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Abstract

There is a significant potential demand in many countries around the world for a flexible
product to manage individual longevity risk arising from the prevalence of defined contribu-
tion pensions, uncertainty in improvements in life expectancy, potential reductions in public
pensions and a lack of suitable longevity insurance products. The classical insurance product
to manage individual longevity risk is the life annuity. Annuity markets remain thin, driven
by many factors including lack of transparency in pricing, high product loadings, bequest
motives, lack of liquidity and loss aversion. This paper proposes an individual longevity
bond, not currently available, as a combined investment and insurance product to allow
individuals to flexibly manage their longevity risk. The bond is a post-retirement product
that combines a lifetime income along with a flexible death benefit to meet bequest and
liquidity needs. The longevity bonds are issued through a special purpose vehicle which is
fully collateralized with a fixed interest portfolio. We apply financial and actuarial models
and techniques that provide transparent pricing for interest rate and mortality risk, the
construction of optimally immunized bond portfolios and the determination of a loading
and solvency margin for systematic longevity risk. We also quantify the natural hedging
benefits of the individual bond cash flows arising from the flexible inclusion of both survival
dependent income benefits and mortality dependent bequest benefits payable on death.
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1 Introduction

Longevity risk is the risk that individuals may live longer than expected and consequently outlive
their retirement savings. It is one of the most significant risks that individuals face under a de-
fined contribution (DC) pension system, which has become dominant in many countries, includ-
ing Australia where more than 87% of pension assets are in DC funds (Willis Towers Watson,
2018). The traditional product for individuals to manage longevity risk is the life annuity.
Classical economic theory suggests that individuals with no bequest motive will maximize their
expected lifetime utility by fully annuitizing their wealth (Yaari, 1965). Despite this, empirical
evidence shows that life annuity markets are thin. This has become known as the ‘annuity
puzzle’, a term coined in Modigliani (1986).

There are many explanations given for the ‘annuity puzzle’ covering a combination of demand
side and supply side reasons. Demand side reasons include: high loadings to allow for adverse
selection, bequest motives, loss aversion for early death, and liquidity (Brown, 2009). Supply
side reasons include: high interest rate risk, longevity risk created by the long duration of life
annuities, and the difficulty to find a suitable asset on the market to hedge interest rate and
longevity risks (Evans and Sherris, 2010).

Longevity bonds have mostly been proposed for insurers to hedge the longevity risk expo-
sure from issuing life annuities (Blake and Burrows, 2001). These include coupon-at-risk and
principal-at-risk longevity bonds (Blake et al., 2006). In contrast, little attention has been
given to developing longevity bonds for individuals to manage their longevity risk. The SM
bond proposed in De Jong and Ferris (2019), which links the principal payment to individual
survivorship, is a recent example. For this bond, the principal payment is lost if the bondholder
dies before the bond matures, and it goes into a pool for bondholders to share at maturity. By
purchasing these bonds each year before retirement, individuals receive retirement income in
each year after retirement as the principal payment on the bond matures, provided they are
alive. This aims to replicate the income pattern of a DB plan. The bond generates retirement
income as part of an investment strategy for contributions before retirement and relies on a
pooling mechanism for longevity risk as well as a market pricing mechanism for this risk.

Our focus is an individual longevity bond not available currently in the market that allows
individuals to flexibly manage their longevity risk taking into account their preference for income
and bequests. The bond is an investment product which combines a flexible death benefit with
an income based survival benefit to address the limitations of a life annuity, particularly the
bequest motive, loss aversion and high loadings. The survival benefit is a monthly coupon
payment while the individual is alive, and the death benefit is the principal which is fully or
partially returned in the event of death. The coupon payments hedge the individual’s longevity
risk, and the death benefit meets bequest motives and reduces loss aversion in the event of
early death. Importantly, individuals have the flexibility to structure a bond that meets their
preferences through different combinations of a survival income benefit and a death benefit. The
individual bonds are issued through a special purpose vehicle (the issuer), which in Australia
would hold a life insurer license, but could be backed by a reinsurer, that aggregates and manages
the interest rate and mortality risks.

Recent developments in continuous-time mortality models have extended the term structure
affine models of interest rates to systematic mortality (Dahl, 2004; Biffis, 2005; Schrager, 2006;
Luciano et al., 2012). They allow a consistent modeling approach for interest rate and mortal-
ity risk in financial and insurance applications. Most of these models use age-period mortality
data and are single cohort models. Blackburn and Sherris (2013) present and assess consis-
tent age-period single cohort affine mortality models including estimation methodology and
demonstration of parameter stability across time in the models. Cohort effects are important in
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mortality models. Xu et al. (2019) extend affine mortality models to multi-cohorts by including
a cohort-specific factor in an age-period mortality model and include a financial application to
assess a price of risk in the models.

We propose and apply a financial engineering valuation and immunizing framework for the
individual longevity bond based on the Arbitrage-Free Nelson Siegel (AFNS) models for both
interest rates and mortality rates. Huang et al. (2019) extend and assess AFNS age-cohort
mortality models by calibrating the models to age-cohort mortality data, provide a comparison
of a range of affine mortality models, and demonstrate the benefits of the independent AFNS
mortality model. The AFNS models are designed for financial and insurance applications. In
practice, the Gaussian AFNS mortality models have been to shown to have very low probabilities
of negative mortality rates (Huang et al., 2019), one of the theoretical limitations of the models.
Our longevity bonds are cohort based so we use AFNS models for both interest rates and age-
cohort mortality calibrated to Australian data.

Luciano et al. (2012) apply affine models to the delta-gamma hedging of interest rate and mor-
tality risk of a range of mortality-linked insurance contracts. Liu and Sherris (2017) apply the
immunization theory presented in Panjer et al. (1998) to a life annuity portfolio, and use linear
programming with a mean-absolute deviation constraint in order to optimally match the asset
and liability expected cash flows including Fisher-Weil duration. They show the benefits of this
approach over delta-gamma hedging.

We use the approach in Liu and Sherris (2017) to derive, compare and assess immunized bond
portfolios for the individual longevity bonds using Australian government bonds to minimize the
interest rate risk. We compare the effectiveness of both coupon paying bonds and hypothetical
annuity bonds in immunizing the individual longevity bonds. We use Australian data and
Australian fixed interest bonds, but the results and methodology applies to any developed
market with the need for post-retirement products and an active bond market.

We price the aggregate mortality risk using Australian population mortality. Since there are
no longevity-linked bonds in Australia, the issuer holds capital for the risk not hedged by the
immunized bond portfolio, which is mainly the systematic longevity risk. The cost of holding this
capital is quantified using a Solvency II approach and determines a risk margin as a proportion
of the bond price. Our immunization and risk analysis takes into account systematic mortality
risk for age-cohort population mortality. In practice, different mortality assumptions would need
to be considered for the different types of individual longevity bonds reflecting potential adverse
selection. Our focus is on the systematic longevity risk. Our proposed individual longevity bond
has both survival and death benefits, and since an individual’s bequest motive is expected to
result in a mix of these, the effects of adverse selection are reduced.

For the individual longevity bonds, the value of the death benefit provides a natural hedge for
the value of the survival income benefit as systematic mortality changes occur. The proposed
longevity bond with a coupon payment as survival income and principal as a death benefit
is shown to have significant natural hedging, resulting in more effective pricing and reduced
capital requirements. We quantify this natural hedging effect based on the final year surplus of
the immunized portfolio and the reduction in capital cost compared to the longevity bond with
a survival income benefit only. As is commonly used for longevity risk, and reflecting Solvency
II requirements, we use Value-at-Risk (VaR) as a risk measure.

Our contributions focus on the financial engineering underlying individual longevity bonds in-
cluding the interest rate and age-cohort mortality models, the construction and assessment of
the government bond portfolios used to immunize the individual longevity bonds, quantifying
the capital costs for the systematic longevity risk and assessing the natural hedging benefits
that are a feature of the individual longevity bonds.
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The remainder of this paper is structured as follows. Section 2 covers the proposed design
of the individual longevity bonds to meet individual needs for income, bequest and payments
on death. Section 3 presents the AFNS interest rate and mortality models, including model
simulation results. Section 4 presents the method for construction of the immunized government
bond hedging portfolio with coupon and annuity bonds, and assesses the hedging performance
for the individual longevity bonds by considering the final year surplus distribution for the
immunized portfolio. Section 5 presents the methodology for determining the solvency capital
requirements of the residual risk from issuing the individual longevity bonds, and determines the
cost of holding capital for the individual longevity bonds. Section 6 concludes with a discussion
of the main findings and implications.

2 Individual Longevity Bond Designs

Our proposal is for a flexible individual longevity bond design structured as an investment
product incorporating longevity insurance features. The bond incorporates a flexible choice of
survival benefits S, as bond coupon income, and death benefits D, as a bequest or liquidity
preference. The bonds are a combination of a lifetime coupon and principal bond that returns
the initial bond price on death and an annuity bond that replicates the classic life annuity.
Individuals select a weighted combination of these bonds to provide a flexible bond structure
that allows for individual preferences for survival income and bequest death benefit.

The general structure of the bond payoffs is represented as:

• Monthly payments S while the individual is alive as the survival benefit.

• Death payment D at the end of the month τ in which the individual dies.

All the bonds are standardized to a price of 100 at the time of issue. Pricing of the bonds is
covered later.

2.1 Longevity Bond Structure: Lifetime Coupon and Principal Bond

The individual longevity bond structure referred to as the lifetime coupon and principal bond
(LCP Bond) has a monthly survival income benefit SLCP , which is the coupon payment based
on the principal DLCP ,

SLCP =
rc

12
× DLCP ,

where rc stands for the annual coupon rate. The coupon rate is set to be 2% for illustration
reflecting the current low interest rates. This interest rate reflects the term structure of interest
rates and a mortality credit. The principal DLCP is paid at the end of the month τ in which
the individual dies. The timeline of the payoffs for an individual who purchases the bond is
displayed below, with time measured in years:

0 1/12

SLCP

2/12

SLCP

3/12

SLCP

τ/12

DLCP

2.2 Longevity Bond Structure: Lifetime Annuity Income Bond

The individual longevity bond structure referred to as the lifetime annuity income bond (LAI
Bond) has a payoff similar to a life annuity. The monthly survival benefit SLAI is constant over
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time, and there is no principal payment in the event of death. The time-line of the payoffs for
an individual who purchases the bond is displayed below:

0 1/12

SLAI

2/12

SLAI

3/12

SLAI

τ/12

DLAI = 0

2.3 Longevity Bond Structure 3: Flexible Lifetime Income and Principal Bond
Series W%

The main individual bond structure is the flexible lifetime income and principal bond series W %
(Flexible LIP BondW ). It is a mix of W % of the LCP Bond and (1−W %) of the LAI Bond. An
individual who purchases this bond has the flexibility to choose the weight W , thus balancing
their preferences between the survival benefit and the death benefit to take into account bequest
motives.

The survival benefit SW and death benefit DW of this bond are represented as:

SW = W % · SLCP + (1 − W %) · SLAI ,

DW = W % · DLCP + (1 − W %) · DLAI = W % · DLCP .

The timeline of the payoffs for an individual who purchases the bond is displayed below:

0 1/12

W % · SLCP +
(1 − W %) · SLAI

2/12

W % · SLCP +
(1 − W %) · SLAI

3/12

W % · SLCP +
(1 − W %) · SLAI

τ/12

W % · DLCP

Most individuals are expected to select a flexible bond with weight W % reflecting their bequest
motives. Since this bond is a weighted combination of the LCP Bond and the LAI Bond, we
can construct our immunizing portfolios and price aggregate mortality risk for these two bonds
and the flexible bond results are a weighted combination of the results for these two bonds.
Since both the LCP Bond and LAI Bond are standardized to the price of 100 at the time of
issue, the price of the Flexible LIP BondW is always 100 regardless of the value of W .

3 Financial Engineering - Interest Rate and Systematic Mor-
tality Models

To price and determine immunizing government bond portfolios for the individual longevity
bonds we present, estimate and assess Arbitrage-Free Nelson-Siegel interest rate and mortality
models calibrated with Australian data. Section 3.2 outlines the general framework of the
affine models. The estimation and simulation results of the AFNS interest rate and systematic
mortality models are provided in Section 3.3 and 3.4, respectively. Interest rates are modeled
using an Arbitrage-Free Nelson-Siegel (AFNS) model proposed in Christensen et al. (2011) that
has both theoretical and empirical support for application to bond valuation. The AFNS affine
model is adapted to model systematic mortality rates in Huang et al. (2019). Finally, Section
3.5 outlines the expected cash flows of the proposed longevity bonds using the interest rate and
systematic mortality model simulations and discusses the pricing of the bonds including the
mortality assumption allowing for potential adverse selection arising from then mortality used
to price the different types of individual longevity bonds.
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3.1 Age and Cohort Assumptions

To illustrate the pricing and hedging of the individual longevity bonds we make the follow-
ing assumptions. The proposed longevity bonds are issued to Australian males aged 65 on
01/01/2019, targeting the cohort born in 1954. The maximum attainable age is assumed to be
110. The modeling time period is therefore from the start of year 2019 to the end of year 2064.

3.2 Affine Model Framework

The affine model assumes that the term structure of interest rates and the age-cohort mortality
rates are driven by level, slope and curvature risk factors, or state variables. The factors, or
state variables, are Xt = (Lt, St, Ct)⊤, where Lt is the level factor, St the slope factor, and Ct

the curvature factor, and are assumed to follow stochastic differential equations (SDE) under
the risk neutral measure Q:

dXt = KQ
[
θQ(t) − Xt

]
dt + Σ(t) dW Q

t , (1)

where KQ is a 3×3 matrix, the drift term θQ(t) is a 3×1 vector, W Q
t is a vector of 3 independent

Brownian motions under the risk-neutral measure Q, and Σ(t) is a 3 × 3 variance-covariance
matrix.

The instantaneous interest rate, or mortality rate, is given by an affine form:

r(t) = ρ0(t) + ρ1(t)⊤Xt,

where ρ0(t) and ρ1(t) are 3 × 1 vectors of continuous bounded functions.

Using an arbitrage-free requirement under the risk-neutral measure, the discount factor D (t, T )
for interest rates, or zero-coupon bond price, is given by (Christensen et al., 2011):

D (t, T ) = EQ
[
e−
∫ T

t
r(u) du

]
= eB(t,T )⊤Xt+A(t,T ),

where D (t, T ) is the time t price of a zero-coupon bond that matures at time T , and B(t, T )
and A(t, T ), the factor loadings, are solutions to the following system of ordinary differential
equations (ODEs) (Duffie and Kan, 1996):

dB(t, T )
dt

= ρ1(t) +
(
KQ

)⊤
B(t, T ), (2)

dA(t, T )
dt

= ρ0(t) − B(t, T )⊤KQθQ −
1
2

n∑

j=1

(
Σ⊤B(t, T )B(t, T )⊤Σ

)

j,j
,

with boundary conditions of B(T, T ) = 0 and A(T, T ) = 0. In the case of the age-cohort
mortality rates, the discount factors are risk-adjusted survival probabilities.

3.2.1 Change of Measure

Girsanov’s theorem is applied, as in Christensen et al. (2011), to change from the risk-neutral
probability measure Q to the real-world probability measure P:

dW Q
t = dW P

t + Λt dt, Λt = λ0 + λ1Xt, (3)

where Λt represents the market price of risk, λ0 is a 3 × 1 vector and λ1 is a 3 × 3 matrix.

The state variables under the real-world probability measure P are driven by the differential
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equations:

dXt = KQ
[
θQ − Xt

]
dt + Σ(dW Q

t + Λt dt)

= KQ
[
θQ − Xt

]
dt + Σ(dW Q

t + (λ0 + λ1Xt) dt)

= (KQ − Σλ1)

[
KQθQ + Σλ0

KQ
− Xt

]

dt + Σ dW P
t

= KP
[
θP − Xt

]
dt + Σ dW P

t , (4)

where

KP = KQ − Σλ1, θP =
KQθQ + Σλ0

KQ
.

3.2.2 Parameter Estimation

Maximum likelihood using the Kalman filter is used for parameter estimation. The parameter
vector is ψ, which are the parameters for the dynamics of the model. This requires a state
transition equation and a measurement equation. The state transition equation gives the rela-
tionship for the state variables vector X between time t and t − 1 and is a discrete time version
of the state transition SDE’s under the P measure:

Xt = ΦX,0
t (ψ) + ΦX,1

t (ψ)Xt−1 + ηt,

where ΦX,0
t (ψ) = (I − exp

(
−KP ∆t

)
)θP , ΦX,1

t (ψ) = exp
(
−KP ∆t

)
, ∆t = 1 represents the time

step which depends on the time interval for the data used, and ηt is the error term.

The measurement equation gives the relationship between vector of yields to maturity yt, or
age-cohort mortality rates, at time t, in terms of the state variables as:

yt = A + BXt + εt,

where A = −A(t, T )/(T − t) and B = −B(t, T )/(T − t).

The error terms in state transition and measurement equations are assumed to be independent
and follow normal distributions with zero means:

(
ηt

εt

)

∼ N

⎡

⎣
(

0
0

)

,

(
Q 0
0 H

)⎤

⎦ .

where the covariance matrix Q of the transition errors and covariance matrix H of the measure-
ment errors are assumed diagonal with standard deviations ση and σε respectively. The form
of these standard deviations for the interest rate and mortality models are specified later.

A Kalman filter is used to estimate the parameters with an iterative process, beginning with
initial estimates of X0 and Σ0, applying the following steps to update with the empirical data
for the yields and mortality rates for each time step:

Step 1. Take the initial estimates of Xt−1 and Σt−1 from the previous iteration.

Step 2. Predict the values of Xt and Σt using yield to maturity and survival probability
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information up to time t − 1:

Xt|t−1 = E
[
Xt|Yt−1

]
= ΦX,0

t (ψ) + ΦX,1
t (ψ)Xt−1,

Σt|t−1 = ΦX,1
t (ψ)Σt−1ΦX,1

t (ψ)⊤ + Qt(ψ).

Step 3. Use the information yt at time t to update forecasts of Xt and Σt:

Xt = E
[
Xt|Yt

]
= Xt|t−1 + Σt|t−1B(ψ)⊤F −1

t vt,

Σt = Σt|t−1 − Σt|t−1B(ψ)⊤F −1
t B(ψ)Σt|t−1,

where

vt = yt − E
[
yt|Yt−1

]
= yt − A(ψ) − B(ψ)Xt|t−1,

Ft = cov (vt) = B(ψ)Σt|t−1B(ψ)⊤ + H(ψ).

Step 4. Repeat Steps 1-3 recursively until the latest yields to maturity and survival probability
information yT is included.

Once the data is processed with the Kalman filter, the optimal parameter set ψ is determined
as the one that maximizes the log-likelihood function based on the data:

log l (y1, . . . , yT ;ψ) =
T∑

t=1

(

−
N

2
log(2π) −

1
2

log
(
|Ft|

)
−

1
2

v⊤
t F −1

t vt

)

.

3.3 AFNS Interest Rate Model

The interest rate model used is the independent AFNS interest rate model with the SDE under
Q in matrix form given as:

⎛

⎜⎝
dLt

dSt

dCt

⎞

⎟⎠ =

⎛

⎜⎝
0 0 0
0 δ −δ
0 0 δ

⎞

⎟⎠

⎡

⎢⎢⎢
⎣

⎛

⎜⎜⎝

θQ
1

θQ
2

θQ
3

⎞

⎟⎟⎠−

⎛

⎜⎝
Lt

St

Ct

⎞

⎟⎠

⎤

⎥⎥⎥
⎦

dt +

⎛

⎜⎝
σ11 0 0
0 σ22 0
0 0 σ33

⎞

⎟⎠

⎛

⎜⎜⎝

dW L,Q
t

dW S,Q
t

dW C,Q
t

⎞

⎟⎟⎠ ,

where Lt, St and Ct represent the level, slope and curvature factors respectively. Here δ is a
decay factor in KQ that is required to match the Nelsen-Siegel model factor loadings. Although
the θQ

1 , θQ
2 and θQ

3 are set to zero in the implementation, the mean-reverting structure is shown
in this equation for completeness.

The matrix representation of the SDE under the P measure is:

⎛

⎜⎝
dLt

dSt

dCt

⎞

⎟⎠ =

⎛

⎜⎝
kP

11 0 0
0 kP

22 0
0 0 kP

33

⎞

⎟⎠

⎡

⎢⎢⎣

⎛

⎜⎝
θP

1

θP
2

θP
3

⎞

⎟⎠−

⎛

⎜⎝
Lt

St

Ct

⎞

⎟⎠

⎤

⎥⎥⎦ dt +

⎛

⎜⎝
σ11 0 0
0 σ22 0
0 0 σ33

⎞

⎟⎠

⎛

⎜⎜⎝

dW L,P
t

dW S,P
t

dW C,P
t

⎞

⎟⎟⎠ ,

where kP
11, kP

22, kP
33 are the parameters that control the speed of mean-reversion to the long-term

mean θP
1 , θP

2 , θP
3 of the level, slope and curvature factors.

Under the AFNS structure, to ensure the zero-coupon bond price has the required factor loading

structure, the short rate is r(t) = Lt + St. This means that ρ0(t) =

⎛

⎜⎝
0
0
0

⎞

⎟⎠ and ρ1(t) =

⎛

⎜⎝
1
1
0

⎞

⎟⎠
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in the affine short rate equation r(t) = ρ0(t) + ρ1(t)⊤Xt.

For the above model, solving the ODEs in Equations (2) gives the AFNS factor loadings below:

B1(t, T ) = −(T − t), B2(t, T ) = −
1 − e−δ(T −t)

δ
, B3(t, T ) = (T − t)e−δ(T −t) −

1 − e−δ(T −t)

δ
,

A(t, T ) =
1
2

∫ T

t

3∑

j=1

(
Σ⊤B(s, T )B(s, T )⊤Σ

)

j,j
ds,

where B(t, T ) and A(t, T ) are dependent on the term to maturity (T − t) but not the time.

Since D (t, T ) = e−(T −t)y(t,T ), where y(t, T ) stands for the yield to maturity of a zero-coupon
bond between time t and T , we have:

y(t, T ) = −
1

T − t
log D(t, T ) = −

B(t, T )⊤

T − t
Xt −

A(t, T )
T − t

.

Substituting A(t, T ) and B(t, T ), the AFNS model for the zero-coupon bond yield to maturity
is:

y(t, T ) =Lt + St

(
1 − e−δ(T −t)

δ(T − t)

)

+ Ct

(
1 − e−δ(T −t)

δ(T − t)
− e−δ(T −t)

)

−
A(t, T )
T − t

, (5)

where the yield adjustment term −A(t,T )
T −t is given by:

−
A(t, T )
T − t

= − σ2
11

(T − t)2

6
− σ2

22

[
1

2δ2
−

1
δ3

1 − e−δ(T −t)

T − t
+

1
4δ3

1 − e−2δ(T −t)

T − t

]

− σ2
33

[
1

2δ2
+

1
δ2

e−δ(T −t) −
1
4δ

(T − t)e−2δ(T −t) −
3

4δ2
e−2δ(T −t)

−
2
δ3

1 − e−δ(T −t)

T − t
+

5
8δ3

1 − e−2δ(T −t)

T − t

]

.

3.3.1 Interest Rate Data

To estimate the AFNS interest rate model we use daily Australian zero-coupon bond yields
from 1992 to 2018, obtained from the Reserve Bank of Australia. Figure 1 plots the Australian
zero-coupon yield curves between the term to maturity of 0 to 10 years for the years 1992 to
2018.

Figure 1: Yield to Maturity of Australian Zero Coupon Bonds from 1992 to 2018.
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3.3.2 Interest Rate Model Estimation Results

Table 1: AFNS Interest Rate Model Estimated Parameters.

kP
11 kP

22 kP
33 σ11 σ22 σ33

0.00964 0.19603 1.77276 5.454e-03 9.994e-03 3.251e-02

θP
1 θP

2 θP
3 σε δ

0.06625 -0.02005 -0.02060 5.586e-04 0.73174

Table 1 shows the estimation results of the AFNS interest rate model. σε is the standard
deviation in the measurement equation. The estimated long-term mean θP

1 , θP
2 , and θP

3 for
level, slope and curvature are 6.63%, −2.01% and −2.06% respectively, so that the long-term
mean for the long-term yield is 6.63%, and that of the short rate is 4.62%. kP

33 is larger than kP
11

and kP
22, so that the curvature factor has the highest speed of mean-reversion, followed by the

slope and then level factors. This reflects the longer time period for the impact of changes in the
level of the yield curve as compared with the shorter term impact of changes in the curvature
of the yield curve. The positive δ means the slope factor has a larger effect on the short rate,
and the curvature factor has a larger effect on the medium-term rate, which can also be seen in
Figure 4.

3.3.3 Interest Rate Model Goodness of Fit

The Root Mean Square Error (RMSE), the Akaike information criterion (AIC), and the Bayesian
information criterion (BIC) of the fitted model are displayed in Table 2. RMSE is a scale-
dependent measure of error, meaning that the RMSE of a particular variable can be compared
between models, but not between variables (Hyndman and Koehler, 2006). The RMSE of 0.0005
for the fitted yields is comparable with the RMSE calculated with the yield data and parameters
in Christensen et al. (2011) of 0.0017. The other measures like the log likelihood, AIC and BIC
are not directly comparable to other models estimated with different data-sets.

Table 2: AFNS Interest Rate Model Goodness of Fit.

Log likelihood RMSE No. of parameters No. of observations AIC BIC

1643526.14 0.0005 11 274536 -3287030.27 -3286914.52
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(a) Empirical and Estimated Mean Yield Curves. (b) Residuals of the Fitted AFNS Interest Rate
Model.

Figure 2: AFNS Interest Rate Model Goodness of Fit to Australian Data, from 1992 to 2018.
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Figure 2(a) compares the estimated mean yield curve to the empirical mean yields. The estima-
tion and model fitting results show how the model estimated mean yield curve fits the empirical
data well.

Figure 2(b) shows the residuals of the model. The residuals are generally lower than 2 × 10−3,
except for the short rates between 2007 and 2008. This exception is mainly due to the volatility
of short rates during the global credit crisis.

To assess the performance of the model, we also simulate the three-month yield from December
2017 to December 2018 with a step size of a month, and compare the mean of the simulated
three-month yield to the empirical three-month yield. Yield curves are readily simulated using
the transition equation for their evolution over time, given by:

X1
t+∆t = (1 − e−k

p
11∆t)θP

1 + e−k
p
11∆tX1

t +

√
σ2

11

2kP
11

(
1 − e−2kp

11∆t
)
Z1

t ,

X2
t+∆t = (1 − e−kp

22∆t)θP
2 + e−kp

22∆tX2
t +

√
σ2

22

2kP
22

(
1 − e−2k

p
22∆t

)
Z2

t ,

X3
t+∆t = (1 − e−k

p
33∆t)θP

3 + e−k
p
33∆tX3

t +

√
σ2

33

2kp
33

(
1 − e−2k

p
33∆t

)
Z3

t ,

where ∆t is time step, and Z1
t , Z2

t , Z3
t are three independent random variables that follow

standard normal distributions.

We simulate 20,000 paths for each of the three factors.
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Figure 3: Simulated Three-Month Yield Compared With Empirical Three-Month Yield, from
December 2017 to December 2018.

The comparison between empirical and model short rates is shown in Figure 3, with the 95%
confidence interval. It is clear that there is a wide confidence interval reflecting the high volatility
of the short term interest rates. The simulated three-month yields are seen to effectively capture
the slight downward trend in the short rate between 2017 and 2018.

3.3.4 Interest Rate Model - Estimated Factors and Factor Loadings

The factor loadings and the yield adjustment term with the estimated parameters are shown
in Figure 4. The factor loading for the level factor is a constant of 1, since it impacts all
terms to maturity the same. The factor loading for the slope factor is decreasing over maturity,
indicating how the slope factor influences the short-term yields more than the long term yields
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hence changing the slope of the yield curve. The factor loading of the curvature factor is
hump shaped, so that the curvature factor mainly affects the medium-term yields. The yield
adjustment term, which is required to ensure the non-arbitrage constraint is met, is downward
shaped as in Christensen et al. (2011).
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Figure 4: Factor Loadings of the AFNS Interest Rate Model.

Figure 5 shows the evolution of the factors. The level factor is steadily decreasing after the
Global Credit Crisis in 2008, indicating a structural change in the level of interest rate since
that time. A negative slope factor indicates that the yield curve is upward shaped, while a
positive slope factor indicates a downward sloped yield curve. The slope factor is found to be
positive mainly between 2005 and 2008, reflecting the inverted yield curves during that period.
The overall trend of the slope factor is increasing after 2009, and the yield curves have become
flatter since then. The curvature factor is increasing after year 2012, capturing an increase in
the curvature of the the yield curve since 2012.
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Figure 5: Factors of the AFNS Interest Rate Model, from 1992 to 2018.

3.3.5 Simulated One Month Interest Rates

The modeling period for the proposed longevity bond is from year 2019 to the end of year 2064
and the frequency of the payments is monthly. For the determination of surplus on the hedging
portfolio and for the present valuation of the surplus we use the one-month yield. We simulate
the one-month yield to maturity from the end of year 2018 to the end of year 2064, with a
monthly simulation step of ∆t = 1/12.

The simulation results are shown in Figure 6. The mean of the simulated one-month yield to
maturity initially reduces for the first five years, then steadily increases to around 2% for the
next 40 years. This reflects and captures the current low interest rate environment as well as
the continuation of this into the future.
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Figure 6: Mean One-Month Yield with the 25%, 75%, 0.5%, and 99.5% Quantiles.

3.4 AFNS Systematic Mortality Model

The dynamics for the mortality rates are also modeled with the independent AFNS model.
Analogous to modeling the yield curve with yields to maturity for different terms to maturity,
the AFNS mortality model uses the mortality rate curve with different average mortality rates
for future ages of death. The average force of mortality µ(t, T ) between time t and T is given
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by:

µ(t, T ) =Lt + St

(
1 − e−δµ(T −t)

δµ(T − t)

)

+ Ct

(
1 − e−δµ(T −t)

δµ(T − t)
− e−δµ(T −t)

)

−
A(t, T )
T − t

, (6)

where δµ is the AFNS decay factor in the mortality model.

The survival probability of an individual aged x at t from t to T is (Blackburn and Sherris,
2013):

S (t, T, x) := EQ
[
e−
∫ T

t
µ(s) ds

]
= e−(T −t)µ(t,T ),

where µ(t) stands for the mortality intensity of individual aged x at t. The notation age x in
the survival probability S (t, T ) is dropped in the remainder of the paper, because x is fixed to
be 65 as the lower bound of our interested age period.

We follow Blackburn and Sherris (2013) and set θP(t) to 0. The state variable model under the
P measure becomes:

⎛

⎜⎝
dLt

dSt

dCt

⎞

⎟⎠ = −

⎛

⎜⎝
kP

µ,11 0 0
0 kP

µ,22 0
0 0 kP

µ,33

⎞

⎟⎠

⎛

⎜⎝
Lt

St

Ct

⎞

⎟⎠ dt +

⎛

⎜⎝
s11 0 0
0 s22 0
0 0 s33

⎞

⎟⎠

⎛

⎜⎜
⎝

dW L,P
t

dW S,P
t

dW C,P
t

⎞

⎟⎟
⎠ ,

where sii (i = 1, 2, 3) are the volatility parameters in the covariance matrix of the mortality
model.

The AFNS model has the possibility of generating negative mortality rates since the mortality
rate is normally distributed. However, it has been shown that the probability of negative
mortality in the model is extremely small. This includes when the model is calibrated to
Danish data (Xu et al., 2019) and to US data (Huang et al., 2019).

With θP equal to 0 in the AFNS mortality model, the transition equation is given by:

Xt = exp
(
−KP

)
Xt−1 + ηt.

The measurement equation for the mortality model is:

µt = BXt + A + εt,

where µt is a 45 × 1 vector of the average force of mortality, µ(t, T ), for T − t = 1 to 45 at time
t.

The error terms ηt and εt are assumed to follow the error structure:

(
ηt

εt

)

∼ N

⎡

⎣
(

0
0

)

,

(
R 0
0 H

)⎤

⎦

In the mortality model, to capture Poisson variation, the variance of the measurement error εt

is assumed to be higher for larger T − t, and the covariance matrix H has the structure below:

H(t, T ) =
1

T − t

T −t∑

i=1

[
rc + r1er2i

]
,

where r1, r2 and rc are three parameters in the parameter set estimated using the Kalman filter.
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3.4.1 Mortality Data

Age-cohort mortality data is used to estimate the AFNS mortality model which better captures
the cohort mortality required to price the longevity bond as discussed in Huang et al. (2019).
The cohort mortality data from ages 65 to 110 are extracted by taking the diagonal of the death
rates q from the Australian life table data, where:

S(t, T ) =
T −t∏

s=1

[
1 − q(65 + s − 1, t + s − 1)

]
, µ̄(t, T ) = −

1
T − t

log
[
S(t, T )

]
,

where S(t, T ) is the survival probability from time t to T for the cohort aged 65 at time t, and
q(x, t) is the one-year probability of death for the cohort aged x at time t.

The age-cohort average force of Australian male mortality is shown in Figure 7. The 1856
to 1907 cohorts have full observations of all cohort mortality rates from age 65 to 110. A
downward trend over time can be observed in Figure 7, capturing the mortality improvement
in the age-cohort data.

Figure 7: Australian Cohort Average Force of Mortality for Males Born between 1856 and
1907, from Age 65 to 110.

3.4.2 Mortality Model Estimation Results

Table 3: AFNS Mortality Model Estimated Parameters.

kP
µ,11 kP

µ,22 kP
µ,33 s11 s22 s33

1.755e-01 5.871e-03 7.667e-03 1.041e-03 1.238e-04 4.357e-05

r1 r2 rc δµ

1.183e-13 0.42060 2.042e-06 -0.10708

Table 3 gives the estimated parameters of the AFNS mortality model. In contrast to the AFNS
interest rate model, the estimated δµ in the mortality model is negative, consistent with the
parameter estimates of the AFNS mortality models in Blackburn and Sherris (2013); Xu et al.
(2019); Huang et al. (2019). Larger parameter values for kP

µ mean that the factor is mean-
reverting to zero, whereas for values of kP

µ close to zero this means that the factor is closer to
a random walk (Blackburn and Sherris, 2013). The values for the Poisson variation given by
r1, r2 and rc are consistent with Blackburn and Sherris (2013), which captures an exponential
increase expected in the measurement error with age.
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3.4.3 Systematic Mortality Model Goodness of Fit

Table 4: AFNS Mortality Model Goodness of Fit.

Log likelihood RMSE No. of parameters No. of observations AIC BIC

-10840.63 0.0016 10 2340 -21661.26 -21603.69

Table 4 shows the log likelihood, RMSE, AIC and BIC to assess the goodness of fit of the AFNS
mortality model. The RMSE of the estimated independent AFNS mortality model is 0.0016,
as compared to 0.0012 in Blackburn and Sherris (2013) and 0.0007 in Huang et al. (2019) for
different datasets. The RMSE is slightly higher than the model calibrated to the Swedish or
the US mortality data reflecting a higher volatility in the Australian cohort data.

Figure 8(a) displays the mean absolute percentage error (MAPE) of the fitted survival curves
across cohorts from age 65 to 110. The MAPE of the model is compared with Huang et al.
(2019) which is calibrated to the US male cohort mortality data, and the results show a similar
pattern and increase with age. The MAPE for the survival curve is below 6% up to age 100.
For ages above 100, a small absolute error in the survival probability leads to a relatively large
percentage error at these ages. The MAPE also demonstrates that the independent AFNS
mortality model is an adequate fit to the Australian cohort mortality data.

Figure 8(b) shows the absolute residuals of the fitted AFNS mortality model. Most of the errors
are below 5 × 10−3, and the residuals are evenly distributed with no significant trend observed,
confirming that the model is a good fit to the Australian data.
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Figure 8: AFNS Mortality Model Goodness of Fit to Australian Mortality Data.
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3.4.4 Systematic Mortality Model - Estimated Factors and Factor Loadings
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Figure 9: Factor Loadings of the AFNS Mortality Model.

The factor loadings with the estimated parameters are shown in Figure 9. The loading for the
level factor is constant at 1, since the level factor affects all ages equally. Because of the negative
δµ shown in Table 3, the factor loading for the slope factor is exponentially increasing from 1 to
25, and the factor loading for the curvature factor is exponentially decreasing from 0 to −100.
The scale of the third factor loading is larger than the first two, so that the third factor mainly
captures the mortality changes at older ages.

The evolution of the level, slope and curvature factors from 1922 to 1972 are shown in Figure 10.
These are for the age-cohort mortality curves. They show the year that the cohort was aged
65 years old. All three factors were relatively constant for the mortality curve of 65 year old
individuals before year 1935. After 1935, the slope factor decreases at an increasing rate, while
the level factor steadily increases. Since the loading for the slope factor increases exponentially
compared to the constant B1 equal to 1, these jointly capture the mortality improvement pat-
tern in the age-cohort mortality curves after 1935. The curvature factor is much smaller and
is decreasing over time. The large reduction in the slope factor and slight reduction in the
curvature factor allows the model to capture the reduction of the average force of mortality at
older ages.
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Figure 10: Factors of the AFNS Mortality Model, from 1922 to 1972.

3.4.5 Forecasting Cohort Survival Curves

The model is fitted using the cohorts with year of birth between 1856 and 1907. Our analysis
is for bonds issued to the 1954 cohort, so that a best estimate is required for the expected
survival curve for the 1954 cohort. The optimal forecast methodology for yield curves is given
in Christensen et al. (2011). We adapt this methodology to forecast the best estimate mortality
curve, using:

E
[
Lt+∆t|Lt

]
= e−kP

µ,11∆tLt, E
[
L2

t+∆t|St

]
= e−kP

µ,22∆tSt, E
[
St+∆t|St

]
= e−kP

µ,33∆tSt,

µt+∆t = B⊤ × E
[
Xt+∆t|Xt

]
+ A.

To demonstrate the performance of this method for the age-cohort mortality curves we use to
derive the best estimate, we compare the empirical survival probabilities of the 1907 cohort
with the best estimate survival probabilities for the 1907 cohort derived from the 1906 cohort,
1905 cohort and 1897 cohort, projecting i = 1, 2, 10 years ahead.
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(a) Empirical and Best Estimated Survival
Probabilities.
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Figure 11: Empirical and Best Estimated Survival Probabilities and Absolute Percentage
Errors.

Figure 11(a) shows the comparison of the empirical survival curve of the 1907 cohort with the
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best estimate survival curves. The best estimate survival curves show a good fit compared to
the empirical survival curve. Figure 11(b) shows the absolute percentage errors of the best
estimate survival curves. All three curves have low absolute percentage error up to age 100.
The higher absolute percentage error after age 100 reflects the low survival probabilities at these
older ages which approach 0 after age 100. Below age 100, the error of the one year and two
year forecasts are always below 3%. The 10-year forecast has a slightly higher absolute error,
although most of the errors are below 5%. These demonstrate that the fitted mortality model
and the best estimate forecasts are accurate and well suited for our application with a good fit
to historical cohort survival curves and low levels of forecast error.

3.4.6 Simulation of Survival Curves

To assess the effectiveness of the government bond immunizing portfolio, and to quantify capital
requirements and loadings, we need to generate a surplus distribution for the special purpose
vehicle. To do this we require to generate a distribution for the survival probabilities. To do this
we use the transition equation to simulate 20,000 paths for the 1954 cohort survival probabilities
using the best-estimate factors.

With θP set to zero, and the forecast horizon ∆t of 1, the transition equation of the mortality
model is:

Lt+1 = e−k
p
µ,11Lt +

√√√√ s2
11

2kP
µ,11

(
1 − e−2k

p
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Z1
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p
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√√√√ s2
22

2kP
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Ct+1 = e−k
p
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√√√√ s2
33

2kp
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(
1 − e−2k

p
µ,33

)
Z3

t ,

where Z1
t , Z2

t , and Z3
t are three independent random variables that following standard nor-

mal distributions. As time increases, the 1954 cohort ages, so the 1-year simulated survival
probability after t years is:

Sj(t, t + 1) =Sj
1954+t(t, t + 1) =

Sj
1954+t(0, t + 1)

Sj
1954+t(0, t)

=
exp

(
B(0, t + 1)⊤ × Xj

1954+t + A(0, t + 1)
)

exp
(
B(0, t)⊤ × Xj

1954+t + A(0, t)
) ,

where Sj
1954+t(0, t) is the t-year ahead simulated survival probability from age 65 to 65 + t, and

j indicates the jth path of the 20,000 simulations.

The 1-year simulated survival probabilities after t years are used to generate path of the simu-
lated survival probabilities for the 1954 cohort using.

Sj(0, n) =
n−1∏

t=0

Sj(t, t + 1), µj(0, n) = −
log(Sj(0, n))

n
.

Figure 12 shows the simulated force of mortality with 50% and 99% confidence intervals.
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Figure 12: Mean Average Force of Mortality with the 25%, 75%, 0.5%, and 99.5% Quantiles.

From Figure 12 we see how the volatility increases with age, reflecting the higher uncertainty
in the forecast as time increases and the cohort ages. Although the AFNS mortality model
does not guarantee a positive force of mortality, Figure 12 shows that the 0.5% quantile of the
force of mortality is above 0, so that negative mortality probabilities have low probability of
occurring.

Figure 13 shows the mean of the simulated mortality curve and survival curve for the 1954 cohort
compared with the empirical data for the 1907 cohort. Both Figure 13(a) and Figure 13(b) show
a significant mortality improvement of the 1954 cohort compared to the 1907 cohort.
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(a) Simulated 1954 Cohort Mortality Curve and
Empirical 1907 Mortality Curve.
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Figure 13: Simulation of the 1954 Cohort.

3.5 Pricing and Expected Cash Flows of Longevity Bonds

We use the calibrated systematic mortality model along with the interest rate model to quantify
the impact of systematic mortality risk in determining the immunizing bond portfolio and
quantifying the loading in the bond for systematic mortality risk. The LCP Bond has built in
natural hedging from the income benefits and the death benefit which we assess when considering
the capital loadings required for systematic mortality risk.

In pricing the individual bonds, some allowance for potential adverse selection in the mortality
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assumption will be required in practice. The LCP Bond, if priced with an aggregate population
mortality assumption, will be more attractive to individuals with higher self assessed mortality
and the LAI Bond more attractive to individuals with lower self assessed mortality. The mor-
tality rates in the mortality model would be increased for the LCP Bond and reduced for LAI
Bond to allow for this.

The issuer of the longevity bonds aggregates the risks to produce monthly expected cash out-
flows. As a portfolio, the expected cash flow of the longevity bond at time t (t = 1

12 , 2
12 , 3

12 , ...)
is given by:

ECF ℓ
t = Sℓ × S(0, t) + Dℓ ×

(
S(0, t −

1
12

) − S(0, t)
)

.

The price EPV ℓ of the longevity bond ℓ is the sum of the expected present values of all the
expected cash flows ECF ℓ. This is given by

EPV ℓ = Sℓ ·
∞∑

u=1

D
(

0,
u

12

)
· S
(

0,
u

12

)
+ Dℓ ·
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D
(

0,
u

12

)
·

(

S
(

0,
u − 1

12

)
− S

(
0,

u

12

))

.

Table 5 shows the survival benefit Sℓ and death benefit Dℓ of the two bonds that produce a
standardized price of 100 using the population level age-cohort mortality model. The coupon
cash flows are relatively small for the LCP Bond and they constitute 27.62% of the value of the
bond. The flexible bonds have a weighted mix of these benefits reflecting the weights that an
individual selects to reflect their preferences for bequest wealth.

Table 5: Survival and Death Benefits of $100 Price Standardized LCP Bond and LAI Bond.

S D EP V EP VS/EP V

LCP 0.15 91.03 100 27.62%
LAI 0.55 0.00 100 100%

The annualized expected cash flows of LCP Bond and LAI Bond are displayed in Figure 14.
Since the LAI Bond only has a survival benefit, the expected payments steadily decrease over
time, corresponding to the gradually decreasing survival curve. By contrast, the LCP Bond
has both a coupon income survival benefit and a principal death benefit, so the expected cash
flows first increase due to increasing number of expected deaths, then gradually reduces as the
expected survivors reduce.
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Figure 14: Expected Cash Flows of LCP Bond and LAI Bond, Both Standardized to Price =
100.
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4 Optimally Immunized Bond Portfolios

The special purpose vehicle that issues the longevity bonds aggregates the expected cash flows
on the bonds and then manages the risk of its liability portfolio by investing the proceeds of the
bonds in an Australian government bond portfolio. This bond portfolio is selected to optimally
immunize the interest rate risk and longevity risk. Since there are no traded longevity bonds in
Australia, we construct the hedging portfolio from bonds available on the Australian market,
including government coupon bonds and semi-government annuity bonds offered by the New
South Wales (NSW) government.

Fundamental to the pricing and financial engineering of the individual longevity bonds is the
risk management of the special purpose vehicle. This relies not only on the use of financial
engineering models for interest rate and mortality developed and suited for financial applica-
tions such as the pricing of LCP and LAI individual longevity bonds, but also an effective
immunization hedging strategy.

We present the method used for immunization of the individual longevity bonds, the details of
the government bonds used and the immunization portfolios for the individual longevity bonds.
We do this for the LCP and LAI Bonds since the flexible bonds are a weighted combination of
these bonds. To show the effectiveness of the immunization strategy we measure the hedging
performance by considering the expected cash flow match and the simulated distribution of the
final year accumulated net cash flow portfolio surplus.

4.1 Immunization Strategy

Immunization is based on the duration and convexity of assets and liabilities. The Fisher-
Weil dollar duration Dur and convexity Cov of longevity-linked securities are (Liu and Sherris,
2017):

Dur =
∑

t≥0

ECFt · t · D(0, t), Cov =
∑

t≥0

ECFt · t2 · D(0, t),

where ECFt stands for the expected cash flow of the security at time t and D(0, t) is the discount
factor. The Fisher-Weil duration D̃ and convexity C̃ are defined as:

D̃ =
Dur

EPV
, C̃ =

Cov

EPV
.

We follow Panjer et al. (1998); Liu and Sherris (2017) and use linear programming with a mean-
absolute deviation constraint in order to optimally match the asset and liability expected cash
flows. The immunization strategy is to select the optimal bond portfolio by minimizing the
convexity of the asset-liability portfolio. Since the dollar convexity of the net asset-liability
portfolio is negative, we maximize the negative dollar convexity, which is equivalent to minimiz-
ing the absolute value of the dollar convexity. The optimal portfolio is constrained to match the
duration of the asset and liability expected cash flows, to match the expected present value of
assets and liabilities and to satisfy a a mean-absolute deviation constraint. The immunization
algorithm works with the Net Portfolio (NP) = Asset - Liability expected cash flows and values.
The algorithm is as follows:

max
w

(CovNP ) (7)
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subject to:

DurNP = 0, (8)

EPVNP =
∑

t

nt = 0, (9)

∑

t>0

nt × (t − h)+ ≤ 0 for all positive h, (10)

where

nt =
∑

i

wi × ECFi,t × D(0, t) − ECFLB,t × D(0, t)

w is a vector of bond weights where wi giving the optimal bond portfolio weights for bond i with
expected cash flow ECFi,t at time t, and ECFLB,t is the expected cash flow of the longevity
bond at time t.

4.2 Bond Details

4.2.1 Individual Longevity Bonds

We determine immunized bond portfolios for the lifetime coupon and principal bond (LCP
Bond) and the lifetime annuity income bond (LAI Bond). Other individual longevity bonds
issued are a weighted combination of these two bonds so that optimal immunized bond portfolios
are just a weighted combination of the results for these two bonds. The individual longevity
bonds are standardized to the price of 100, so the weighting of bond i in the immunized bond
portfolio for the Flexible LIPB Series W % is given as a weighted average of the lifetime coupon
and principal bond (LCP Bond) and the lifetime annuity income bond (LAI Bond) using:

wW
i = W % × wLCP

i + (1 − W %) × wLAI
i .

The bond details are listed in Table 6.

Both bonds are issued to an Australian male aged 65 on 01/01/2019 and have a monthly
payment frequency (Freq = 12). The term to maturity (TTM) of ω − 65 in Table 6 indicates
a lifetime payment. The price of the bonds are standardized to 100 at the time of issue. The
duration and convexity of the LCP Bond are higher than the LAI Bond, reflecting the fact that
the LCP Bond has higher interest rate risk than the LAI Bond. The higher duration of LCP
Bond is expected and can be seen from the higher expected cash flows at later ages as shown
in Figure 14.

Table 6: Details of LCPB and LAIB.

Code Maturity TTM Freq Price Dur Cov D̃ C̃

LCPB ω ω − 65 12 100 1469.75 29843.77 14.70 298.44
LAIB ω ω − 65 12 100 1036.66 16581.68 10.37 165.82

4.2.2 Bonds Used to Construct the Immunized Asset Portfolio

We include both coupon bonds and annuity bonds issued by governments in Australia in the
immunization. The coupon bonds pay fixed coupon payments with face value API at maturity.
The annuity bonds pay equal payments the term of the bond. Details of these bonds are pre-
sented, including payment amount and frequency, bond prices, the Fisher-Weil dollar duration
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and convexity, and the Fisher-Weil duration and convexity.

Table 7 displays the details of the coupon bonds. These coupon bonds are exchanged-traded
Treasury Bonds (eTBs) issued by the Australian government. The eTBs pay fixed semi-annual
coupon payments and the a face value of 100 at maturity. The bonds have terms to maturity
from 0.8 to 28.24 years, with the largest dollar duration of 2874.11, and largest dollar convexity
of 72730.63, exceeding that of the two individual longevity bonds.

Table 7: Details of Australian Government Coupon Bonds.

Code Coupon Maturity TTM FV Freq Price Dur Cov D̃ C̃

GSBS19 2.75% 21/10/2019 0.80 100 2 101.56 83.95 69.73 0.83 0.69
GSBG20 4.50% 15/04/2020 1.29 100 2 104.83 136.42 180.22 1.30 1.72
GSBU20 1.75% 21/11/2020 1.89 100 2 100.74 198.66 395.18 1.97 3.92
GSBI21 5.75% 15/05/2021 2.37 100 2 110.87 253.73 600.23 2.29 5.41
GSBW21 2.00% 21/12/2021 2.97 100 2 101.80 306.27 935.38 3.01 9.19
GSBM22 5.75% 15/07/2022 3.54 100 2 117.68 390.41 1386.98 3.32 11.79
GSBU22 2.25% 21/11/2022 3.89 100 2 103.58 398.62 1572.06 3.85 15.18
GSBG23 5.50% 21/04/2023 4.30 100 2 118.33 473.26 2016.05 4.00 17.04
GSBG24 2.75% 21/04/2024 5.31 100 2 107.76 546.39 2891.09 5.07 26.83
GSBG25 3.25% 21/04/2025 6.31 100 2 112.28 658.37 4090.05 5.86 36.43
GSBG26 4.25% 21/04/2026 7.31 100 2 121.25 790.72 5593.49 6.52 46.13
GSBG27 4.75% 21/04/2027 8.31 100 2 127.89 927.96 7435.60 7.26 58.14
GSBU27 2.75% 21/11/2027 8.89 100 2 112.38 917.91 8019.37 8.17 71.36
GSBI28 2.25% 21/05/2028 9.39 100 2 108.60 946.98 8770.34 8.72 80.76
GSBU28 2.75% 21/11/2028 9.90 100 2 113.71 1019.76 9849.79 8.97 86.62
GSBG29 3.25% 21/04/2029 10.31 100 2 119.38 1088.11 10849.51 9.11 90.88
GSBU29 2.75% 21/11/2029 10.90 100 2 115.00 1121.49 11858.25 9.75 103.11
GSBI30 2.50% 21/05/2030 11.39 100 2 112.97 1156.62 12805.93 10.24 113.35
GSBK31 1.50% 21/06/2031 12.48 100 2 102.38 1189.47 14605.35 11.62 142.66
GSBG33 4.50% 21/04/2033 14.31 100 2 142.39 1639.52 21821.17 11.51 153.25
GSBK35 2.75% 21/06/2035 16.48 100 2 121.25 1688.81 26381.19 13.93 217.58
GSBG37 3.75% 21/04/2037 18.32 100 2 140.03 2018.70 34000.34 14.42 242.81
GSBK39 3.25% 21/06/2039 20.48 100 2 134.11 2174.78 41079.53 16.22 306.32
GSBI41 2.75% 21/05/2041 22.40 100 2 127.09 2264.96 46924.53 17.82 369.23
GSBE47 3.00% 21/03/2047 28.24 100 2 137.80 2874.11 72730.63 20.86 527.82

The annuity bonds are based on Waratah Annuity Bonds (WABs) issued by the NSW govern-
ment. The WABs have equal monthly base payments, and are indexed to inflation (CPI) and
updated quarterly. The Waratah Annuity Bonds were discontinued in 2015, with the maturity
of the on issue WABs on the market ranging from 2.79 to 5.04 years.

We use hypothetical Waratah Annuity Bonds assumed to be issued on 01/01/2019 with matu-
rities of 5 to 40 years with sufficient duration and convexity to match the individual longevity
bonds. Table 8 gives the details of the annuity bonds used in the immunization. The largest
dollar duration and convexity of the WABs are 2340.95 and 63391.03, exceeding that of both
individual longevity bonds.
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Table 8: Details of Hypothetical Waratah Annuity Bonds.

Code Payment Maturity TTM Freq No. Pay Price Dur Cov D̃ C̃

WAB1-21 1.00 15/10/2021 2.79 12 111 39.06 57.13 109.67 1.46 2.81
WAB2-21 1.00 15/10/2021 2.79 12 108 38.86 56.84 109.12 1.46 2.81
WAB3-22 1.00 15/01/2022 3.04 12 108 42.12 66.91 139.63 1.59 3.32
WAB4-22 1.00 15/04/2022 3.29 12 108 45.35 77.74 175.25 1.71 3.86
WAB5-22 1.00 15/07/2022 3.54 12 108 48.55 89.35 216.37 1.84 4.46
WAB6-22 1.00 15/10/2022 3.79 12 108 51.72 101.71 263.34 1.97 5.09
WAB7-23 1.00 15/01/2023 4.04 12 108 54.87 114.83 316.53 2.09 5.77
WAB8-23 1.00 15/04/2023 4.29 12 108 57.99 128.68 376.28 2.22 6.49
WAB9-23 1.00 15/07/2023 4.54 12 108 61.09 143.27 442.95 2.35 7.25
WAB10-23 1.00 15/07/2023 4.54 12 105 60.78 142.56 440.75 2.35 7.25
WAB11-23 1.00 15/10/2023 4.79 12 105 63.84 157.79 514.31 2.47 8.06
WAB12-24 1.00 15/01/2024 5.04 12 105 66.87 173.74 595.42 2.60 8.90
WAB13-24 1.00 15/01/2024 5.04 12 102 66.53 172.88 592.46 2.60 8.90
WAB14-24 1.67 15/01/2024 5.00 12 60 101.74 268.56 920.83 2.64 9.05
WAB15-29 0.83 15/01/2029 10.00 12 120 103.68 537.80 3653.67 5.19 35.24
WAB16-34 0.56 15/01/2034 15.00 12 180 105.64 820.15 8346.23 7.76 79.00
WAB17-39 0.38 15/01/2039 20.00 12 260 107.50 1113.60 15110.23 10.36 140.56
WAB18-44 0.33 15/01/2044 25.00 12 300 109.18 1415.46 24009.75 12.97 219.92
WAB19-49 0.28 15/01/2049 30.00 12 360 110.64 1722.72 35057.21 15.57 316.87
WAB20-54 0.24 15/01/2054 35.00 12 420 111.86 2032.20 48212.05 18.17 431.00
WAB21-59 0.21 15/01/2059 40.00 12 480 112.83 2340.95 63391.03 20.75 561.80

4.3 Immunization Portfolio Results

The details of the bonds selected in the hedging portfolio to immunize the liability portfolio
of LCP Bond and LAI Bond are given and discussed in this section. We include immunized
portfolios based on using only coupon bonds as well as using only annuity bonds. In many bond
markets, including Australia, the most commonly traded government bonds are coupon bonds.
In the Australian market there are annuity bonds issued by a state government. By determining
and assessing portfolios based on annuity bonds we can determine the relative benefits of these
compared to coupon bonds.

4.3.1 Optimal Bond Portfolios - Lifetime Coupon and Principal Bond

Table 9 gives the weights for the coupon only bond immunizing portfolio and the annuity only
immunizing bond portfolio selected in the hedging portfolio to immunize the LCP Bond liability
cash flows. The weights are standardized so they add up to 1 in each case.
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Table 9: Bonds in the Immunized Portfolio for the LCP Bond - Coupon Bonds and Annuity
Bonds.

Bond Weight Bond Weight

Coupon Bonds Only
GSBS19 0.02 GSBI28 0.02
GSBG20 < 0.01 GSBU28 < 0.01
GSBU20 < 0.01 GSBG29 0.02
GSBI21 0.01 GSBU29 0.01
GSBW21 0.01 GSBI30 0.02
GSBM22 0.01 GSBK31 0.04
GSBU22 < 0.01 GSBG33 0.09
GSBG23 0.02 GSBK35 0.07
GSBG24 0.02 GSBG37 0.07
GSBG25 0.02 GSBK39 0.12
GSBG26 0.03 GSBI41 0.03
GSBG27 0.03 GSBE47 0.35
GSBU27 0.01

Annuity Bonds Only
WAB2-21 < 0.01 WAB18-44 0.25
WAB15-29 < 0.01 WAB19-49 0.30
WAB16-34 0.05 WAB20-54 0.17
WAB17-39 0.13 WAB21-59 0.10

For the immunizing portfolio consisting of only coupon bonds most of the weights are allocated
to longer term bonds of maturity more than 10 years reflecting the long duration of the individual
longevity bond. The immunizing portfolio has 35% of the portfolio weight allocated to the bond
with the longest maturity of 28.24 years (‘GSBE47’), 12% to the bond with maturity of 20.48
years (‘GSBK39’) and less than 10% of the weight allocated to the other bonds.

For the immunizing portfolio consisting of only annuity bonds, 8 out of the 21 annuity bonds
are included in the immunizing portfolio with the majority allocated to annuity bonds with
maturity between 15 and 40 years, including the largest allocation of 30% of the weighting
allocated to ‘WAB19-49’ with maturity of 30 years.

Figure 15 displays the cash flows for the LCP Bond liability and the immunizing asset portfolio
for the only coupon bonds only and the only annuity bonds portfolios. We see that the annuity
bond immunizing portfolio has better cash flow matching than the coupon bonds over the whole
period. For the coupon bond immunizing portfolio, there are cash flow mismatches particularly
between Years 15 and 30.

These comparisons are useful in visually assessing the immunizing portfolio. To compare the
different bond immunizing portfolios we need to allow for interest rate reinvestment risk and to
do this we will later consider the accumulated final year net cash flow surplus distributions.
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Figure 15: Cash Flow Match of LCP Bond, Hedged with Coupon Bonds and Annuity Bonds.

4.3.2 Lifetime Annuity Income Bond

Table 10 shows the weights for the coupon bonds and annuity bonds selected in the immunizing
portfolio to hedge the LAI Bond liability. For the immunizing portfolio with only coupon
bonds, as expected to reflect the expected cash flow distribution of the LAI Bond, there is a
wider spread of bonds in the portfolio compared to the LCP Bond.

Table 10: Bonds in the Hedging Portfolio of LAIB.

Bond Weight Bond Weight

Coupon Bonds Only
GSBS19 0.06 GSBI28 0.03
GSBG20 < 0.01 GSBU28 0.01
GSBU20 0.02 GSBG29 0.02
GSBI21 0.03 GSBU29 0.02
GSBW21 0.02 GSBI30 0.03
GSBM22 0.02 GSBK31 0.05
GSBU22 0.00 GSBG33 0.11
GSBG23 0.04 GSBK35 0.06
GSBG24 0.05 GSBG37 0.07
GSBG25 0.04 GSBK39 0.05
GSBG26 0.05 GSBI41 0.06
GSBG27 0.05 GSBE47 0.10
GSBU27 0.01

Annuity Bonds Only
WAB2-21 0.03 WAB18-44 0.19
WAB13-24 0.04 WAB19-49 0.13
WAB15-29 0.14 WAB20-54 0.05
WAB16-34 0.18 WAB21-59 0.02
WAB17-39 0.22

For the immunizing portfolio with only annuity bonds, a slightly higher number of 9 annuity
bonds are selected from a total of 21 bonds as compared to the LCP Bond. Also, as expected,
the weights are more spread for this portfolio.

The cash flows for the immunizing bond portfolios for the LAI Bond are displayed in Figure 16.
For the coupon bond portfolio, there is a cash flow mismatch mainly between years 15 to
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30, highlighting the potential reinvestment risk compared to the annuity bond portfolio. Once
again, the annuity bond portfolio cash flows show a closer match than the coupon bond portfolio
cash flows.
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Figure 16: Cash Flow Match of LAIB, Hedged with Coupon Bonds and Annuity Bonds.

4.4 Portfolio Surplus Distribution

Although the cash flows show that the annuity bonds have a closer cash flow match, to provide
an assessment of the effectiveness of immunizing bond portfolio allowing for reinvestment risk,
we consider the distribution of the final year surplus of the net cash flows. The final year is at
time t = 46 after which there are no more individual longevity bond cash flows. To do this we
simulate paths for the interest rates and mortality rates using the transition equations for the
risk factors Lt, St and Ct. The monthly net cash flows (NCF j

t ) are then compounded to the
end of the time period at stochastic interest rates, to produce the accumulated net cash flow:

NCF j
t = CFt(Asset) −

(

S × Sj(0, t) + D ×
(

Sj(0, t −
1
12

) − Sj(0, t)
))

,

Surplusj
46(NP ) =

46∑

t≥0

NCF j
t

Dj(t, 46)
,

where j stands for the jth simulation.

Figure 17 compares the simulated final year surplus distribution of the un-hedged portfolio, the
portfolio immunized only with coupon bonds, and the portfolio immunized only with annuity
bonds for both the LCP Bond and LAI Bond.

Surprisingly, but also reflecting the results in Liu and Sherris (2017), we see that the difference in
the final year surplus distribution between the immunizing portfolios with only coupon bonds
and only annuity bonds is small despite the expected cash flow differences. The final year
surplus distribution of the LCP Bond is more effectively hedged than that of the LAI Bond.
This reflects the results in Table 6 where the LCP Bond has higher interest rate risk due to the
larger payments at older ages. The distribution of the final year surplus of the LCP Bond is
narrower than that of the LAI Bond, reflecting a lower level of longevity risk in the LCP Bond
portfolio arising from the natural hedging in the bond cash flows.
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Figure 17: Final Year Surplus Distribution of Un-hedged Portfolio, Portfolio Hedged with
Coupon Bonds (CB) and Annuity Bonds (AB).

We use the VaR0.5% of the final year surplus distribution to quantify the hedging effectiveness
of the immunized bond portfolios and to assess the loading required in the individual longevity
bond prices. Results are displayed in Table 11 below:

Table 11: Comparison of Final Year Surplus Distribution VaR0.5%.

Un-hedged Hedged with CB Hedged with AB

VaR0.5%(LCP Bond) -26.47% -0.95% -0.89%
VaR0.5%(LAI Bond) -14.71% -9.92% -9.91%

Table 11 shows the extent to which the immunization reduces the final year VaR0.5% for both
the LCP Bond and the LAI Bond. Both individual longevity bonds when immunized with only
annuity bonds have slightly lower VaR0.5% compared to the portfolio with only coupon bonds.
The difference in the VaR0.5% is not very significant, so that although a benefit of using annuity
bonds is the better cash flow match, the coupon bonds are also effective in immunizing the
interest rate risk in the individual longevity bonds. This confirms the results in Liu and Sherris
(2017).

For the immunized portfolios, the VaR can be used to asses the price loading for systematic
longevity risk and the residual interest rate risk. Based only on the final year surplus, these
results show that for the LCP Bond a loading of approximately 1% to the bond price would be
appropriate, and for the LAI Bond a loading of approximately 10% would be appropriate. The
Flexible Bond loading is a weighted average of these. The significantly lower VaR of the LCP
Bond quantifies the benefits of natural hedging in the LCP Bond design. Since the LCP bond
pays an approximately interest only market coupon reflecting market yields and a mortality
credit and a return of principal on death, then regardless of the date of death the value of the
bond will be approximately equal to the principal.

5 Longevity Risk Loading and SPV Capital Requirement

Since there are no wholesale longevity bonds issued by governments in the Australian market,
as is the case in most countries, we need to assess the capital requirements for the individual
longevity bonds for the special purpose vehicle and to do this we adopt a Solvency II approach.
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Having quantified the capital requirements we use this to assess the longevity risk loading in
the price of the individual longevity bonds.

5.1 Systematic Mortality Risk - Solvency Capital Requirement and Risk Margin

The special purpose vehicle will hold capital for the risks in the immunized portfolio, which
is mainly longevity risk. We determine the capital requirement using the Solvency Capital
Requirement (SCR) under Solvency II, which is defined as the capital an insurer needs to hold
to survive a 1 in 200 year permanent shock to the mortality rate (EIOPA, 2011). A standard
formula for calculating SCR is:

SCRt := NAVt − (NAVt|Mortality Shock),

where NAVt stands for net asset value at time t (Meyricke and Sherris, 2014).

In practice, the SCRt is usually approximated. We approximate the SCRt by using our models
to simulate the distribution of the net asset value NAVt for each time t and determining the 1
in 200 year mortality shock as the 0.5% value-at-risk of the NAVt distribution.

The NAVt reflects the risk from time t onwards, so the distribution of NAVt is constructed
with the expected value of simulated cash flows and interest rates before time t, and stochastic
cash flows and interest rates after time t, using:

NAV j
t =

t∑

n=0

NCFn

D(n, t)
+

46∑

n=t+1

NCF j
n × Dj(t, n),

where NCF stands for the expected net cash flow, and NCF j stands for the jth simulated net
cash flow.

Then the solvency capital requirement SCRt that the special purpose vehicle holds at time t
(t = 0, 1, 2, ...) is given by:

SCRt = mean(NAVt) − VaR0.5%(NAVt),

where the mean and VaR0.5% are taken from the simulated distribution of NAVt.
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Figure 18: Solvency Capital Requirement over Time. Hedged with Coupon Bonds (CB) or
Annuity Bonds (AB).
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The computed SCRt for the LCP Bond and LAI Bond is shown in Figure 18(a) and Figure 18(b)
respectively. For the LCP Bond, the SCRt is low at time t = 0 due to the natural hedging effect.
Then with the natural hedging effect decreasing over time, the SCRt increases for the next 25
years or so. After that, the SCRt gradually reduces to zero until the end of the liability cash
flows. For the LAI Bond with only a survival annuity benefit, the SCRt gradually decreases
over time until it reaches zero. There are no large differences between the immunizing portfolios
with only coupon bonds (CB) and only annuity bonds (AB).

5.2 Risk Margin

A risk margin (RM) needs to be included in the bond pricing for the longevity and residual
interest rate risk in the immunizing portfolios. At the beginning of each year, the cost of holding
capital is the cost of capital (CoC) times the solvency capital requirement (SCRt) at that time.
The risk margin is determined as the expected present value of all the capital costs at time 0,
given by:

RM =
∞∑

t=0

CoC × SCRt × D(0, t), where CoC = 6% under Solvency II.

The special purpose vehicle will need to determine a solvency risk margin. We determine this
as a proportion of the price of the bonds (EPV ) to cover the RM, using:

EPV + RM = EPV × (1 + Loading), Loading =
RM

EPV
.

The risk margins for the LCP Bond and LAI Bond are shown in Table 12. The risk margins
for the LCP Bond, based on the immunizing portfolio with only CB and only AB, are 5.08%
and 5.02% respectively, which are 1.80 and 1.85 percentage points lower than the loadings for
the LAI Bond. The lower required risk margins for the LCP Bond reflects the benefit of the
natural hedging built into the bond cash flows with both survival benefits and a death benefit.
The solvency risk margins based on the (CoC) approach differ from the V aR of the final year
surplus distribution because they consider each year throughout the time period of the bond
rather than the final period only. They also reflect the actual capital that the SPV will be
required to hold. As such they give a better indication of the loading required in the individual
bond prices for systematic longevity risk.

Table 12: Required Loading for LCP Bond and LAI Bond.

LoadingCB LoadingAB

Lifetime Coupon and Principal Bond (W=100) 5.08% 5.02%
Lifetime Annuity Income Bond (W=0) 6.88% 6.87%

We also show the risk margins of the Flexible LIP BondW , with W % of weights in the LCP
Bond and (1 − W %) weights in the LAI Bond, for different W in the LCP Bond in Figure 19.
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Figure 19: Loading of the Flexible LIP BondW with Different W . Hedged with Coupon Bonds
(CB) or Annuity Bonds (AB).

The Flexible LIP BondW allows individuals to base the survival benefit and the death benefit
in their preferences by varying the weighting factor W . As W increases, the bond price loading
decreases approximately linearly, reflecting the benefits from the the natural hedging in the
LCP Bond.

6 Conclusions

We have proposed new individual longevity bonds that allow individuals to more flexibly manage
their longevity risk compared to currently available products such as life annuities. They allow
an individual to determine a level of bond income while alive as well as a principal payment on
death providing a bequest that reflects their individual preferences. The bonds are a weighted
combination of a lifetime coupon and principal bond (LCP Bond) and a lifetime annuity income
bond (LAI Bond). We provide a detailed analysis and assessment of these standardized longevity
bonds that form the basis for a flexible range of bonds by mixing different weights of these bonds.

We present the financial engineering underlying the pricing and risk management of the bonds.
To do this we calibrate independent AFNS interest rate and AFNS mortality models using
Australian data. Both models have an excellent fit to the data and are well-suited for financial
and actuarial engineering applications including the pricing and risk management of the indi-
vidual longevity bonds as well as for simulating future interest rate and mortality scenarios.
We determine and assess the immunizing hedging portfolio of Australian government bonds for
the interest rate risk in the individual longevity bond liability portfolio. We also consider the
price loading required for the longevity risk and residual interest rate risk in the individual
bonds that cannot be immunized, mostly reflecting systematic longevity risk. Although we use
Australian data and the Australian bond market, the models and results are applicable to any
country with a developed interest rate and bond market and aggregate mortality data.

We show that an immunized bond portfolio fully collateralized with standard coupon paying
government bonds is effective in hedging interest rate risk for these individual longevity bonds.
If government issued annuity bonds were available, then these would provide a better cash flow
matching for the expected cash flows on the individual longevity bonds. There is also little
difference in value-at-risk in the final year accumulated net cash flow surplus distribution for
the immunizing portfolios based on only coupon bonds as opposed to only annuity bonds.

We assess the price loadings required for the LCP Bond and for the LAI Bond. We consider
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both final year portfolio surplus and regulatory capital requirements. There is a lower loading
for the LCP Bond because of the natural hedging included in the product cash flows with both
a survival income benefit and principal payment on death.

Although we do not focus on the individual mortality assumptions required to reflect adverse
selection for the bonds, this can be readily included as margins to the aggregate mortality
model. Our focus has been on the aggregate mortality risk and the application of financial and
actuarial engineering including a recently developed age-cohort mortality model well suited for
this application. Since individuals are allowed to select a flexible bond to reflect their bequest
preferences, this also mitigate potential adverse selection.
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