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Abstract

Rather than looking at mortality rates directly, a number of recent academic studies have
looked at modeling rates of improvement in mortality when making mortality projections.
Although relatively new in the academic literature, the use of mortality improvement rates
has a long-standing tradition in actuarial practice when allowing for improvements in mor-
tality from standard mortality tables. However, mortality improvement rates are di�cult to
estimate robustly and models of them are subject to high levels of parameter uncertainty,
since they are derived by dividing one uncertain quantity by another. Despite this, the stud-
ies of mortality improvement rates to date have not investigated parameter uncertainty due
to the ad hoc methods used to fit the models to historical data. In this study, we adapt the
Poisson model for the numbers of deaths at each age and year, proposed in Brouhns et al.
[Insurance: Mathematics and Economics 3 (2002) 31] to model mortality improvement rates.
This enables models of improvement rates to be fitted using standard maximum likelihood
techniques and allows parameter uncertainty to be investigated using a standard bootstrap-
ping approach. We illustrate the proposed modeling approach using data for the England
and Wales population. The methods of these paper are available in the R package iMoMo.

Keywords: Mortality improvements; Mortality forecasting; Parameter uncertainty;
Robustness

1. Introduction

Some of the most far-reaching social and economic challenges of the current age are caused
by the rapid increases in longevity and ageing of populations across the world. One strand
in meeting these challenges has been the development of a wide range of models in order to
forecast the future evolution of mortality rates, based on a combination of statistical extrap-
olation of historic data and expert judgement.
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However, one of the subtle di↵erences between academic models for forecasting and those
used by actuaries in the life insurance industry is over what variable to model. Academic
mortality models usually focus on modeling mortality rates at age, x, and time, t, denoted
variously as µx,t (the instantaneous force of mortality), mx,t (the central rate of mortality)
or qx,t (the one year probability of dying). Many of these models have been inspired by the
seminal paper of Lee and Carter (1992) and operate in the generalized age/period/cohort
framework described in Hunt and Blake (2020c) an implemented in Villegas et al. (2018).
More specifically, as discussed in Hunt and Blake (2020c), much of the recent actuarial
literature looking at the modeling and forecasting of human mortality builds on the Poisson
log-bilinear modeling approached introduced in Brouhns et al. (2002), in which the number
of deaths at age x and year t are modeled as independent Poisson variables and where the
the central rate of mortality, mx,t, is taken as the response variable linked to a parametric
predictor structure, ⌘x,t, by means of a log-link function, i.e.,

lnmx,t = ⌘x,t. (1)

In contrast, practitioners are often interested primarily in the mortality improvement rates,

usually defined by � ln
⇣

µx,t

µx,t�1

⌘
, � ln

⇣
mx,t

mx,t�1

⌘
or 1� qx,t

qx,t�1
. This is because it is the changes

in mortality rates that are of interest when assessing longevity risk for an insurer or pen-
sion scheme. However, improvements rates are usually estimated using the largest dataset
available over a long time period, often the national population, in order to give reliable
estimates. Such a dataset will usually have very di↵erent mortality rates to the population
of interest. Nonetheless, by considering mortality improvement rates, inferences made using
these large datasets can still be used for smaller sub-populations, albeit potentially subject
to longevity “basis risk” (see Haberman et al. (2014); Villegas et al. (2017)). Furthermore,
the discussion of mortality improvement rates also allows practitioners to compare the evo-
lution of mortality in populations with very di↵erent levels of mortality, for instance, men
and women or in di↵erent countries. In the UK, the concept of mortality improvement rates
became widely adopted among actuaries as a result of Continuous Mortality Investigation
(2002) and has continued with the developments of the CMI Mortality Projection Model
(Continuous Mortality Investigation (2009) and subsequent developments). Similarly, the
Scale AA improvement rates were introduced by the Society of Actuaries in the United
States in 1995, and the Scale BB improvement rates in 2012, for use when projecting mor-
tality rates (Society of Actuaries Group Annuity Valuation Table Task Force, 1995; Society
of Actuaries, 2012).

However, the modeling of improvement rates is more challenging than the modeling of mor-
tality rates themselves. Since improvement rates are e↵ectively the first derivatives of the
mortality rates, any uncertainty in the measurement of mortality rates is magnified signifi-
cantly in the measurement of improvement rates. On the one hand, as illustrated by Figures
1a and 1b, the general trend in generally improving mortality rates in the raw (or “crude”)
data is far clearer when looking at mortality rates themselves than the improvement rates,
where the noise around the signal is far more prominent. On the other hand, as Figures
1c and 1d illustrate, the age shape of mortality rates is very clear and well understood,
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(a) Crude mortality rates at age 70
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(b) Crude improvement rates at age 70
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(c) Crude mortality rates in year 2011
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(d) Crude improvement rates in year 2011

Figure 1: England and Wales male mortality and improvement rates.

while the age shape of mortality improvement rates is very noisy and displays considerable
heteroscedasticity across ages.

In recent years, a number of academic studies have modified the structure in Equation (1) to
look at the modeling and forecasting of mortality improvement rates. This has meant using
response variables and link functions such as

⌘x,t = ln

✓
mx,t+1

mx,t

◆

in Mitchell et al. (2013), and

⌘x,t = 2
mx,t�1 �mx,t

mx,t�1 +mx,t

in Haberman and Renshaw (2012). This is usually thought of as using a new response
variable with the log or identity link respectively, rather than keeping mx,t as the response
variable with a non-standard link function.
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Such an approach does not present any theoretical problems, however there are a number of
practical issues which need to be considered. First, the distribution of the response variables
is highly non-standard and so the use of the Poisson distribution is no longer appropriate.
In practice, a Gaussian error structure is often assumed with suitable modifications to allow
for the complex relationship between the variance of an observation and the underlying ex-
posures.

Second, as illustrated before in Figure 1, the variance of the response variable is likely to be
far higher as a proportion of the mean than when modeling mortality rates and with a high
degree of heterogeneity across ages and years. The parameter error in the measurements
of the free parameters in the predictor structure will therefore be far higher than for the
corresponding model of mortality rates. This means we must adopt far simpler predictor
structures than would be the case for models of the mortality rate. For these reasons, more
research is needed before such mortality improvement models become widely adopted.

The academic studies of improvement rates to date, whilst trailblazing in their approach to
the topic, have been forced to make ad hoc modeling assumptions in order to deal with the
challenges associated with the direct modeling of mortality improvement rate. In contrast, a
well-developed theoretical framework for the class of generalized age/period/cohort models of
mortality rates has been developed. Therefore, this paper tries to apply some of the structure
developed for the study of mortality rates to the modeling of mortality improvements, to
reduce the need for some of the ad hoc modeling assumptions and allow a more rigorous
examination of mortality improvement rates. More specifically, we adapt the Poisson model
for the numbers of deaths at each age and year, proposed in Brouhns et al. (2002), to model
mortality improvement rates. This approach enables models of improvement rates to be
fitted using standard maximum likelihood techniques, which has several advantages:

i. the Poisson structure for death counts accounts automatically for heterogeneity across
ages due to exposures (c.f., Haberman and Renshaw (2012)), and

ii. it allows parameter uncertainty to be investigated using the standard bootstrapping
techniques considered in Brouhns et al. (2005) and Koissi et al. (2006).

The reminder of this paper is organised as follows. In Section 2 we introduce some of the
notation used throughout the paper. In Section 3 we investigate the connections between
models of mortality and improvement rates and develop techniques for fitting improvement
rate models to data using a Poisson framework. In Section 4 we apply these techniques to
the mortality experience of England and Wales. In doing so, we note some of the di↵erences
in the definition of improvement rates in previous studies, and the impact these have on the
robust estimation of the parameters within improvement rate models. We also investigate the
impact of parameter uncertainty on the robustness and stability of the mortality projection
derived from mortality improvement rate models. Finally, in Section 5 we summarize our
findings and provide some conclusions.

2. Data and notation

Throughout this paper we assume that the available data comprise a cross classified mortal-
ity experience containing observed numbers of deaths at age x in year t, dx,t, with matching
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central exposures, ex,t. We assume that age, x, is in the range [1, X], calendar year or period,
t, is in the range [0, T ] and, therefore, that year of birth, y = t�x, is in the range [�X, T�1].

We denote the force of mortality and the central rate of mortality by µx,t and mx,t, respec-
tively, with the crude (empirical) estimate of the latter being m̂x,t = dx,t/ex,t. Furthermore,
we assume that the force of mortality is constant over each year of age x and calendar year t,
implying that the force of mortality and central death rate coincide, i.e., µx,t = mx,t. Finally,
consistent with Brouhns et al. (2002), we assume that the random number of deaths, Dx,t,
at age x in year t is a Poisson distributed random variable with distribution

Dx,t ⇠ Poisson(ex,tmx,t) (2)

and, hence, that mx,t = E(Dx,t)/ex,t. We note that the observed death counts, dx,t, are the
realization of the random variable defined in Equation (2).

3. Poisson improvement rate models

In this section we exploit the connections between improvement rate models and mortality
rate models to produce a Poisson formulation of mortality improvement rate models. We
then discuss how this formulation can be used to assess parameter uncertainty in mortality
improvement rate models and to obtains forecasts of mortality rates.

3.1. Preliminaries

Similar to Mitchell et al. (2013), we start from a model of the annual improvement rate,
given by

� ln

✓
mx,t

mx,t�1

◆
= �� lnmx,t = ⌘x,t, (3)

where the minus sign is for presentational purposes to ensure that improvements (i.e., falling)
in mortality rates are positive and that ⌘x,t can be interpreted as a the continuous rate of
improvement at age x in year t.

In order to add structure to this, we then define the predictor structure, ⌘x,t, using the
general age/period/cohort structure described in Hunt and Blake (2020c), i.e.,

⌘x,t = ↵x +
NX

i=1

�(i)
x (i)

t + �t�x, (4)

where

↵x is a static function of age, which gives the average (constant) rate of improvement
in mortality at each age x;

(i)
t are period functions governing the change in improvement rate in year t;
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�(i)
x are age functions which modulate the corresponding period functions;2 and

�c is a cohort function describing systematic di↵erences in the rate of improvement
which depend upon a cohort’s year of birth, c = t� x.

Unlike Mitchell et al. (2013) and Haberman and Renshaw (2012), we do not model �� lnmx,t

directly, since the mortality improvement rates in this specification do not follow a standard
probability distribution. They are also highly heteroscedastic, meaning that standard esti-
mation techniques are problematic. Instead, we iterate Equation (3) to give

ln (mx,t) = ln (mx,0)�
tX

⌧=1

⌘x,⌧ .

By defining Ax = ln (mx,0) as the initial mortality curve, this can be re-written as

ln (mx,t) = ⌘̃x,t = Ax �
tX

⌧=1

⌘x,⌧ . (5)

In this form, it is natural to use a Poisson model for the death counts, such that the number
of deaths observed at age x and for year t follows a Poisson distribution with mean ex,tmx,t.
Under this assumption and with the log-link function

Dx,t ⇠ Poisson(ex,t exp(⌘̃x,t)), (6)

as per Brouhns et al. (2002) and Hunt and Blake (2020c), but with the modified predictor
structure, ⌘̃x,t, which gives us a model of mortality improvement rates directly rather than
a model for mortality rates.3

We also see that, since we can use the Poisson model for the death counts in this formulation
of an improvement rate model, we are able to estimate the parameters using maximum like-
lihood techniques and estimate their parameter uncertainty using the techniques of Brouhns
et al. (2005) and Koissi et al. (2006). This, therefore, overcomes some of the key limitations
of the methods in Mitchell et al. (2013) and Haberman and Renshaw (2012, 2013), which
used more ad hoc fitting techniques and did not investigate parameter uncertainty.4

2These age functions can be non-parametric (having form determined entirely by the data) or parametric
(having a pre-defined functional form), as discussed in Hunt and Blake (2020c).

3One drawback of using a Poisson model for the death counts, common to both models of mortality rates
and improvement rates, is that it assumes that the variance of an observation is equal to its expectation.
Such over-dispersion can be dealt with by using an over-dispersed Poisson model in a generalized non-linear
modeling framework or by allowing for heterogeneity in the population via the use of the negative binomial
distribution, such as in Delwarde et al. (2007); Dodd et al. (2020); Li et al. (2009). However, we do not
investigate this further in this study.

4In the case of Mitchell et al. (2013), least squares estimation was used to fit the improvement rates,
while in Haberman and Renshaw (2012), an iterated GLM procedure was used to allow for overdispersion in
the observed improvement rates. However, in neither case, were these distributions selected on the basis of
providing an appropriate distribution for the observed death counts. Consequently, this means that many
common methods for assessing parameter uncertainty are not appropriate, as discussed in Section 3.5.
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3.2. Equivalent mortality rate structure and indirect estimation of improvement rate models

We now exploit the connection between improvement rate models and traditional mortality
rate models to devise an estimation approach for the Poisson improvement rate model de-
fined by Equations (5) and (6).

From Equations (4) and (5), the predictor structure in this latter Equation can be re-written
as

ln(mx,t) = ⌘̃x,t

ln(mx,t) = Ax �
tX

⌧=1

⌘x,⌧

ln(mx,t) = Ax �
tX

⌧=1

 
↵x +

NX

i=1

�(i)
x (i)

t + �⌧�x

!

ln(mx,t) = Ax � ↵xt�
NX

i=1

�(i)
x

tX

⌧=1

(i)
t �

tX

⌧=1

�⌧�x

ln(mx,t) = Ax � ↵xt+
NX

i=1

�(i)
x K(i)

t + �t�x (7)

with
K(i)

0 = 0 and ��X = 0, (8)

and

K(i)
t = �

tX

⌧=1

(i)
t and �t�x = �

tX

⌧=1

�⌧�x, for 1  t  T . (9)

In Equation (7), it is clear that ↵x is determining the constant trend rate of mortality im-
provement in the historic data at each age.

We also see that, if the ↵x term is not included, Equation (7) is equivalent to a standard
age/period/cohort model (see Hunt and Blake (2020c)). Therefore, we see that conventional
mortality rates models are identical to improvement rates models without constant improve-
ment terms, and merely di↵er in the presentation of the parameters (i.e., the constraints
in Equation (8) as opposed to the conventional identifiability constraints

P
t Kt = 0 andP

c �c = 0).

In contrast, we see that including an ↵x constant improvement term in Equation (7) extends
the family of generalized age/period/cohort models discussed in Hunt and Blake (2020c)
with a term that is non-parametric in age and linear in time. Therefore, every mortality
rate model discussed in Hunt and Blake (2020c) has an extended version which includes a
constant improvement rate term, which is equivalent to using the same predictor structure
for mortality improvement rates rather than mortality rates.
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This means that we can then estimate the improvement rate model in Equations (5) and (6)
indirectly by first estimating the equivalent mortality rate model defined by Equation (7) with
the constraints in Equation (8) and recover the parameters of the improvement rate model
using the relationships in Equation (9). In this paper we follow such an estimation approach
and develop an extension the R package StMoMo (Villegas et al., 2018), which enables
the fitting of general age/period/cohort mortality rate models. We make this extension
available through the R package iMoMo which is available in Github at https://github.
com/amvillegas/iMoMo. In Appendix B we illustrate the use of iMoMo to implement the
methods discussed in this paper.

3.3. Crude mortality rates and direct estimation of improvement rate models

One of the main di↵erences between the formulation of mortality improvement rate models
in Equation (3) and that in Mitchell et al. (2013) and Haberman and Renshaw (2012) is that
the previous literature estimates the models directly on the improvement rates. This is done
by first computing the improvement rates based on the crude mortality rates, m̂x,t = dx,t/ex,t,
so that

� ln

✓
m̂x,t

m̂x,t�1

◆
= �� ln m̂x,t = ⌘x,t (10)

in Mitchell et al. (2013). This contrasts with our formulation in Equation (3) which uses the
fitted mortality rates, mx,t = E(Dx,t)/ex,t, to compute the mortality improvement rates.

We can convert Equation (10) into a Poisson formulation of the number of deaths to get5

Dx,t ⇠ Poisson (ex,tm̂x,t�1 exp(�⌘x,t)) (11)

as opposed to

Dx,t ⇠ Poisson (ex,tmx,t�1 exp(�⌘x,t)) (12)

from Equation (6) in our indirect formulation. From Equations (11) and (12) we also see
that

E(Dx,t) =
ex,t
ex,t�1

dx,t�1 exp(�⌘x,t) (13)

in the direct formulation of mortality improvement rates whilst

E(Dx,t) =
ex,t
ex,t�1

E(Dx,t�1) exp(�⌘x,t) (14)

5Equation (11) follows from noting that under the Mitchell et al. (2013) form of an improvement rate
model the expected number of deaths at age x in year t is ex,tm̂x,t�1 exp(�⌘x,t)
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under the indirect formulation. Hence, we see that the direct formulation builds the ob-
served idiosyncratic risk of the observed deaths, dx,t�1, into the modeling framework, which
is avoided in the indirect framework.

One key advantage of using Equation (11) to frame the direct modeling of mortality improve-
ment rates is that we can also rely on standard Poisson generalized (non-)linear modeling
techniques to estimate the Mitchell et al. (2013) form of an improvement rate model. Specif-
ically, this is achieved by setting ln m̂x,t�1 as an o↵set within the generalized (non-)linear
model predictor structure so that

E(Dx,t) = ln ex,t + ln m̂x,t�1 � ⌘x,t. (15)

3.4. Direct vs. indirect estimation of mortality improvement rate models

The di↵erences between formulating a mortality improvement rate model directly as in Equa-
tion (11) or indirectly as in Equation (12), although subtle, have profound consequences on
the parameter uncertainty and robustness as we will discuss in the reminder of this paper.
Figure 2 schematizes the conceptual di↵erences between the direct and indirect estimation
approaches. From now onwards, when referring to the estimation of the parameters in the
predictor ⌘x,t, we will say that we use a “direct” estimation approach whenever we follow
the left-red route in Figure 2 and assume Equation (11) and that we use an indirect estima-
tion approach whenever we follow the right-gray route in Figure 2 and assume Equation (12).

We note that while the pioneering studies of Haberman and Renshaw (2012) and Mitchell
et al. (2013) followed the direct modeling route, recently, other studies such as Dodd et al.
(2020), Li et al. (2020) and Richards et al. (2019) have explored the use of the indirect
modeling route when estimating specific mortality improvement rate structures.

3.5. Parameter uncertainty

As discussed in Section 1 one of the key problems with investigating mortality improvement
rates is the level of uncertainty in estimating models for them. This is far greater than in
similar models for mortality rates, and is a feature which is understated in models of im-
provement rates to date.

To give an example of this, consider the situation where we are trying to estimate mortality
rates, when the true mortality rate is mx,t = 0.5% p.a.. Using a Poisson model, the relative

parameter uncertainty in our estimate is proportional to 1
�p

ex,tmx,t = 1
.p

E(Dx,t) , i.e.,

inversely proportional to the square root of the expected number of deaths. So to obtain a
relative uncertainty of 1% in our estimate of the mortality rate (i.e., a one standard devia-
tion confidence interval for our mortality rate of (0.495%, 0.505%)) requires roughly 10,000
expected deaths or an observed population of 2 million lives.

If the true rate of mortality improvement is 2% over a one year period, then observing the
same population in the following year will yield an estimate for the mortality rate in the
second year of (0.485%, 0.495%). Therefore, although our central estimate for the annual

9



Improvement rate predictor

⌘x,t = ↵x +
PN

i=1 �
(i)
x (i)

t + �t�x

Compute crude improvement rates
� ln (m̂x,t/m̂x,t�1)

Estimate directly using
� ln (m̂x,t/m̂x,t�1) = ⌘x,t

Equivalent mortality rate predictor

⌘̃x,t = Ax � ↵xt+
PN

i=1 �
(i)
x K(i)

t + �t�x

Estimate indirectly using
lnmx,t = ⌘̃x,t

Get improvement parameters using

(i)
t = ��K(i)

t , �c = ���c

Final parameter estimates

↵x, �
(i)
x , (i)

t , �c

Figure 2: Direct and indirect estimation approaches for mortality improvement rate models.

improvement rate observed will be 1� 0.49%
0.50% = 2%, the range of our confidence interval for the

annual improvement will be (0.0%, 4.0%), i.e., a relative uncertainty in the estimate of the
rate of improvement of 100%. In order to get comparable levels of certainty in our estimates
of improvement rates to those obtained for mortality rates themselves, we roughly need to
square the number of expected deaths being observed each year (e.g., 1 million expected
deaths in order to obtain a relative uncertainty of 1%), with a corresponding increase in
the number of lives under observation (e.g., 200 million lives). This is clearly impractical in
almost all circumstances.

This is not a fatal limitation when using improvement rate models as long as we accept
the fundamental uncertainty in our parameter estimates: however, this means that it is vital
that we allow for parameter uncertainty when using improvement rate models. Because there
was no clear process generating the observed numbers of deaths or improvement rates in the
models of Mitchell et al. (2013) and Haberman and Renshaw (2012), this was very di�cult
to do systematically. However, since we assume a Poisson distribution for the death counts,
we can use standard techniques for estimating parameter uncertainty in our framework.
Specifically, we use the semi-parametric bootstrapping technique of Brouhns et al. (2005),
which generates new death counts by sampling from the Poisson distribution with mean dx,t,
to which the model is refitted in order to give new parameter estimates. Alternatively, one
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could use the residual bootstrapping technique of Koissi et al. (2006) which re-samples the
deviance residuals from fitting the model to generate new death counts. In practice, however,
both approaches yield qualitatively similar results. We refer the interested reader to Villegas
et al. (2018, Section 8) for the specific details of our implementation of the bootstrapping
approaches of Brouhns et al. (2005) and Koissi et al. (2006).

3.6. Projection of mortality and improvement rates

To project the improvement rate model to give future improvement rates (and hence future
mortality rates), we project the period and cohort functions in a similar fashion to a model
of mortality rates. Therefore, similar time series techniques6 can be used. However, since the
model is now one of improvement rates rather than mortality rates, the demographic signifi-
cance7 of the parameters is now di↵erent, which will influence our choice of projection model.

In general, we can assume that the d di↵erence of the period index t := ((1)
t , . . . ,(N)

t )0

follows a vector autoregressive (VAR) model around a linear trend (Pfa↵, 2008):

�dt = C+Dt+
pX

i=1

Ai�
dt�1 + ⇠t , ⇠t ⇠ N(0,⌃), (16)

where C and D are N -dimensional vectors of parameters, A1, . . . ,Ap are N ⇥N matrices of
autoregressive parameters, and ⌃ is the N⇥N variance-covariance matrix of the multivariate
white noise ⇠t . We note that the VAR(1) model used in Haberman and Renshaw (2012)
and the multivariate random walk with drift are particular cases of Equation (16).

As for the cohort e↵ects, we can assume in general that they follow a ARIMA(p, q, d) with
drift, i.e.,

�d�c = �0 + �1�
d�c�1 + · · ·+ �p�

d�c�p + ✏c + �1✏c�1 + · · ·+ �q✏c�q, (17)

where �0 is the drift parameter, �1, . . . ,�p are the autoregressive coe�cients with �p 6= 0,
�1, . . . , �q are the moving average coe�cients with �q 6= 0 and ✏c is a Gaussian white noise
process with variance �✏.
The time series models in (16) and (17) can be used to obtain projected values of the period

index T+s :=
⇣
(1)
T+s, . . . ,

(N)
T+s

⌘0
and cohort index �T�1+s, s = 1, . . . , h, respectively, and to

derive projected values of mortality improvement rates:

⌘x,T+s = ↵x +
NX

i=1

�(i)
x (i)

T+s + �(0)
x �T�x+s.

6Allowing for similar issues as described in Hunt and Blake (2020a,b) in order to obtain “well-identified”
projections which do not depend on the arbitrary identifiability constraints chosen when fitting the model.

7Demographic significance is defined in Hunt and Blake (2020c) as the interpretation of the components
of a model in terms of the underlying biological, medical or socio-economic causes of changes in mortality
rates which generate them.
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Table 1: Model structures considered in this paper.

Model
Equivalent Mortality Model
(⌘̃x,t)

Improvement Model (⌘x,t)

CI Ax � ↵xt ↵x

LC Ax + �(1)
x K(1)

t �(1)
x (1)

t

LC-CI Ax � ↵xt+ �(1)
x K(1)

t ↵x + �(1)
x (1)

t

CBD Ax +K(1)
t + (x� x̄)K(2)

t (1)
t + (x� x̄)(2)

t

CBD-CI Ax � ↵xt+K(1)
t + (x� x̄)K(2)

t ↵x + (1)
t + (x� x̄)(2)

t

APC-CI Ax � ↵xt+K(1)
t + �t�x ↵x + (1)

t + �t�x

Now, to obtain projected mortality rates we use

mx,T+s = m̂x,T exp

 
�

sX

⌧=1

⌘x,T+⌧

!
,

where m̂x,T are the last observed central mortality rates.

4. England and Wales 1961-2018, 20-89: A Poisson improvement rate approach

In this section we illustrate the discussion of Section 3 by applying a Poisson improvement
rate approach to the modeling of mortality in England and Wales. In particular and similarly
to Haberman and Renshaw (2012), we use historical mortality data for the England and
Wales male population covering calendar years 1961-2018 and ages 20-89 obtained from the
Human Mortality Database (2020). Of particular interest in this discussion are the inclusion
of constant improvement rates, the implications of using a direct or indirect estimation
approach and the impact of parameter uncertainty on the robustness of the projections
derived from improvement rate models..

4.1. Predictor structures

We focus on the models summarized in Table 1. For each model, this table includes the
predictor structure used to model improvement rates (recall Equation (4)) as well as the
equivalent mortality rate predictor as per Equation (7).

Model CI represents a simple model including only constant improvement rates, whose equiv-
alent mortality rate model is similar to the generalized linear model of mortality rates dis-
cussed in Renshaw and Haberman (2003). Model LC is the celebrated Lee and Carter (1992)
model, in both mortality rate and improvement rate form, while the LC-CI structure corre-
sponds to Lee-Carter model with added constant mortality improvement rates. This latter
predictor structure was considered in Mitchell et al. (2013) in its improvement rate form
and in Callot et al. (2016) in its mortality rate form. Model CBD is the improvement rate
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Figure 3: Parameters for model CI. England and Wales males, age 20-89, period 1961-2018.

equivalent of the two-factor model introduced in Cairns et al. (2006) and in mortality rate
form is equivalent to the “CBDX” model discussed in Hunt and Blake (2020a) and Dowd
et al. (2020). Similar to the LC-CI model, the CBD-CI stands for the CBD model including
constant mortality improvements. The APC-CI structure is the improvement rate version of
the classical Age-Period-Cohort model. Such model has been considered by the (Continuous
Mortality Investigation, 2016a,b) in the latest versions of the widely used CMI mortality pro-
jection model. Such structure has also recently been investigated in Richards et al. (2019)
and Dodd et al. (2020).

In estimating the parameters of the models in Table 1, we impose where necessary the stan-
dard parameter constraints. However, for the LC and LC-CI, we deviate from the standardP

x �
(1)
x = 1 constraint and impose instead

P
x �

(1)
x = X, so that the period index (1)

t can
roughly be interpreted as average improvement rates in year t (or average deviations from
the constant improvement rates in the LC-CI structure). The specific parameter constraints
applied in estimating the models in Table 1 are discussed in Appendix A.

The parameter estimates of all the models in Table 1 applied to male data for England and
Wales over the period 1961-2018 and ages 20-89 are shown in Figures 3-8. In these figures,
black continuous lines depict parameter estimates obtained with the indirect estimation
approach introduced in this paper while red-dashed lines depict parameter estimates obtained
with the direct estimation approach discussed in Section 3.3. From Figures 3-8, we note the
following:

The noticeable di↵erences in the estimated age-dependent parameters ↵x and �(1)
x under

the direct and indirect estimation approaches, with the direct approach producing
estimates that are considerably less smooth across ages. This reflects the fact that
the direct approach builds the idiosyncratic sampling risk from the observed deaths
into the parameter estimates in a fashion that is avoided by the indirect approach.
Biological reasonableness would suggest that improvement rates should be continuous
across ages, both to avoid discontinuities in projected mortality rates in future and
because the underlying drivers of aging are unlikely to change rapidly with age. This
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Figure 4: Parameters for model LC. England and Wales males, age 20-89, period 1961-2018.
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Figure 5: Parameters for model LC-CI. England and Wales males, age 20-89, period 1961-2018.
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Figure 6: Parameters for model CBD. England and Wales males, age 20-89, period 1961-2018.
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Figure 7: Parameters for model CBD-CI. England and Wales males, age 20-89, period 1961-2018.
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Figure 8: Parameters for model APC-CI. England and Wales males, age 20-89, period 1961-2018.

cautions us against using the direct approach to make projections unless the age-
dependent parameter estimates are smoothed.

The contrasting close agreement between the estimates of the period improvements
(1)
t , (2)

t and cohort improvements �t�x under the alternative estimation approaches.
This suggests that the idiosyncratic sampling error being built into the estimates of
the age-dependent parameters using the direct approach is less important for the es-
timates of period and cohort improvement rates. It also suggests that there is less to
choose between estimation techniques for models without or with fewer age-dependent
parameters (for instance, the CBD model).

The clear interpretation of the ↵x term as average mortality improvements, indicating
that in England and Wales mortality improvement rates over the 1961-2018 period
have ranged from about 0.75% p.a. between ages 20-30 and about 2% p.a. at ages
60-70.

The similarity in the ↵x parameters under the indirect approach for all models with
such a term. Since the interpretation above gives these parameters a clear demographic
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significance, this should not be surprising since it relates these parameters directly to
quantities that could be estimated from the model in a model-independent fashion.
This is comparable to the static age function in traditional mortality models. However,
this demographic significance is lost in the direct estimation method.

The ease of interpretation of the primary period improvement (1)
t whose numerical

value can be thought of as the average improvement rate observed in the year t for
models without constant improvement rate and as the average deviation from the
constant improvement rates for predictors with an ↵x term. For example, from the
parameter value of (1)

2010 in the CBD model in Figure 6 we can say that in 2010 mortality
improvements were 3.2% on average across all ages. Similarly, the parameter value of
(1)
2010 the CBD-CI model in Figure 7 indicate that in 2010 mortality improvements were

1.4% higher than the average improvement rate observed over the 1961-2018 period.
This clear interpretation of the primary period index is in contrast with traditional
mortality rate models where it is di�cult to link the value of the period e↵ects to
quantities with intuitive practical relevance.

The interpretation of the cohort improvements, �t�x, in Figure 8, as average deviations
in improvement rates. In particular, we see that the so-called golden generation born in
the inter-war period (see Willets (2004) and Murphy (2009)) has experienced mortality
improvements of around 1%-2% p.a. higher than the average. It is also interesting to
note the existence of a “tarnished” cohort born after the Second World War who, in
contrast, appear to be experiencing worse than average mortality improvements.

4.2. Impact of parameter uncertainty

We now turn our attention to the investigation of the impact of parameter uncertainty on
the estimation of the parameters of improvement rate models. To do so, for each of the six
predictor structures in Table 1 and for the two parameter estimation approaches, we have
generated 1,000 bootstrapped samples of the model parameters using the semi-parametric
bootstrapping approach introduced in Brouhns et al. (2005). Figure 9 presents fan charts
depicting the 50%, 80% and 95% bootstrapped confidence intervals of the parameter of the
CI, LC and CBD models. The results for these three models are representative of the results
for all the six models considered in this paper.

From Figure 9a we see that using a direct parameter estimation approach akin to the one
used in Mitchell et al. (2013) and Haberman and Renshaw (2012) results in significantly
higher uncertainty in estimates of constant improvement rates parameters, ↵x, than using
the indirect estimation approach introduce in this paper. For instance, under the direct ap-
proach the 95% confidence interval of the improvement rate at age 40, ↵40, is (0.71%, 1.13%),
which is 3.3 times wider than the equivalent (0.95%, 1.08%) under the indirect approach.
This is the result of building the observed idiosyncratic sampling errors into the parameter
estimates in the direct approach.

Similarly, Figure 9b shows that non-parametric age-modulating parameters, �(1)
x , also su↵er

from considerable parameter uncertainty under the direct estimation approach. It is also
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Figure 9: Parameters for models CI, LC and CBD with parameter uncertainty. England and Wales males,
age 20-89, period 1961-2018. Shades in the fan represent confidence intervals at the 50%, 80% and 95% level.
Black fans correspond to the indirect estimation approach and red fans to the direct estimation approach.

interesting to note that, in many cases, the confidence intervals of the age parameters under
the direct approach do not contain the indirect parameter estimates. Therefore, it is not
simply a case that the direct approach is estimating the same parameter values but with less
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precision. In contrast, Figure 9c indicates that period indexes, (i)
t , are in general robust

with negligible di↵erences in levels of uncertainty between the two estimation approaches.

To understand the di↵erences in uncertainty levels produced by the two estimation ap-
proaches, it is instructive to consider in more detail the CI model. Specifically, note that
under the indirect estimation approach the constant improvement rate at age x, ↵x, is esti-
mated as the slope of the (Poisson) linear regression

ln m̂x,t = Ax � ↵xt+✏x,t,

which depends on the whole historical mortality profile, {m̂x,0, m̂x,1, . . . , m̂x,T}. By contrast,
under the direct estimation approach the estimate of ↵x is approximately the average of the
observed improvement rates at age x over the investigation period. That is,

↵x ⇡ � 1

T

TX

t=1

� ln m̂x,t

↵x ⇡ ln m̂x,0 � ln m̂x,T

T
,

which depends only on the observed mortality rates at the start and at the end of the in-
vestigation period. Clearly, using only the first and last observations, as opposed to all the
historical observations, will result in more uncertain estimates which are less robust to the
addition of new data or to parameter uncertainty.

4.3. Mortality rate projections

The di↵erences in central estimates and levels of uncertainty of the model parameters pro-
duced by the two estimation approaches can have an important impact on the mortality
projections produced by the models. To investigate this potential issue, in Figure 10 we
present for models CI, LC, CBD and APC-CI fan charts of mortality rate forecasts at se-
lected ages. For each model we consider the following four types of forecasts:

i. Forecast produced by the indirect approach without allowance for parameter uncertainty;

ii. Forecast produced by the indirect approach with allowance for parameter uncertainty;

iii. Forecast produced by the direct approach without allowance for parameter uncertainty;
and

iv. Forecast produced by the direct approach with allowance for parameter uncertainty.

From Figure 10 we note the following:

The noticeable impact of considering parameter uncertainty under the direct estimation
approach for models CI at all ages and for the LC at younger ages. In particular, we
note that due to the absence of a period index in the CI structure, this model only
provides point forecasts when parameter uncertainty is ignored.
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Figure 10: Fan charts for mortality rates mx,t at ages x = 40, 55, 70 from the CI, LC, CBD and APC-CI
models applied to the England and Wales males population for ages 20-89 and the period 1961-2018. The
solid lines show historical mortality rates for the period 1961-2018. Shades in the fan represent prediction
intervals at the 95% level.
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The noticeable di↵erences between the central projections in the indirect and direct
approaches for the LC model. This is particularly visible at age 55 were the indirect
approach projects a much more steeper decline in mortality than the direct fitting
approach. These di↵erences in central forecasts can be linked back to the di↵erences
in the estimates of �(1)

x produced by the two estimation approaches (recall Figure 4).

The noticeable di↵erences between the central projection and prediction interval at
age 40 in the indirect and direct approaches for the APC-CI model. This is in part the
result of the di↵erence in central estimates of constant improvement rates at age 40,
↵40, produced by the two estimation methods (recall Figure 8).

The contrasting similarity in central forecasts and levels of uncertainty for the CBD
under both estimation approach and with or without parameter uncertainty (see Figure
10c).

The visual inspection of the fan charts indicates that the choice of estimation approach has
a material impact on the central forecasts produced by a mortality improvement model. To
examine this further, we plot in Figure 11 median forecasts of mortality rates for selected
cohorts produced by the indirect and direct estimation approaches applied to the CI, LC,
CBD and APC-CI models. We see that, with the exception of the CBDmodel which produces
essentially the same forecasts under the two approaches, for all other models both estimation
approaches result in significantly di↵erent central forecasts. This is particularly noticeable
for the younger generation born in 1998 for which the forecasts under the direct and indirect
estimation approaches are very di↵erent. It is also worth highlighting that the LC model
stands out as the model with the highest discrepancies between estimation approaches with
the direct estimation approach producing a very unsmooth mortality schedule. As discussed
before, this cautions against using the direct estimation to make projections unless the age-
dependent parameter estimates are smoothed.

4.4. Robustness and stability of projections

The considerable parameter uncertainty seen for some models discussed in the previous sec-
tion may have important implication for the robustness of parameter estimates as we change
the period of data used in the estimation. This in turn may result in potentially unstable
projections.

To investigate this potential issue, we consider the stability of forecasts over fixed horizon
periods as the estimation period rolls forward through time. In each subplot in Figure 12
we show the average ten year ahead projected age-profile of mortality improvements using
di↵erent 20-year rolling estimation periods. For instance, the dark purple lines labelled
as stepping o↵ year 1980 correspond to each model fitted to data from 1961-1980 and the
quantity being plotted against age is the average improvement rate at each age for the next
ten years, i.e, for the period 1981-1990. Similarly, the bright yellow lines labelled as stepping
o↵ year 2018 correspond to each model fitted to data from 1989-2018 to obtain the average
improvement rate projection for the period 2019-2028. For a stable model, projections should
progress smoothly as we change the data window. From Figure 12 we note the following:
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Figure 11: Median forecast of mortality rates mx,t for cohorts born in 1963, 1978 and 1998 obtained using an
indirect and a direct estimation approach from the CI, LC, CBD and APC-CI models applied to the England
and Wales males population for ages 20-89 and the period 1961-2018. The solid lines show historical mortality
rates and dashed lines median forecasts.
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Figure 12: Average ten year ahead projected improvement rate with di↵erent stepping-of-year (20-year
Rolling window).
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Figure 13: Average ten year ahead projected improvement rate at age 40 with di↵erent stepping-of-year
(20-year Rolling window).

The close similarity in the improvement rates projected by models CI, LC-CI and
CBD-CI in spite of the varying complexity of the predictor structures. This indicates
that for models with constant improvement rates and without cohort parameters, it is
the estimates of ↵x which dominate the central projections.

The general lack of smoothness of the projections of models with age-related parameters
under the direct modeling approach. This is particularly noticeable for the LC model
which shows very unsmooth projections. This lack of smoothness can translate into
instability of the projection as we change the data window. To illustrate this more
clearly, in Figure 13 we show the average ten year ahead projected improvement rate
at age 40 as we change the 20-year rolling estimation period. We see that with the
exception of the CBD model, all other models show a general lack of stability under the
direct estimation approach. This instability can be very significant for some models.
For example, in the case of CI model changing the estimation period from 1984-2003 to
1985-2004 results in the projected ten year ahead average improvement passing from
0.26% to 1.35% under the direct estimation approach (see Figure 13a). This contrasts
with the stability of the projections of the CI model under the indirect estimation
approach in which the ten year ahead average improvement passes from 0.25% when
estimated using data for the period 1984-2003 to 0.36% for data for the period 1985-
2004.

The contrasting stability of the projections of the CBD approach under both estimation
approaches. This is not a surprise as the CBD is the only model which does not involve
any age-related parameters.
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The noticeable di↵erent behavior of the APC-CI model as compared to the rest of the
models. This is explained by the fact that this is the only model including a cohort
term.

The acceleration of of improvement at older ages with time matched by a deceleration
of improvements at middle ages consistent with mortality improvement rated reducing
at younger ages through the 1990s.

5. Conclusions

Rates of improvement in mortality are a very natural and intuitive way of interpreting mortal-
ity data, which has lead to them being widely used practically for setting and communicating
assumptions regarding changes in longevity. However, they have not been studied in much
depth in an academic context, possibly due to the di�culties in defining improvement rates
and in fitting models robustly to data.

In this study, we have developed a more rigorous framework for the study of mortality im-
provement rates and its fundamental connection to models of mortality rates. This means
that we can draw of the large amounts of work done to model mortality rates to obtain robust
and stable estimates of improvement rates without requiring the ad hoc modeling frameworks
that have been a feature of some previous studies. Furthermore, in our systematic compari-
son of the direct and indirect approaches for the estimation of mortality improvement rate
models we have found that the direct estimation used in previous studies produces in many
cases parameter estimates that are subject to considerable parameter uncertainty potentially
leading to unstable projections. We have found that this robustness and instability issues
are particular prevalent for model structures that include age-dependent parameters. We
thus caution against the use of a direct estimation approach for predictor structures such as
the LC and LC-CI models. However, if we insist in estimating these predictors structures
using a direct estimation approach, it is important to smooth any age-dependent parameters
(i.e., ↵x and �(i)

x ) so that data across ages are pooled and thus reduce possible robustness
and instability issues. By contrast, we find that there is less to choose between estimation
techniques for predictors structures without or with fewer age-dependent parameters (for
instance, the CBD model).

In summary, we find that the indirect approach to modeling mortality improvement rates is
a flexible and versatile method for investigating the pattern of mortality changes in the past
and for projecting mortality rates into the future. We believe it can give modelers a new
perspective on existing models and potential avenues to develop new models. Perhaps most
importantly however, it may allow for a common language to communicate theoretical and
academic results to a wider audience of practitioners.
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Appendix A. Parameter constraints

Table A.2 presents the parameter constraints used in estimating the models in Table 1. In
Table A.2 we note that the constraints in the second column are applied when using the
direct approach to the fitting of a mortality improvement rate model while the constraints
in the third column are applied when using the indirect approach to model fitting. We also
not that the “level” constraints in the improvement rate predictor structure,

X

t

(i)
t = 0,

become constraints of the deterministic trends in the mortality rate predictor structure,

X

t

(t� t̄)K(i)
t = 0.

These both sets of constraints make sense intuitively, since the ↵xt term in mortality improve-
ment rate model explains any constant improvements in the historical data so the K(i)

t are
constrained to only explain possible deviations from this constant improvement. Similarly,
for the APC-CI the improvement rate predictor constraints on the cohort e↵ect,

X

y

�y = 0,
X

y

(y � ȳ)�y = 0,

become constraints X

y

(y � ȳ)�y = 0,
X

y

(y � ȳ)2�y = 0

in the mortality rate predictor structure.
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Table A.2: Parameter constraints for the structures considered in this paper.

Model Improvement Model (⌘x,t) Equivalent Mortality Model (⌘̃x,t)

CI - -

LC
P

x �
(1)
x = X

P
x �

(1)
x = X, K(1)

0 = 0

LC-CI
P

x �
(1)
x = X,

P
t 

(1)
t = 0

P
x �

(1)
x = X, K(1)

0 = 0,P
t(t� t̄)K(1)

t = 0

CBD - K(1)
0 = 0, K(2)

0 = 0

CBD-CI
P

t 
(1)
t = 0,

P
t 

(2)
t = 0

K(1)
0 = 0, K(2)

0 = 0,
P

t(t� t̄)K(1)
t = 0,P

t(t� t̄)K(2)
t = 0

APC-CI

P
t 

(1)
t = 0,

P
y �y = 0,P

y(y � ȳ)�y = 0

K(1)
0 = 0,

P
t(t � t̄)K(1)

t = 0,
��X = 0,

P
y(y � ȳ)�y = 0,P

y(y � ȳ)2�y = 0

Appendix B. iMoMo: An R package for estimating mortality improvement rate
models

We have implemented the estimation methods presented in this paper in the R package
iMoMo which is available in Github at https://github.com/amvillegas/iMoMo. iMoMo
is an extension of the R package StMoMo and as such provides tools for estimating, fore-
casting, simulating and bootstrapping improvement rate models. The interested reader is
referred to Villegas et al. (2018) for an extensive discussion and illustration of the capabili-
ties of StMoMo, most of which extend naturally to iMoMo. Here we illustrate some key
functions in iMoMo and show how they can be used to replicate some of the key results in
the body of the paper.

The development version of the package can be installed using the following commands:

install.packages("devtools")
devtools::install_github("amvillegas/iMoMo")

The code below defines the six predictor structures in Table 1:

library(iMoMo)
#CI: nxt = ax
CId <- iMoMo(staticAgeFun = TRUE, periodAgeFun = NULL, type = "direct")
CIi <- iMoMo(staticAgeFun = TRUE, periodAgeFun = NULL, type = "indirect")
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#LC: nxt = bx*kt
LCd <- StMoMo2iMoMo(lc(), type = "direct")
LCi <- StMoMo2iMoMo(lc(), type = "indirect")

#LC-CI: nxt = ax + bx*kt
LC_CId <- lci(type = "direct")
LC_CIi <- lci(type = "indirect")

#CBD: nxt = kt^1 + (x - xbar)kt^2
CBDd <- cbdi(type = "direct")
CBDi <- cbdi(type = "indirect")

#CBD-CI: nxt = ax + kt^1 + (x - xbar)kt^2
constCBDx <- function(ax, bx, kt, b0x, gc, wxt, ages){
#\sum kt[i, ] = 0
ci <- rowMeans(kt, na.rm = TRUE)
ax <- ax + ci[1] + ci[2] * bx[, 2]
kt[1, ] <- kt[1, ] - ci[1]
kt[2, ] <- kt[2, ] - ci[2]
list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc)

}
f2 <- function(x, ages) x - mean(ages)
CBD_CId <- iMoMo(periodAgeFun = c("1", f2), constFun = constCBDx,

type = "direct")
CBD_CIi <- iMoMo(periodAgeFun = c("1", f2), constFun = constCBDx,

type = "indirect")

#APC-CI: nxt = ax + kt + gc
APC_CId <- apci(type = "direct")
APC_CIi <- apci(type = "indirect")

In the above code, for each predictor, we have defined two versions depending on whether
the model is to be fitted using a direct approach or an indirect approach. The code above
also illustrates the three ways in which a improvement rate model can be defined:

1. Using the iMoMo function which works in a similar manner to the StMoMo function in
package StMoMo.

2. By transforming a mortality rate model into an improvement rate model using function
StMoMo2iMoMo .

3. By invoking a predefined model. iMoMo provides predefined functions for the LC-CI,
CBD and APC-CI predictors which are implemented in the functions lci, cbdi and
apci, respectively.

To fit the models to data we first need to extract the data for England and Wales from
the Human Mortality Database (2020) using function hmd.mx of the demography package
(Hyndman, 2014) with the code:
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library(demography)
EWdata <- hmd.mx(country = "GBRTENW", username = username,

password = password, label = "England Wales")
dataStMoMo <- StMoMoData(EWdata, series = "male")
dataStMoMo$Dxt <- round(dataStMoMo$Dxt)

We note that the username and password above are for the Human Mortality Database and
should be replaced appropriately.

We can now fit, for example, the LC-CI model for ages 20-89 and years 1961-2018 as follows:

LC_CId_fit <- fit(LC_CId, data = dataStMoMo, ages.fit = 20:89,
years.fit = 1961:2018)

LC_CIi_fit <- fit(LC_CIi, data = dataStMoMo, ages.fit = 20:89,
years.fit = 1961:2018)

The other models can be fitted similarly. We can then plot the parameter estimates as
follows:

plot(LC_CId_fit, nCol = 3)
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plot(LC_CIi_fit, nCol = 3)

20 30 40 50 60 70 80 90

0.
00

5
0.

01
5

αx vs. x

age

20 30 40 50 60 70 80 90

−1
.0

0.
0

1.
0

2.
0

βx
(1) vs. x

age

1960 1980 2000 2020

−0
.0

4
0.

00
0.

02

κt
(1) vs. t

year

30



Finally, 1000 bootstrap samples of the LC-CI model can be produced with the code:

LC_CId_boot <- bootstrap(LC_CId_fit, nBoot = 1000)
set.seed(bootSeed)
LC_CIi_boot <- bootstrap(LC_CIi_fit, nBoot = 1000)

We note that the bootstrap is a computationally intensive procedure so the code above can
take several minutes to run. The bootstrapped model can then be plotted as follows:

plot(LC_CId_boot, nCol = 3)
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plot(LC_CIi_boot, nCol = 3)

20 30 40 50 60 70 80 90

0.
00

5
0.

01
5

αx vs. x

age

20 30 40 50 60 70 80 90

−1
0

1
2

βx
(1) vs. x

age

1960 1980 2000 2020

−0
.0

4
0.

00
0.

04

κt
(1) vs. t

year

31


