC insurance.

Table 9 shows the single net premiums of these insurance policies for 65-year-old

individuals with different gender and initial health statuses under three models. Consis-

tent with intuition, insurance prices vary greatly according to gender and initial health

status. In general, the prices are higher for females as females have longer expectancy

and also more time spent in disability. The cost of LTC insurance to the ill health is

20% higher as they spend more time in disability. In contrast, a life annuity is around

10% more expensive to the good health since they have a longer life expectancy. The

last few rows show that the life care annuity which combines the LTC insurance with

life annuity narrows the gap between insurance prices for the good health and the ill
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health. In the frailty model, the premium of the LTC for a male in ill health is 23.43%

more expensive than that for a male in good health, while the cost of the life annuity to

a male in ill health is 10.58% cheaper than that to a male in good health. In contrast,

the premium of the life care annuity to a male in ill health is only 4.95% cheaper than

that for a male in good health. This suggests that it could be attractive to pool the two

risk categories in insurance design.

The examination of columns reveals the effects of deterministic trend and systematic

uncertainty. For healthy individuals, the time trend slightly increases the LTC premium

while the uncertainty can drive it up by nearly 10%. For example, the premium of the

LTC insurance for a healthy male is $31, 694 under the “no frailty” model, while the

premiums under the trend and frailty models are 4.18% and 13.12% more expensive

than that under the “no frailty” model, respectively. For individuals in ill health, the

effect of trend is more pronounced. The presence of trend increases the LTC premiums

for males and females in ill health by 10.1% and 7.45%, respectively. On top of that,

the frailty can further raise the costs by 6.98% and 7.45%, for males and females in ill

health, respectively. For life annuity, the inclusion of the time trend increases the prices

by around 20% for good health males and ill health females. The trend pushes the

premiums of life annuity up by almost 25% for males in ill health and 15% for females

in good health. In contrast, the effect of uncertainty is marginal as it slightly decreases

the premiums of life annuity. These results are indeed consistent with the impacts of

trend and uncertainty on life expectancy and time spent in disability (Table 6 and 7).

Because the life care annuity is the integration of LTC insurance and life annuity, and

the actuarial cost of the life annuity is much larger than that of LTC insurance, the

impacts of trend and uncertainty on the premiums of the life care annuity are similar to

the case of the life annuity.

We also compute the standard errors of the premiums in the frailty model which

are displayed in the parentheses.4 In general, the premiums of insurance products for

4We focus on the uncertainty arising from the frailty process and abstract away from the simulation
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individuals in ill health have larger uncertainties than people in good health. Moreover,

the premiums of LTC insurance and life care annuity for females exhibit much higher

uncertainties than males. In contrast, the uncertainties of premiums of life annuity for

males are only slightly larger than that for females.

Another interesting observation is that the standard deviation of the life care annuity

is much smaller than the sum of standard errors of the LTC insurance and life annuity

because the frailty process has opposite effects on the premiums of the LTC insurance

and life annuity. For a 65-year old healthy male, the uncertainties of the premiums

of LTC insurance and life annuity are $2, 939 and $2, 747 while that of the life care

annuity is only $1, 051. Therefore, the integration of the stand-alone policies can reduce

the systematic uncertainties arising from the frailty process significantly. This pattern

persists for individuals with different genders and initial health statuses as well. This

highlights an important feature of life care annuity. In general, the systematic risk of

the stand-alone policies cannot be eliminated. Our results indicate that combining the

life annuity with LTC insurance is attractive to reduce the systematic uncertainties of

the premiums. If the uncertainties were to be priced, then the life care annuity has a

lower cost than the sum of the stand-alone policies.

A typical feature included in LTC insurance and life annuity policies is inflation

protection. We additionally consider insurance policies whose benefits grow 3% per

annum. Table 10 presents the relevant premiums under inflation protection. All our

previous findings remain valid. The gaps between premiums for the good health and

ill health are still significant. Under the frailty model, the LTC insurance premiums

for the ill health are 15.29% and 17.33% more expensive than that for the good health

males and females, respectively. The premiums of annuity for the good health are more

than 10% higher than that for the ill health. The gaps between the good health and

the ill health narrows down to around 7% when the LTC insurance and life annuity are

error, in other words, the standard errors reported here are based on the estimate Var(E[X|Ψ]) where X
is the present value of the corresponding insurance product.
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integrated. Moreover, the time trend greatly affects almost all insurance prices and the

effects are more pronounced among life annuity and life care annuity. For example, the

time trend can contribute to around 30% in the premiums of life annuity and life care

annuity but less than 20% in the premiums of LTC insurance. In contrast, the systematic

uncertainty increases the prices of LTC products by nearly 10% but slightly decrease the

premiums of other products. A comparison between Table 10 and 9 shows that inflation

protection increases the uncertainties of the premiums significantly. Consistent with our

previous findings, the premium of life care annuity has smaller standard errors than the

sum of that of stand-alone policies.

The above analysis highlights the importance of including time trend and systematic

uncertainty in the insurance policy pricing. Ignoring trend can result in losses equivalent

to around 30% of the premiums for life annuity and life care annuity, and 10% of pre-

miums for LTC insurance. The neglect of systematic uncertainty can lead to additional

10% loss of premiums for LTC insurance. The presence of the frailty process also leads

to considerable uncertainties in the premiums of insurance products. We illustrate that

the life care annuity-an integration of the life annuity with LTC insurance-is attractive

to pool not only different health risks but also systematic uncertainties. The compari-

son across individuals also attests that the gaps between prices for different genders and

health statuses are considerable.

5.2 Cost of ignoring health status

Suppose that the model proposed in this paper is close to the model that governs the

dynamics of disability, chronic illness, and mortality but an insurer ignores the health

status and uses the disability model in Li et al. (2017) to price insurance products. How

much can the insurer lose due to the model incompleteness? This section attempts to

quantify such losses. We have estimated the three-state model in Li et al. (2017) with

the updated HRS data and the estimated parameters are summarized in Table 15. Based
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on these parameters, we use simulations to price the three aformentioned insurance

products. Table 11 shows the premiums for these products without inflation protection.

It should be noted that the time trend still increases the actuarial costs of insurance

products significantly while the frailty process leads to considerable uncertainties.

Table 12 compares the prices to corresponding premiums for the good health and

ill health in our five-state model. Because the three-state model ignores the health sta-

tus, the insurance prices lie between corresponding premiums for the good health and

ill health in the five-state model and this effect is more pronounced in LTC insurance

products. For example, in the frailty model, the insurer who ignores the health status

sells the LTC insurance to males at $38, 421 (Table 11), irrespective of the policyhold-

ers’ initial health status. In fact, the product is valued at $35, 801 (Table 9) for good

health males and $44, 189 (Table 9) for ill health males, if the actual health dynamics is

more close to our five-state model with frailty. Therefore, the insurer overestimates the

LTC premiums for males in good health by 7.32% and underestimates the premiums

for males in ill health by 13.05%. Under such a pricing scheme, the LTC product is

too expensive to the good health but appealing to the ill health, resulting in adverse

selection problems. Moreover, if the insurer sells the LTC insurance to males in ill

health at $38, 421 which it should sell at $44, 189, the insurer loses 13.05% of premi-

ums. We have similar observations for females and the insurer can lose up to 14.67%

of premiums from the LTC insurance sold to females in ill health.

The pattern is reversed for annuity products. If the insurer ignores the initial health

status, it overestimates the life annuity premiums for the ill health and underestimates

the premiums for the good health. Moreover, it can lose up to 6.34% of premiums for

policies sold to the males in good health and 4.91% for policies sold to the females in

good health. However, the difference between premiums of life care annuity for the

good health and the ill health is much smaller, no more than 4%. This, again, suggests

that it is attractive to integrate LTC insurance with life annuity.

Table 13 shows the premiums for these products with inflation protection. The trend
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is still significant in all products while frailty is more important in LTC insurance pric-

ing, especially for females. Table 14 compares the prices to corresponding premiums

for the good health and ill health in the five-state model. All of our previous findings

persist in the presence of inflation protection. The insurer can lose more than 10% of

premiums for LTC insurance sold to the ill health and up to 7.88% of premiums for

annuities sold to the good health.

Ignoring health status in the disability/mortality modeling has a significant impact

on insurance pricing and can result in considerable welfare costs because the insurer

who ignores health status cannot exploit the difference between insurance premiums

for the good health and ill health. Individuals in good health will find the LTC insur-

ance expensive and the insurer underestimates the premiums for policies sold to the ill

health. In contrast, people in ill health will not purchase the annuities and the insurer is

likely to underestimates the premiums for policies sold to the good health. These results

further highlight the importance of incorporating health status into disability/morality

modeling.

6 Conclusion

We have proposed and estimated a five-state model of both functional disability and

health status change with systematic trend and uncertainty. The classification of each

individual along both disability and health status (other than disability) allows us to

quantify the impact of health status on life expectancy and insurance pricing. Therefore,

our model can address both health status and the inclusion of systematic trend and

uncertainty, two aspects that rarely appear in the literature.

We have illustrated that ignoring health status can lead to considerable losses for

the insurer because the insurer cannot exploit the difference between premiums of in-

surance products for individuals with different health statuses. We have also assessed

the effects of trend and uncertainty. We demonstrated that trend is important in deter-
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mining life expectancy and insurance products such as life annuity and life care annuity,

while the effect of systematic uncertainty is more pronounced in disability and related

LTC insurance pricing. The potential losses from the neglect of trend and uncertainty

can be considerable. The presence of the frailty process also leads to significant uncer-

tainties in the premiums of insurance products. Our final contribution lies in showing

that integrating LTC insurance with life annuity can help to reduce the systematic un-

certainties arising from the frailty process. These provide new directions for the design

of aged-care insurance products.
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A Algorithms in Section 3

Algorithm 1 Filtering
Set a1,1 = 0, P1,1 = 1
for i = 1 to I do

for k = 1 to K do
for s = 1 to S do
n = s+ (k − 1)S
if Rk,s(tk,i) = 1 then
Fn,i = α2

sPn,i

Kn,i = α2
sPn,i/Fn,i

vn,i = yk,s,i − αsan,i/Fn,i

an+1,i = an,i +Kn,ivn,i
Pn+1,i = Pn,i −K2

n,iFn,i

else
an+1,i = an,i
Pn+1,i = Pn,i

end if
end for

end for
if i < I then
a1,i+1 = aKS+1,i

P1,i+1 = PKS+1,i + 1
end if

end for
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Algorithm 2 Smoothing
Set rI,KS = 0, NI,KS = 1
for i = I to 2 do

for k = K to 1 do
for s = S to 1 do
n = s+ (k − 1)S
if Rk,s(tk,i) = 1 then
Ln,i = 1− αsKn,i

rn−1,i = αsvn,i/Fn,i + Ln,irn,i
Nn−1,i = α2

s/Fn,i + L2
n,iNn,i

else
rn−1,i = rn,i
Nn−1,i = Nn,i

end if
end for

end for
if i > 1 then
rKS,i−1 = r0,i
NKS,i−1 = N0,i

end if
end for

Algorithm 3 Smoothed State ψ̂i = E(ψi|FI) and Variance Vi = Var(ψi|FI)

for i = 1 to I do
ψ̂i = a1,i + P1,ir0,i
Vi = P1,i − P 2

1,iN0,i

end for

Algorithm 4 Estimate ψ
Simulate a path of ψ
repeat

compute κ2i and ζi from (13) and (14)
use Kalman filter and smoother, i.e., Algorithms 1, 2, and 3, to estimate ψ from
(10)

until the estimated ψ converges
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H

D Dead

Figure 3: The three-state transition model in Li et al. (2017)

B Li et al. (2017) revisited

Li et al. (2017) considered a three-state model: healthy, disabled, and dead, as shown in

Figure 3. An individual is classified as disabled if he or she has two or more difficultiess

in ADLs. The functional forms of the transition intensities are as of (2), (3), and (4).

We use the updated HRS data to estimate the coefficients, which are reported in Table

15.
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Table 15: Parameter estimations (Monte Carlo MLE)
Transition Type H-D H-Dead D-H D-Dead

s = 1 2 3 4

No Frailty βs -8.7226*** -10.3676*** 0.2433*** -6.5344***
(0.0139) (0.0141) (0.0197) (0.0176)

γages 0.0693*** 0.0953*** -0.0320*** 0.0605***
(0.0002) (0.0002) (0.0003) (0.0002)

γfemale
s 0.2589*** -0.4461*** 0.0088 -0.3649***

(0.0174) (0.0204) (0.0240) (0.0223)
Log Likelihood -58956

No Frailty with Trend βs -8.7232*** -10.3670*** 0.2427*** -6.5351***
(0.0139) (0.0141) (0.0197) (0.0176)

γages 0.0708*** 0.0985*** -0.0315*** 0.0611***
(0.0002) (0.0002) (0.0003) (0.0002)

γfemale
s 0.2588*** -0.4458*** 0.0084 -0.3658***

(0.0174) (0.0204) (0.0240) (0.0223)
φs -0.0276*** -0.0605*** -0.0089** -0.0118***

(0.0030) (0.0030) (0.0044) (0.0037)
Log Likelihood -58897

Frailty βs -8.7236*** -10.3661*** 0.2463*** -6.5365***
(0.0140) (0.0141) (0.0198) (0.0176)

γages 0.071*** 0.098*** -0.0301*** 0.0615***
(0.0002) (0.0002) (0.0003) (0.0002)

γfemale
s 0.2591*** -0.4455*** 0.0104 -0.3675***

(0.0174) (0.0204) (0.0209) (0.0223)
φs -0.0321*** -0.0511*** -0.0387*** -0.0194***

(0.0030) (0.0030) (0.0044) (0.0037)
αs 0.0177 -0.0365** 0.1092*** 0.0313*

(0.0151) (0.0153) (0.0205) (0.0188)
Log Likelihood -58890

Notes: λk,s(t) calculated from above figures are annual rates, and for the frailty model
N = 1000. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01. Standard errors of the estimation are
displayed in the parentheses.
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