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Abstract

This paper presents a flexible valuation approach for variable annuity (VA) contracts embedded with
guaranteed minimum maturity benefit (GMMB) riders written on an underlying fund that evolves according
to a general regime-switching framework. Unlike the classical regime-switching models which only allow
model parameters to change upon regime switches, our framework allows, more importantly, model structures
to vary. With mild assumptions on the characteristic function of the log-stock price, our model settings enable
the study of fundamental features of the market dynamics, such as stochastic volatility and jumps, on the
underlying fund value of GMMB in a unified framework. This novel idea is illustrated by a three-regime
model whose environments can be characterised by either the geometric Brownian motion process, double
exponential process or the Heston (1993) stochastic volatility process. Two versions of the GMMB riders are
considered; a fixed or roll-up guarantee and a ratchet geometric average guarantee. With the Fourier Cosine
(COS) method which utilises characteristic functions, explicit valuation expressions for various contracts
are derived, and numerical illustrations are performed to analyse the efficiency of the approach in terms of
computational speed and accuracy. The paper makes a unique contribution by presenting regime-dependent
bounds and an algorithm for determining the optimal grid points required for the COS method to achieve a
specific level of accuracy. Numerical experiments for the valuation framework reveal that as the likelihood of
regime shifts increases, the price difference of VA contracts with different initial regimes diminishes, which
is consistent with financial intuition.
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1 Introduction

Variable annuities (VAs) have become part of retirement portfolios for many retirees. Compared with tra-

ditional fixed annuities, one distinguishing feature of variable annuities is that they are equity-linked insurance

products and usually embedded with guaranteed minimum benefits (GMBs) in the event of poor market perfor-

mance. The popularity of VAs among retirees is primarily due to a range of investment options and downside

risk protection offered by embedded guarantees, frequently referred to as riders. These riders can be categorised

into two classes namely; guaranteed minimum death benefits (GMDBs) and guaranteed minimum living ben-

efits (GMLBs). A GMDB rider provides a guaranteed death benefit to the policyholder’s beneficiary if the

policyholder dies during the contract term. GMLBs encompass a wide range of riders which include guaranteed

minimum maturity benefit (GMMB), guaranteed minimum income benefit (GMIB), and guaranteed minimum

withdrawal benefit (GMWB). With a GMMB rider, the policyholder is promised a guaranteed amount upon

maturity of the contract in the event of poor market conditions. A GMIB promises periodic payments upon

annuitisation of a GMMB whilst a GMWB rider guarantees withdrawal of at least the initial investment during

the tenure of the contract.

VAs are usually long-dated contracts whose maturities can extend for several decades. Though the pricing

of GMBs has been extensively studied in the literature, most works assume that the underlying asset dynamics

follow the geometric Brownian motion (GBM) model. This assumption significantly simplifies the valuation

framework and makes it possible to obtain analytical pricing formulas (Bauer et al., 2008; Dai et al., 2008; Feng

and Jing, 2017; Milevsky and Salisbury, 2006; Shen et al., 2016). Recently, there has been increasing interest in

departing from the classic GBM paradigm and considering the valuation of GMBs under more realistic models.

The first direction is based on diffusion-driven financial market models with Dai et al. (2015) considering the

pricing of GMWBs and guaranteed lifetime withdraw benefits (GLWBs) under a framework with stochastic

interest rate and stochastic mortality. Several extensions have been proposed along this direction (Deelstra and

Rayée, 2013; Da Fonseca and Ziveyi, 2017; Gudkov et al., 2019; Kang and Ziveyi, 2018; Shevchenko and Luo,

2017). The second direction involves modelling underlying fund dynamics using Lévy processes. Kélani and

Quittard-Pinon (2017) develop a general methodology for pricing and hedging VAs in a Lévy market from the

risk management perspective. Alonso-Garćıa et al. (2018) apply the Fourier-cosine method to the pricing and

hedging of GMWB riders. Ballotta et al. (2020) propose a market consistent valuation framework for VAs in a

hybrid Levy model with dependent surrender risk.

While these extensions are interesting in analysing GMBs, neither diffusion-driven models nor Lévy-based

models can capture the structural changes in the underlying asset price dynamics due to fluctuating macroe-

conomic conditions, altering the fundamentals of financial markets. Hence, the works mentioned above have

ignored the long-term feature of VA contracts and may cause significant underestimation of the actual value

of those optional guarantees in VAs. In an empirical study of vanilla options under regime-switching models,

Shen et al. (2014) find that ignoring regime-switching risk (that is, macroeconomic risk) would result in over

6% underestimation of option prices. Indeed, regime-switching models are ideal candidates for characterising
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long-dated options like VAs with guarantees.

As such, the third research direction utilises regime-switching models to capture the macroeconomic risk

inherent in markets. Fan et al. (2015) consider the pricing of equity-indexed annuities and GMDBs under a

double regime-switching model by using the fast Fourier transform method. Using the Fourier space time-

stepping algorithm, Ignatieva et al. (2016, 2018) study the pricing and hedging of GMBs under the regime-

switching and stochastic mortality models. Mamon et al. (2020) investigate the valuation of GMMBs under a

hidden Markov model by employing the Fourier transform method and recursive filtering technique.

In this paper, we consider the valuation of a VA contract embedded with GMMB riders, which is the

foundation for the pricing of GMIB and GMDB riders. We focus on the GMMB benefits with three payoff

functions, including fixed, rolled up, and geometric average guarantees. To model the dynamics of the underlying

fund, we develop a novel class of regime-switching models, namely, generalised regime-switching (GRS) models,

which extend the classical regime-switching (CRS) models (Elliott et al., 2005) to a more general set-up. This

extension is a stand-alone contribution to the paper. Under a CRS model, after regime shifts, only the values

of model parameters will change, and the model structure remains the same. For instance, in Elliott et al.

(2005), the stock price is always described by the geometric Brownian motion (GBM) model in each state with

state-dependent parameters, such as risk-free interest rate, expected return, and volatility. Whereas in a GRS

model, upon regime shifts, not only the values of model parameters vary, but also the model structure may as

well change. For instance, in Example 2.1 of this paper, before a transition, the stock price process may evolve

according to the GBM model with constant volatility; after a transition, it would turn out to be a new stock

price model with stochastic volatility, such as the Heston (1993) model. Our model setting is general in the

sense that we only require that the characteristic function of the log-stock price satisfies a structural assumption

and do not need to specify the price dynamics from the very beginning. This allows us to incorporate a range of

regime-switching models with structural changes. Indeed, besides regime-switching, our model can also capture

other important features of financial markets, such as jumps, stochastic volatility, and stochastic interest rate.

Our second main contribution is to develop a Fourier Cosine (COS) algorithm to price VA contracts by

utilising the corresponding characteristic function. The implementation of the COS method is non-trivial. One

novelty in our algorithm is a set of ingenious regime-dependent bounds used in the approximation procedure

of the COS method. To find those regime-dependent bounds, we define and derive a generalised characteristic

function allowing for a Markov-modulated domain. The regime-dependent bounds distinguish our COS algo-

rithm from the existing works, in which the bounds are constant. See, for example, Alonso-Garćıa et al. (2018),

Chau et al. (2015), Fang and Oosterlee (2008), Li et al. (2021), and Tour et al. (2018). With this innovation,

our COS algorithm outperforms the Monte Carlo method in terms of computation time. In the COS method,

we demonstrate that the logarithm of the absolute value of error has a linear relationship with the logarithm of

the grid size.

We present a thorough sensitivity analysis of the VA contract prices with respect to various model parameters

under our newly introduced framework. All observed trends are consistent with financial intuition. In particular,

as the likelihood of regime shifts increases, the difference of the VA contract prices with different initial regimes
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will diminish. In other words, for different initial regimes, the VA contract prices will either increase or decrease

as the transition intensity changes. This price sensitivity implies that the misspecification of the transition

matrix may have an ambiguous impact on the VA contract prices and should be discussed with more caution,

especially in a good initial regime.

The rest of the paper is structured as follows. In Section 2, we introduce the GRS models followed by two

examples. Section 3 gives a brief review of the COS method. In Section 4, we apply the COS method to derive

valuation expressions for GMMB benefits with fixed, rolled up, and geometric average guarantees. In Section

5, we implement several numerical examples highlighting our findings. Section 6 provides concluding remarks

of the paper. A brief review of the CRS models is provided in Appendix A. All technical proofs are relegated

to Appendix B.

2 Model setup: Generalised regime-switching models

In this section, we introduce a generalised regime-switching (GRS) framework. In the GRS framework,

model parameters and model structures are both modulated by a Markov chain. In such a setting, the GRS

framework is more general than the classical regime-switching (CRS) model, which has been predominantly

considered in literature (Elliott et al., 2005; Fan et al., 2015; Mamon et al., 2020; Tour et al., 2018). We briefly

review the CRS model in Appendix A for convenience.

We fix a probability space (Ω,F ,F, Q) satisfying the usual conditions. The filtration, F := {Ft}t∈[0,T ], is a

natural filtration generated by all random objects to be considered in the paper and augmented in the usual

way, and Q is a risk-neutral probability measure with the expectation operation denoted by EQ[·]. One may also

start from a real-world probability measure and choose a risk-neutral measure for pricing purpose via Esscher

transform techniques (Elliott et al., 2005; Shen et al., 2014). Let {αt}t∈[0,T ] be a Markov chain on (Ω,F ,F, Q).

By convention, we adopt the canonical representation of the Markov chain and assume that the chain α takes

values in the set of standard unit vectors {e1, e2, . . . , en}, where ei is the ith unit (column) vector of the space

Rn. Let A := [aij ]i,j=1,2,...,n be the transition rate matrix of the chain, where aij denotes the instantaneous

transition rate of the chain α from state ej to state ei, satisfying aij ≥ 0, for i 6= j; aii ≤ 0, for i = 1, 2, . . . , n;

and
∑n
i=1 aij = 0, for j = 1, 2, . . . , n. With the canonical state space representation, the Markov chain can be

decomposed as follows

αt = α0 +

∫ t

0

Aαsds+mt, (2.1)

where {mt}t∈[0,T ] is an Rn-valued martingale (Elliott et al., 1994). Obviously, for any s ≥ t, we have

EQ[αs|αt] = exp{A(s− t)}αt, (2.2)

where EQ[·|αt] denotes an conditional expectation given αt. This result will be used throughout the paper.

Denote by G := {Gt}t∈[0,T ] the natural filtration generated by all other random objects except the Markov

chain α. Then, the filtration F = {Ft}t∈[0,T ] is defined by

Ft := Gt ∨ Fαt , (2.3)
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where Fαt is the σ-field generated by the Markov chain α. Let {St}t∈[0,T ] denote the stock price process with

initial price S0 = s0, and {Xt}t∈[0,T ] denote the log-stock price process:

Xt := log(St), (2.4)

with initial value X0 = x0 = log(S0). Suppose that the risk-free interest rate is modulated by the chain as

rt := r(αt) = 〈r, αt〉 , (2.5)

where

r := (r1, r2, . . . , rn)>, (2.6)

and the risk-free interest rate rt is equal to the jth entry rj := r(ej) if and only if the chain αt is in the jth

state, that is, αt = ej , for any j = 1, 2, . . . , n. Here and throughout the paper, the inner product operator of

two vectors a and b is computed as 〈a, b〉 = a>b.

Under the GRS model, the log-stock process {Xt}t∈[0,T ] follows

Xt = X0 +

n∑
j=1

∫ t

0

〈αs, ej〉 dXj
s . (2.7)

Here, each {Xj
t }t∈[0,T ] denotes one state of the log-stock price corresponding to the jth state/regime of the

Markov chain, for j = 1, 2, . . . , n, since dXt = dXj
t if and only if αt = ej . Suppose that all the {Xj

t }t∈[0,T ]

are Markov processes adapted to G, for j = 1, 2, . . . , n, and they are stochastically independent of the Markov

chain α.

Next, we construct a regime-switching stochastic factor

ζt :=

n∑
j=1

〈α0, ej〉 ζj0 +

n∑
j=1

∫ t

0

〈αs, ej〉 dζjs , (2.8)

which can be used to describe various stochastic factors in the stock price model, such as stochastic volatility,

stochastic correlation, and stochastic jump intensity, among others. Note that the pairs of Xj
t and ζjt , for

j = 1, 2, . . . , n, and that of Xt and ζt are allowed to be correlated in our framework. One can refer to Examples

2.1 and 2.2 for possible correlation structures.

Suppose that the characteristic function of {Xj
t }t∈[0,T ] satisfies the following exponential form

Φj(u; t, xj , ζj) = EQ
[
eiuX

j
T |Xj

t = xj , ζjt = ζj
]

= exp
{
iuxj + gj(u, t) +D(u, t, ζj)

}
, (2.9)

under each regime j = 1, 2, . . . , n, where EQ
[
· |Xj

t = xj , ζjt = ζj
]

denotes the conditional expectation given

Xj
t = xj and ζjt = ζj , and gj(u, t) and D(u, t, ζj) are deterministic functions satisfying:

i. D(u, T, ζj) = 0, for any (u, ζj) ∈ R2;

ii. gj(u, ·) ∈ C1([0, T ]) and D(u, ·, ·) ∈ C1,2([0, T ]× R), for any u ∈ R.

To apply the Fourier Cosine (COS) method which will be adopted for numerical implementations in this

paper, we derive the (discounted) characteristic function of the log-stock price in the next proposition.
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Proposition 2.1. The discounted characteristic function of the log-stock price XT can be represented as

Φ̃XT (u; t, x, ζ) := EQ
[
e−

∫ T
t
rsds+iuXT |Xt = x, ζt = ζ

]
= eiux+D(u,t,ζ) 〈αt,Ψ(u, t)1n〉 , (2.10)

where EQ
[
· |Xt = x, ζt = ζ

]
denotes the conditional expectation given Xt = x and ζt = ζ and Ψ(u, t) is the

fundamental solution of the following matrix-valued ordinary differential equation (ODE):

dΨ(u, t)

dt
=
[
−Diag(G(u, t) + r) +A

]
Ψ(u, t), Ψ(u, T ) = In, (2.11)

with

G(u, t) :=
(
g1
t (u, t), g2

t (u, t), . . . , gnt (u, t)
)>
.

Here 1n denotes an n-dimensional vector with all entries being one, In is an n×n identity matrix, and for any

vector C the operator Diag[C] returns a diagonal matrix with C on its diagonal.

If gjt (u, t) are independent of t, for j = 1, 2, . . . , n, that is, G(u, t) = G(u), for any t ∈ [0, T ], then the

fundamental solution can be represented by a matrix exponential:

Ψ(u, t) = exp
{[
−Diag(G(u) + r) +A

]
(T − t)

}
, (2.12)

and the characteristic function has the following closed-form expression:

Φ̃XT (u; t, x, ζ) = eiux+D(u,t,ζ)
〈
αt, exp

{[
−Diag(G(u) + r) +A

]
(T − t)

}
1n
〉
. (2.13)

Proof. Refer to Appendix B.1.

With the COS method, an essential step is to approximate integrals over the infinite interval to those over

a finite interval. Thus, one needs to choose an upper bound and a lower bound. One of the innovations of the

paper is to implement regime-specific bounds. To this end, we define a generalised characteristic function with

u in Equation (2.10) replaced by a regime-dependent uT and (2.10) scaled by a regime-dependent BT , where

uT and BT are

uT := u(αT ) = 〈u, αT 〉 , BT := B(αT ) = 〈B, αT 〉 , (2.14)

with

u := (u1, u2, . . . , un)>, B := (B1, B2, . . . , Bn)>. (2.15)

That is,

Φ̂XT (u,B; t, x, ζ) := EQ
[
e−

∫ T
t
rsds+iuTXTBT |Xt = x, ζt = ζ

]
. (2.16)

The following corollary is an immediate consequence of Proposition 2.1.
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Corollary 2.1. The generalised characteristic function can be represented as

Φ̂XT (u,B; t, x, ζ) =
〈

exp{A(T − t)}αt, Ψ̂(t, x, ζ, αt)
〉
, (2.17)

where

Ψ̂(t, x, ζ, αt) :=
(
Ψ̂1(t, x, ζ, αt), Ψ̂2(t, x, ζ, αt), . . . , Ψ̂n(t, x, ζ, αt)

)>
(2.18)

with

Ψ̂j(t, x, ζ, αt) := eiujx+D(uj ,t,ζ) 〈αt,Ψ(uj , t)1n〉Bj . (2.19)

Proof. Refer to Appendix B.2.

In what follows, we illustrate our idea of the GRS model with two examples. For this purpose, we formally

define {Wt}t∈[0,T ] and {W̄t}t∈[0,T ] as two standard Brownian motions and N(dt, dx) as the differential form of

a random measure on ([0, T ] × R0,B([0, T ]) ⊗ B(R0)), where R0 := R \ {0}, and B([0, T ]) and B(R0) denote

the Borel σ-fields generated by [0, T ] and R0, respectively. By convention, we assume that W , W̄ , N and α

are stochastically independent. Moreover, we assume that the compensator of N(dt, dy) is given by a Markov-

modulated Lévy measure ν(dy, αt) as follows:

π(dt, dy, αt) := ν(dy, αt)dt. (2.20)

Thus, ν(dy, αt) = ν(dy, ej) if and only if the Markov chain is in the jth state, that is, αt = ej . This is

mathematically equivalent to

ν(dy, αt) = 〈ν(dy), αt〉 , ν(dy) := (ν1(dy), ν2(dy), . . . , νn(dy))>.

Then, the compensated random measure, denoted by Ñ(dt, dy, αt), satisfies

Ñ(dt, dy, αt) = N(dt, dy)− π(dt, dy, αt) = N(dt, dy)− ν(dy, αt)dt. (2.21)

Whenever there is no risk of confusion, we simply write Ñj(dt, dy) := Ñ(dt, dy, ej) and νj(dy) := ν(dy, ej), for

j = 1, 2, . . . , n.

In the first example, the stock price follows a 3-state regime-switching model.

Example 2.1. The log-stock price process satisfies

Xt = X0 +

3∑
j=1

∫ t

0

〈αs, ej〉 dXj
s . (2.22)

In the three states, the stock price process is governed by the geometric Brownian motion (GBM) (Black and

Scholes, 1973), the Heston stochastic volatility model (Heston, 1993) and the double exponential Lévy model

(Kou and Wang, 2004), respectively.
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• State 1: The stock price process follows the GBM model:

dS1
t = S1

t [r1dt+ σ1dWt], (2.23)

where σ1 is the stock price volatility and r1 is the corresponding risk-free interest rate in this regime. The

associated log-stock price process satisfies

dX1
t =

(
r1 −

1

2
σ2

1

)
dt+ σ1dWt. (2.24)

The characteristic function is given by

Φ1(u; t, x) = exp
{
iux+ g1(u, t)

}
, (2.25)

where

g1(u, t) =

[(
r1 −

σ2
1

2

)
iu− σ2

1u
2

2

]
(T − t). (2.26)

• State 2: The stock price process follows the Heston stochastic volatility model:

dS2
t = S2

t [r2dt+
√
VtdWt], (2.27)

dVt = κ(θ − Vt)dt+
√
Vtσv

[
ρdWt +

√
1− ρ2dW̄t

]
, (2.28)

where Vt is the instantaneous variance of the stock price and r2 is the risk-free interest rate. In Equation

(2.28), κ, θ and σv are the speed of mean reversion, long-run average and volatility of the variance process,

respectively. The correlation between the Brownian motion increments is denoted here as ρ. The log-stock

price process satisfies

dX2
t =

(
r2 −

1

2
Vt

)
dt+

√
VtdWt. (2.29)

The characteristic function (see Lord and Kahl (2010)) is given by

Φ2(u; t, x, v) = exp
{
iux+ g2(u, t) +D(u, t)v

}
, (2.30)

where

g2(u, t) = iur2τ + C(u, t) (2.31)

with

τ = T − t,

c(u) =
κ− iuρσv + d(u)

κ− iuρσv − d(u)
, c̄(u) =

1

c(u)
,

d(u) =
√

(κ− iuρσv)2 + σ2
v(iu+ u2),

C(u, t) =
κθ

σ2
v

[
(κ− iuρσv + d(u))τ − 2 log

(
1− c(u)ed(u)τ

1− c(u)

)]
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=
κθ

σ2
v

[
(κ− iuρσv + d(u))τ − 2 log

(
c̄(u)− ed(u)τ

c̄(u)− 1

)]
,

D(u, t) =
κ− iuρσv − d(u)

σ2
v

1− e−d(u)τ

1− e−d(u)τ/c(u)

=
κ− iuρσv − d(u)

σ2
v

1− e−d(u)τ

1− c̄(u)e−d(u)τ
.

• State 3: The stock price process follows the double exponential model:

dS3
t = S3

t−

[
r3dt+ σ3dWt +

∫
R0

(eξ(y) − 1)Ñ3(dt, dy)

]
, (2.32)

where σ3 is the corresponding stock price volatility, r3 is the risk-free interest rate, ξ(z) is the jump ratio,

and Ñ3(·, ·) is the Poisson random measure with Lévy measure ν3(·) defined by

ν3(dy) = λ

[
pη+e

−η+y1{y≥0} + (1− p)η−eη−y1{y<0}

]
dy, λ > 0, p ∈ [0, 1], η+ > 1, η− > 0, (2.33)

The log-stock price satisfies

dX3
t = µ3dt+ σ3dWt +

∫
R0

ξ(z)Ñ3(dt, dy), (2.34)

with

µ3 := r3 −
1

2
σ2

3 −
∫
R0

[
eξ(y) − 1− ξ(y)

]
ν3(dy). (2.35)

The characteristic function is given by

Φ3(u; t, x) = exp
{
iux+ g3(u, t)

}
, (2.36)

where

g3(u, t) =

[
µ3iu−

σ2
3u

2

2
+

∫
R0

(
eiuξ(y) − 1− iuξ(y)

)
ν3(dy)

]
(T − t). (2.37)

Next, we show how the above 3-state stock price model is embedded in our framework. The stochastic factor

process ζt is constructed as follows

ζ1
t = ζ3

t = 0 and ζ2
t = Vt, ∀t ∈ [0, T ], (2.38)

and

ζt :=

3∑
j=1

〈α0, ej〉 ζj0 +

3∑
j=1

∫ t

0

〈αs, ej〉 dζjs (2.39)

= 〈α0, e2〉V0 +

∫ t

0

〈αs, e2〉 dVs. (2.40)

Clearly, the characteristic functions in the three states satisfy the structural assumption in Equation (2.9).

Indeed,

Φj(u; t,Xj
t ) = EQ

[
eiuX

j
T |Xj

t

]
= exp

{
iuXj

t + gj(u, t) +D(u, t)ζjt
}
, for j = 1, 3, (2.41)
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and

Φ2(u; t,X2
t , Vt) = EQ

[
eiuX

2
T |X2

t , Vt
]

= exp
{
iuX2

t + g2(u, t) +D(u, t)Vt
}
. (2.42)

Therefore, the discounted characteristic function of the 3-state stock price model can be expressed as

Φ̃XT (u; t, x, ζ) = EQ
[
e−

∫ T
t
rsds+iuXT |Xt = x, ζt = ζ

]
= eiux+D(u,t)ζ 〈αt,Ψ(u, t)13〉 , (2.43)

where

dΨ(u, t)

dt
=
[
−Diag(G(u, t) + r) +A

]
Ψ(u, t), Ψ(u, T ) = I3 (2.44)

with

G(u, t) =


−
[(
r1 − σ2

1

2

)
iu− σ2

1u
2

2

]
−iur2 − κθ

σ2
v

[
(κ− iuρσv + d(u)) + 2c(u)d(u)ed(u)τ

1−c(u)ed(u)τ

]
−
[
µ3iu− σ2

3u
2

2 +
∫
R0

(
eiuξ(y) − 1− iuξ(y)

)
ν3(dy)

]


=


−
[(
r1 − σ2

1

2

)
iu− σ2

1u
2

2

]
−iur2 − κθ

σ2
v

[
(κ− iuρσv + d(u)) + 2d(u)ed(u)τ

c̄(u)−ed(u)τ

]
−
[
µ3iu− σ2

3u
2

2 +
∫
R0

(
eiuξ(y) − 1− iuξ(y)

)
ν3(dy)

]
 . (2.45)

The generalised characteristic function is given by

Φ̂XT (u,B; t, x, ζ) = EQ
[
e−

∫ T
t
rsds+iuTXTBT |Xt = x, ζt = ζ

]
=
〈

exp{A(T − t)}αt, Ψ̂(t, x, ζ, αt)
〉
, (2.46)

where

Ψ̂(t, x, ζ, αt) =
(
Ψ̂1(t, x, ζ, αt), Ψ̂2(t, x, ζ, αt), Ψ̂3(t, x, ζ, αt)

)>
(2.47)

with

Ψ̂j(t, x, ζ, αt) = eiujx+D(uj ,t)ζ 〈αt,Ψ(uj , t)13〉Bj . (2.48)

In the second example, the stock price follows a regime-switching stochastic volatility model:

Example 2.2. The log-stock price and the stochastic variance processes are given by

Xt = X0 +

n∑
j=1

∫ t

0

〈αs, ej〉 dXj
s , (2.49)

Vt = V0 +

n∑
j=1

∫ t

0

〈αs, ej〉 dV js , (2.50)

where

dXj
t =

(
rj −

1

2
V jt

)
dt+

√
V jt dWt, (2.51)
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dV jt = κ(θj − V jt )dt+

√
V jt σv

[
ρdWt +

√
1− ρ2dW̄t

]
. (2.52)

Indeed, the stock price process is governed by the Heston model with regime-switching:

dSjt = Sjt

[
rjdt+

√
V jt dWt

]
, j = 1, 2, . . . , n. (2.53)

Again, as presented in Lord and Kahl (2010), the characteristic function of Xj
T is given by

Φj(u; t, x, ζ) = EQ
[
eiuX

j
T |Xj

t = x, V jt = ζ
]

= exp
{
iux+ gj(u, t) +D(u, t)ζ

}
, (2.54)

where

gj(u, t) = iurjτ + Cj(u, t),

Cj(u, t) =
κθj
σ2
v

[
(κ− iuρσv + d(u))τ − 2 log

(
1− c(u)ed(u)τ

1− c(u)

)]
=
κθj
σ2
v

[
(κ− iuρσv + d(u))τ − 2 log

(
c̄(u)− ed(u)τ

c̄(u)− 1

)]
,

and c(u), c̄(u), d(u), D(u, t) are as defined in Example 2.1.

Therefore, the discounted characteristic function of XT is represented as

Φ̃XT (u; t, x, ζ) = EQ
[
e−

∫ T
t
rsds+iuXT |Xt = x, Vt = ζ

]
= eiux+D(u,t)ζ 〈αt,Ψ(u, t)1n〉 , (2.55)

where

dΨ(u, t)

dt
=
[
−Diag(G(u, t) + r) +A

]
Ψ(u, t), Ψ(u, T ) = In (2.56)

with

G(u, t) =
(
g1
t (u, t), g2

t (u, t), . . . , gnt (u, t)
)>
, (2.57)

and

gjt (u, t) = −iurj −
κθj
σ2
v

[
(κ− iuρσv + d(u)) +

2c(u)d(u)ed(u)τ

1− c(u)ed(u)τ

]
. (2.58)

The generalised characteristic function is expressed as

Φ̂XT (u,B; t, x, ζ) =
〈

exp{A(T − t)}αt, Ψ̂(t, x, ζ, αt)
〉
, (2.59)

where

Ψ̂(t, x, ζ, αt) =
(
Ψ̂1(t, x, ζ, αt), Ψ̂2(t, x, ζ, αt), . . . , Ψ̂n(t, x, ζ, αt)

)>
(2.60)

with

Ψ̂j(t, x, ζ, αt) = eiujx+D(uj ,t)ζ 〈αt,Ψ(uj , t)1n〉Bj . (2.61)
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Note we have assumed that v0, σv, κ, and ρ are regime-independent. This assumption is needed to ensure

that the characteristic function of Xj
T satisfies the form presented in Equation (2.9). This assumption is also

imposed in literature such as in Elliott and Lian (2013).

In wrapping up this section, we recall the results in Proposition 2.1. In the GRS model, Equation (2.11)

does not admit an analytical solution in general due to the time-dependence of the coefficients G(u, t). One can

refer to Examples 2.1 and 2.2 for details about this complexity. In comparison, the similar matrix-valued ODE

in the CRS model does have the closed-form solution presented in Equation (2.12). The novelty of this paper

is that under the structural assumption in Equation (2.9), we can link the characteristic function of XT with

those of Xj
T even if we have not specified the probability laws of Xj

T , for j = 1, 2, . . . , n, in Proposition 2.1.

Indeed, this provides us tremendous flexibility to incorporate many existing and new regime-switching models

as special cases of our GRS model. See, for instance, the CRS model reviewed in Appendix A and studied in

Elliott et al. (2005), and the regime-switching Heston model in Example 2.2 and considered in Elliott and Lian

(2013). To our best knowledge, Example 2.1 is an entirely new regime-switching modelling setting, which allows

for different model types in different states.

3 The Cosine method

In this section, we first provide a review of the ideas around the Fourier Cosine (COS) method for option

pricing. The probability density function of any random variable X, denoted by fX(x), can be expressed in the

cosine expansion as1

fX(x) =

∞∑
k=0

′
AX(k) · cos

(
kπ
x− a
b− a

)
, (3.1)

where
∑ ′

means that the first term of the sum is halved and

AX(k) =
2

b− a

∫ b

a

fX(x) · cos

(
kπ
x− a
b− a

)
dx. (3.2)

Note the characteristic function can be represented as a Fourier transform of the probability density function

as

Φ̂X(u) =

∫ b

a

eiuxfX(x)dx ≈
∫ ∞
−∞

eiuxfX(x)dx = Φ(u). (3.3)

Equation (3.2) can then be re-expressed as

AX(k) =
2

b− a
· Re

{∫ b

a

fX(x) exp

{
ikπ

x− a
b− a

}
dx

}

=
2

b− a
· Re

{
exp

{
− ikπa
b− a

}∫ b

a

exp

{
ikπ

b− a
x

}
fX(x)dx

}

=
2

b− a
· Re

{
Φ̂X

(
kπ

b− a

)
exp

{
− ikπa
b− a

}}
. (3.4)

1See Fang and Oosterlee (2008), Alonso-Garćıa et al. (2018), and Tour et al. (2018), among others.

12



We can then write

FX(k) =
2

b− a
· Re

{
ΦX

(
kπ

b− a

)
exp

{
− ikπa
b− a

}}
. (3.5)

After truncating the summation, Equation (3.1) can then be approximated by

f̃X(x) =

N−1∑
k=0

′
FX(k) · cos

(
kπ
x− a
b− a

)
. (3.6)

To apply the COS method to the valuation of guaranteed minimum benefits (GMBs) under the GRS models,

we consider first the valuation of a European style option with any payoff function h(XT ), where XT is the

log-stock price at the maturity date. Then, the time-zero price of the option can be represented as

V (0, T, x0, α0) = EQ
[
e−

∫ T
0
rtdth(XT )

]
= EQ

[
e−

∫ T
0
rtdtEQ [h(XT )|FαT ]

]
. (3.7)

Here the second equality is due to the tower property.

Let fXT (x|x0) be the probability density function of XT = x given X0 = x0, and fXT (x|x0,FαT ) be the

(conditional) probability density function of XT = x given X0 = x0 and FαT . The option price can be represented

by

V (0, T, x0, α0) = EQ
[
e−

∫ T
0
rtdt

∫ ∞
−∞

h(x)fXT (x|x0,FαT )dx

]
. (3.8)

As the density function mass is concentrated around the origin and zero everywhere (Fang and Oosterlee, 2008),

we truncate the integration domain into the interval [aT , bT ] such that

V (0, T, x0, α0) = EQ
[
e−

∫ T
0
rtdt

∫ bT

aT

h(x)fXT (x|x0,FαT )dx

]
, (3.9)

where the lower and upper bounds aT and bT are dependent on the state of the chain at T , that is, αT . By

substituting the density function expansion presented in Equation (3.1), we obtain

V (0, T, x0) = EQ
[
e−

∫ T
0
rtdt

∫ bT

aT

h(x)

∞∑
k=0

′
AXT (k, x0, αT ,FαT ) · cos

(
kπ

x− aT
bT − aT

)
dx

]

= EQ
[
e−

∫ T
0
rtdt

∫ bT

aT

h(x)

N−1∑
k=0

′
FXT (k, x0, αT ,FαT ) · cos

(
kπ

x− aT
bT − aT

)
dx

]

= EQ
[
e−

∫ T
0
rtdt

N−1∑
k=0

′
FXT (k, x0, αT ,FαT )

∫ bT

aT

h(x) cos

(
kπ

x− aT
bT − aT

)
dx

]
. (3.10)

Here

FXT (k, x0, αT ,FαT ) =
2

bT − aT
· Re

{
ΦXT

(
kπ

bT − aT
;x0,FαT

)
exp

{
− ikπaT
bT − aT

}}
, (3.11)

with

ΦXT

(
kπ

bT − aT
;x0,FαT

)
= EQ

[
e
i· kπ
bT−aT

·XT |FαT
]
, (3.12)
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and AXT (k, x0, αT ,FαT ) can be defined similarly as FXT (k, x0, αT ,FαT ) (refer to Equations (3.2)-(3.5)) but with

the domain of the integration in ΦXT ( kπ
bT−aT ;x0,FαT ) truncated into [aT , bT ].

Letting

Ih(k, αT ) =

∫ bT

aT

h(x) cos

(
kπ

x− aT
bT − aT

)
dx (3.13)

and

c(k) = (c1(k), c2(k), . . . , cn(k))>, B(k) = (B1(k), B2(k), . . . , Bn(k))>, (3.14)

with

cj(k) =
kπ

bj − aj
, Bj(k) =

2

bj − aj
e
−
ikπaj
bj−aj Ih(k, ej), (3.15)

the expectation in (3.10) can then be computed as

EQ
[
e−

∫ T
0
rtdtFXT (k, x0, αT ,FαT )Ih(k, αT )

]
= EQ

[
e−

∫ T
0
rtdtRe

{
ΦXT

(
kπ

bT − aT
;x0,FαT

)
BT (k)

}]
= Re

{
Φ̂XT (c(k),B(k);x0)

}
, (3.16)

where

Φ̂XT (c(k),B(k);x0) = EQ
[
e−

∫ T
0
rtdtΦXT

(
kπ

bT − aT
;x0,FαT

)
BT (k)

]
= EQ

[
e
−

∫ T
0
rtdt+i· kπ

bT−aT
·XTBT (k)

]
. (3.17)

Therefore, using the COS method, we can approximate the option price by

V (0, T, x0) =

N−1∑
k=0

′
Re
{

Φ̂XT (c(k),B(k);x0)
}
. (3.18)

4 Guaranteed minimum maturity benefits valuation

In this section, we present three typical payoff functions of guaranteed minimum maturity benefits embedded

in variable annuity contract. We derive explicit valuation expressions for the respective payoffs. The payoff of

a guaranteed minimum maturity benefit (GMMB) can be represented as

ϑ(ST , GT ) = max{ST , GT }, (4.1)

where2

GT =


G if the guarantee is fixed,

GeδT if the guarantee is rolled up at a rate of δ,(∏T
m=0 Sm

) 1
T+1

if it is a ratchet geometric average guarantee.

(4.2)

2For the ratchet features we consider the floating strike case which is one of the most less trivial cases.
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The valuation of the fixed and roll-up cases can be accomplished uniformly as detailed below, where for conve-

nience, GT is either equal to G or GeδT .

Subsection 4.1 presents the fixed and roll-up guarantee cases. Note that the fixed guarantee is a special

case of the roll-up case. We then derive valuation expressions for the geometric average guarantee case which

is more complex in Subsection 4.2.

4.1 Fixed and roll-up cases

The payoff of a GMMB can be represented as

ϑ(ST , GT ) = max{ST , GT } = ST + max{GT − ST , 0}

= GT + max{ST −GT , 0}, (4.3)

where ST and GT are the underlying investment fund value/stock price and the minimum guarantee at maturity,

respectively. The two decompositions in Equation (4.3) are equivalent and will lead to the same VA contract

prices as long as taxation rules are not incorporated. When taxes are factored, price differences may occur

depending on the jurisdiction (see Alonso-Garćıa et al. (2020) and Moenig and Bauer (2016) for detailed

discussions incorporating taxation). The first decomposition is usually presented from the provider’s perspective,

while the second equality is more naturally associated with the policyholder’s perspective. In the fixed and roll-

up cases, we use the second equality for all derivations. Whereas, in the ratchet geometric average case we

adopt a decomposition (refer to (4.21)) equivalent to the first equality in Equation (4.3).

Recalling the log-stock price defined as Xt := log(St), for any t ∈ [0, T ], particularly the initial log-stock

price as x0 := logS0, we have ST = eXT . Letting hM (x) := max{ex −GT , 0}, the value of a GMMB rider can

be calculated as

VM (0, T, x0) = EQ
[
e−

∫ T
0
rtdtGT

]
+ EQ

[
e−

∫ T
0
rtdth(XT )

]
=
〈
α0, exp

{
[−Diag(r) +A]T

}
1n
〉
GT + EQ

[
e−

∫ T
0
rtdthM (XT )

]
, (4.4)

where the first term can be derived similarly as in the proof of Proposition 2.1. Substituting Equation (3.10)

into the second component of (4.4) yields

VM (0, T, x0) =
〈
α0, exp

{
[−Diag(r) +A]T

}
1n
〉
GT +

N−1∑
k=0

′
Re
{

Φ̂XT (c(k),B(k);x0)
}
, (4.5)

where c(k) = (c1(k), c2(k), . . . , cn(k))> and B(k) = (B1(k), B2(k), . . . , Bn(k))> with

cj(k) =
kπ

bj − aj
and Bj(k) =

2

bj − aj
e
−
ikπaj
bj−aj IM (k, ej). (4.6)

Note that in Equation (4.5), IM (k, ej) are integral terms, for k = 0, 1, . . . , N − 1 and j = 0, 1, . . . , n, that is

IM (k, ej) =

∫ bj

aj

max{ex −GT , 0} cos

(
kπ

x− aj
bj − aj

)
dx

=

∫ bj

lnGT

(ex −GT ) cos

(
kπ

x− aj
bj − aj

)
dx, (4.7)
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which simplifies to3

IM (k, ej) =

∫ bj

lnGT

ex cos

(
kπ

x− aj
bj − aj

)
dx−GT

∫ bj

lnGT

cos

(
kπ

x− aj
bj − aj

)
dx

= GT
bj − aj
kπ

sin

(
kπ

lnGT − aj
bj − aj

)
+

sin(kπ)

kπ
+

ebj

1 +
(

kπ
bj−aj

)2

[
cos(kπ) +

kπ

bj − aj
sin(kπ)

]

− GT

1 +
(

kπ
bj−aj

)2

[
cos

(
kπ

lnGT − aj
bj − aj

)
+

kπ

bj − aj
sin

(
kπ

lnGT − aj
bj − aj

)]
, if k 6= 0; (4.8)

and

IM (k, ej) = ebj +GT [lnGT − (bj + 1)] , if k = 0. (4.9)

Remark 4.1. It remains to input the generalised characteristic function Φ̂XT (c(k),B(k);x0) into Equation

(4.5). For the GRS model, the generalised characteristic functions in Examples 2.1 and 2.2 are given by Equa-

tions (2.46) and (2.59), respectively.

For the CRS model (see Appendix A), we next provide a detailed pricing formula as an illustration. Recall

the price we aim to find is

VM (0, T, x0) =
〈
α0, exp

{
[−Diag(r) +A]T

}
1n
〉
GT +

N−1∑
k=0

′
Re
{

Φ̂XT (c(k),B(k);x0)
}
. (4.10)

In the CRS model, the generalised characteristic function evaluated at time 0 has been presented in Equation

(A.10), that is

Φ̂XT (c(k),B(k);x0) =
〈

exp{AT}α0, Ψ̂(0, x0, α0)
〉
, (4.11)

where

Ψ̂(0, x0, α0) =
(
Ψ̂1(0, x0, α0), Ψ̂2(0, x0, α0), . . . , Ψ̂n(0, x0, α0)

)>
(4.12)

with

Ψ̂j(0, x0, α0) = eicj(k)x0
〈
α0, exp

{
[−Diag(G(cj(k)) + r) +A]T

}
1n
〉
Bj(k), (4.13)

cj(k) =
kπ

bj − aj
, Bj(k) =

2

bj − aj
e
−
ikπaj
bj−aj IM (k, ej), (4.14)

and

Gj(u) := −
{
iuµj −

1

2
u2σ2

j +

∫
R0

(
eiuξj(x) − 1− iuξj(x)

)
νj(dx)

}
.

3Here, we make use of the identity∫
emx cos(nx)dx =

emx

m2 + n2
[n sin(nx) + m cos(nx)] + const.
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Remark 4.2. In the above analysis, we do not consider the management fees charged by the VA provider. In

literature, it is usually assumed that a continuously compounded insurance fee is levied by the provider on the

fund value. Let Ft be the time-t fee-adjusted fund value defined by Ft = e−qtSt, where q is the continuously

compounded rate of insurance fee. When the fee is taken into account, everything else being identical, the payoff

of a GMMB becomes4

ϑ(FT , GT ) = max{FT , GT } = max{e−qTST , GT }

= e−qT max{ST , eqTGT } = e−qT max{ST , ḠT }, (4.15)

where

ḠT =

 GeqT if the guarantee is fixed,

Ge(δ+q)T if the guarantee is rolled up at a rate of δ.
(4.16)

Therefore, both the fixed and rolled up guarantees can be tackled under the original rolled up case in Equation

(4.2), with rates q and δ + q, respectively. We can adapt all the results derived in this subsection to the case

with the continuously compounded rate of insurance fee q, if we scale Equation (4.4) by e−qT and simultaneously

replace GT by ḠT in Equation (4.4).

Remark 4.3. The Greeks for the GMMB rider can be computed using standard manipulations (see Remark 3.2

in Fang and Oosterlee (2008) for details) as follows:

∆ =
1

S0

N−1∑
k=0

′
Re
{

Φ̂XT
(
c(k),B∆(k);x0

)}
, (4.17)

where B∆(k) := (B∆
1 (k), B∆

2 (k), . . . , B∆
n (k))> with

B∆
j (k) := Bj(k) · ikπ

bj − aj
=

2ikπ

(bj − aj)2
e
−
ikπaj
bj−aj IM (k, ej). (4.18)

The gamma can also be shown to be

Γ =
1

S2
0

N−1∑
k=0

′
Re
{

Φ̂XT
(
c(k),BΓ(k);x0

)}
, (4.19)

where BΓ(k) := (BΓ
1 (k), BΓ

2 (k), . . . , BΓ
n(k))> with

BΓ
j (k) :=

(
− ikπ

bj − aj
+

(
ikπ

bj − aj

)2
)
·Bj(k) =

(
− ikπ

bj − aj
+

(
ikπ

bj − aj

)2
)

2

bj − aj
e
−
ikπaj
bj−aj IM (k, ej). (4.20)

4.2 GMMB with the ratchet floating strike geometric average feature

The payoff of a GMMB with ratchet features can be represented as

ϑ(ST , GT ) = max


(

T∏
m=0

Sm

) 1
T+1

, ST


4Analysis of the impact of fees is usually performed on contracts where the policyholder has the option to surrender early, see

Kang and Ziveyi (2018) for details.
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= ST + max


(

T∏
m=0

Sm

) 1
T+1

− ST , 0


= ST + max{GT − ST , 0}, (4.21)

where GT =
(∏T

m=0 Sm

) 1
T+1

. Denoting the second term in the last equality of Equation (4.21) as

hR(ST ) ≡ max{GT − ST , 0}, (4.22)

the value of the ratchet option can be represented as

ṼR(0, T, x0) = EQ
[
e−

∫ T
0
rtdthR(ST )

]
= EQ

[
e−

∫ T
0
rtdt max{GT − ST , 0}

]
= EQ

[
e−

∫ T
0
rtdtST max

{
GT
ST
− 1, 0

}]
. (4.23)

The above equation can be expressed as

ṼR(0, T, x0) = S0EQ
[
e−

∫ T
0
rtdt

ST
S0

max

{
GT
ST
− 1, 0

}]
. (4.24)

Since the discounted stock price process is a Q-martingale, we can change the probability measure by letting

dQ̃

dQ

∣∣∣∣
FT

= ηT = e−
∫ T
0
rtdt

ST
S0
. (4.25)

Equation (4.24) is then equivalent to

ṼR(0, T, x0) = S0EQ̃
[
max

{
GT
ST
− 1, 0

}]
. (4.26)

where EQ̃ [·] denotes the expectation taken under Q̃.

To calculate the above equation, we first let5 Zm = ln(Gm/Sm), for any m = 0, 1, · · · , T , and denote

by fZT (z|FαT , z0) the probability density function of ZT under Q̃ given Z0 = z0. Note that Z0 = z0 =

ln(G0/S0) = 0. Thus we suppress the dependence of the density function on the initial value z0 and write

fZT (z|FαT ) := fZT (z|FαT , z0). Therefore, we can express Equation (4.26) as

ṼR(0, T, x0) = S0EQ̃
[
max

{
eZT − 1, 0

}]
= S0EQ̃

[∫ ∞
−∞

max {ez − 1, 0} fZT (z|FαT )dz

]
≈ S0EQ̃

[∫ bT

aT

max {ez − 1, 0} fZT (z|FαT )dz

]

= S0

N−1∑
k=0

′
Re
{

Φ̂ZT (c(k),H(k))
}
, (4.27)

where c(k) = (c1(k), c2(k), · · · , cn(k))> and H(k) = (H1(k), H2(k), · · · , Hn(k))> with

cj(k) =
kπ

bj − aj
, Hj(k) =

2

bj − aj
e
−
ikπaj
bj−aj IR(k, ej) (4.28)

5Refer to Appendice B.3 and B.4 for derivations of the characteristic functions of ZT .
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and

IR(k, ej) =

∫ bj

aj

max {ez − 1, 0} cos

(
kπ

z − aj
bj − aj

)
dz

=

∫ bj

0

ez cos

(
kπ

z − aj
bj − aj

)
dz −

∫ bj

0

cos

(
kπ

z − aj
bj − aj

)
dz

= − bj − aj
kπ

sin

(
kπ

aj
bj − aj

)
+

sin(kπ)

kπ
+

ebj

1 +
(

kπ
bj−aj

)2

[
cos(kπ) +

kπ

bj − aj
sin(kπ)

]

− 1

1 +
(

kπ
bj−aj

)2

[
cos

(
kπ

aj
bj − aj

)
− kπ

bj − aj
sin

(
kπ

aj
bj − aj

)]
, if k 6= 0; (4.29)

and

IR(k, ej) = ebj − (bj + 1), if k = 0. (4.30)

Remark 4.4. It remains to derive the function Φ̂ZT (·). The derivations for the CRS model can be found in

Appendix B.3. For the GRS model, Φ̂ZT (·) should be derived case by case. Since the derivations for Examples 2.1

and 2.2 are equivalent, we only consider Example 2.2 and relegate the lengthy derivations of the corresponding

Φ̂ZT (·) to Appendix B.4.

Therefore, substituting Φ̂ZT (·) into Equation (4.27) and using (4.21), we obtain the value of a GMMB with

ratchet features as

VR(0, T, x0) = EQ
[
e−

∫ T
0
rtdtϑ(ST , GT )

]
= EQ

[
e−

∫ T
0
rtdtST

]
+ ṼR(0, T, x0)

= S0

[
1 +

N−1∑
k=0

′
Re
{

Φ̂ZT (c(k),H(k))
}]

. (4.31)

One can refer to Equations (B.25) and (B.58) for the explicit expressions for the CRS model and Example 2.2,

respectively.

Remark 4.5. Similarly, when guarantee fees are taken into account, everything else being identical, the payoff

of a GMMB becomes

ϑ(FT , GT ) = max


(

T∏
m=0

Fm

) 1
T+1

, FT

 , (4.32)

where the dynamics of Ft = e−qtSt satisfies

dFt
Ft

= (rt − q)dt+ · · · , t ∈ [0, T ], F0 = S0,

with “· · · ” representing omitted Q-martingale components. Recall that the stock price process evolves as

dSt
St

= rtdt+ · · · , t ∈ [0, T ].
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Therefore, we can adapt all the results derived in this subsection to the case with the continuously compounded

rate of insurance fee q, if we scale Equation (4.31) by e−qT and simultaneously replace the risk-free interest rate

from rt by rt − q. That is,

VR(0, T, x0) = EQ
[
e−

∫ T
0
rtdtϑ(FT , GT )

]
= e−qTEQ

[
e−

∫ T
0

(rt−q)dtϑ(FT , GT )
]
.

5 Numerical illustrations

In this section, we perform extensive numerical experiments showcasing the computational efficiency of the

COS method in terms of speed and accuracy under the settings presented in Section 4 above. All efficiency

tests are assessed relative to the Monte Carlo simulation. In enhancing the accuracy of the COS method, this

paper makes a unique contribution by devising an algorithm for optimally selecting the number of grid points,

N , such that the computed variable annuity contract values are within a given error tolerance. Prior literature

has predominantly chosen the grid points to be 2N , with N being a positive integer. This paper shows that

this does not necessarily need to be the case. Instead, we derive an explicit relationship between the number of

grid points and approximation error for the COS method. This section is organised into two parts. Subsection

5.1 contains all numerical experiments relating to the fixed and roll-up guarantees considered in Subsection 4.1.

Subsection 5.2 is exclusive for numerical analysis for the ratchet guarantee case presented in Subsection 4.2.

Subsections 5.1 and 5.2 are based on Examples 2.1 and 2.2, respectively. Recall that pricing formulas for the

ratchet guarantee case should be derived case by case and we only provide the derivations for the CRS model

and Example 2.2 in Appendices B.3-B.4. Though we can easily adapt those derivations to Example 2.1, they

are very lengthy and involve no further innovations. Indeed, even the pricing formula itself for Example 2.1

would be fairly lengthy in the ratchet guarantee case. For this reason, we prefer neither to derive the pricing

formula for Example 2.1 nor to provide the pricing formula without derivations for Example 2.1. This is also

the reason why we focus on the two different examples in Subsections 5.1 and 5.2, respectively. The purpose of

numerical illustrations is to demonstrate the generality and efficiency of our framework to accommodate a wide

range of models. Since the underlying models in Examples 2.1-2.2 and the payoff functions in the fixed/roll-up

and rachet cases are quite different, we do not need to compare the VA contract prices across examples or payoff

functions.

5.1 Variable annuity embedded with fixed GMMB

In this subsection, we exclusively present convergence tests and sensitivity analysis for the variable annuity

when the guarantee is fixed. The general findings hold for the roll-up guarantee case, as such we consider the

following payoff at maturity

ϑ(ST , G) = max(ST , G).
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For all numerical illustrations in this subsection, unless otherwise stated, we use the parameter set presented in

Table 1. Efficiency tests of the COS method relative to the Monte Carlo approach in terms of computational

speed and convergence analysis are presented in Subsection 5.1.1. Sensitivity tests relating to changes in variable

annuity contract prices relative to underlying state variables are presented in Subsection 5.1.2.

Regime GBM Heston Double Exponential

r1 = 0.01 r2 = 0.02 r3 = 0.01

σ1 = 0.2 σv = 0.01 σ3 = 0.2

θ = 0.04 λ = 0.35

κ = 10 p = 0.8

η+ = 30, η− = 50

Table 1: Parameter set for all numerical experiments performed for the fixed and roll-up cases. Unless otherwise

stated, we assume that the initial stock price/underlying fund value is S0 = 0.9, the initial guarantee G = 1

and maturity T = 30.

5.1.1 Computational efficiency analysis

For all analysis in this subsection, we compare the performance of our proposed COS method against

the Monte Carlo simulation. In particular, we stop the computation of the COS method when the marginal

incremental value has an absolute error below 1e−5. In so doing, we optimally choose the grid size, N , of

the COS method such that the resulting error is less than 1e−5. We take the price computed with N = 29

grid-points in the COS method as the pseudo true value to benchmark the results. In what follows, we will

report the following:

• the time in seconds, Tcos and the grid size, N of the proposed COS method;

• the time in seconds, Tmc and the number of Monte-Carlo sample, M such that the resulting Monte-Carlo

estimate is less than 5e−3 to the pseudo true value and with standard error less than 5e−3.

Note that we have ignored the Monte Carlo bias in the scheme, which exists when conditional density is not

analytically available. Instead, we rely on the Euler scheme to approximate the conditional density of the

underlying stochastic processes. For all numerical illustrations that follow, we set the time steps dt = 1e−3

for sampling the Euler scheme, which ensures a negligible approximation bias. Below we perform successive

analysis for three settings. The single-regime case is equivalent to the standard case without regime-switching,

where the underlying fund dynamics follows either the GBM model, Heston stochastic volatility model or the

double exponential (DE) model. The second is the two-regime case which is a combination of any two of the

models. The third case involves all the three regimes under consideration.
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Single-regime cases

We first consider the single-regime cases. Table 2 presents efficiency comparisons between the COS method

and Monte Carlo simulation. Among the three models, the Heston stochastic volatility model requires substan-

tial computational costs for the Monte Carlo method to approximate the corresponding stochastic differential

equation as reflected in Table 2. It takes a fraction of a second for the COS method to generate accurate VA

prices across all scenarios presented. We also note that for the Heston stochastic volatility case, more grid

points are required for the COS method relative to either the GBM model or the DE model to achieve accuracy

within the error tolerance of 1e−5. In summary, the Monte Carlo method is particularly efficient for a single

regime where the step-wise conditional density is known and easy to sample. This is the case for the GBM and

DE models.

COS Monte Carlo

Price N Tcos Price M Tmc

GBM 1.1656 53 0.2163 1.1657 63,960 0.1414

Heston 1.0507 152 0.8739 1.0506 68,518 136.5889

DE 1.1665 53 0.2443 1.1640 67,685 0.1584

Table 2: Comparison of the COS method and Monte Carlo approach in the single-regime cases. All other

parameters are as presented in Table 1 above.

Two-regime cases

When there is more than one regime, sampling of the Markov transition is relatively extensive. One approach

considers the sampling of inter-jump times as exponential random variables and evolves the state between the

jump times depending on the current regime. Alternatively, we can also consider an Euler scheme such that

we approximate the continuous state transition according to the discrete case with the transition probability

matrix denoted as

P = exp(Adt),

with dt being an instantaneous time (Yuan and Mao, 2004). Here, we assume that dt = 1e−3 similar to the

Heston stochastic volatility case described above. We analyse three scenarios of the two-regime cases, where

the transition rate matrices are presented as

A1 =


−0.5 0 0.5

0 0 0

0.5 0 −0.5

 , A2 =


−0.5 0.5 0

0.5 −0.5 0

0.0 0 0.0

 , A3 =


0.0 0.0 0.0

0 −0.5 0.5

0.0 0.5 −0.5

 ,

where the initial regime can either be GBM or DE model, GBM or Heston model, Heston or DE model in the

three scenarios, respectively. Table 3 shows price comparisons and the corresponding computational costs of
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the two methods. The computational cost of the COS method is very low (less than a second) irrespective of

the initial regime relative to Monte Carlo simulation which elapses at least 126 seconds to generate comparable

prices.

COS Monte Carlo

Price N Tcos Price M Tmc

A1, GBM 1.1672 53 0.3041 1.1658 57,344 126.1446

A1, DE 1.1672 53 0.4427 1.1622 63,428 265.9906

A2, GBM 1.1048 64 0.3799 1.1007 63,181 145.9834

A2, Heston 1.1019 170 0.8514 1.1024 64,476 150.0725

A3, Heston 1.1016 71 0.5494 1.1028 63,930 203.5537

A3, DE 1.1050 71 0.3666 1.1083 67,049 216.0365

Table 3: Comparison of the COS method and Monte Carlo approach in the two-regime cases. All other

parameters are as presented in Table 1.

Three-regime cases

We now consider computational efficiency of the three-regime cases and perform our numerical illustrations

by assuming the following transition rate matrix

A =


−0.6 0.3 0.3

0.3 −0.6 0.3

0.3 0.3 −0.6

 (5.1)

with the regimes ordered as the GBM, Heston, and DE models, respectively. Consistent with the two-regime

cases, we note the superiority of the COS method in terms of computational efficiency as reflected in Table 4.

From this table, we note a slight increase in the number of grid points is required to achieve the target accuracy

level for the COS method. However, the corresponding computational cost does not increase substantially

compared to the single-regime and two-regime cases.

COS Monte Carlo

Price N Tcos Price M Tmc

GBM 1.1676 95 0.6605 1.1659 64,926 199.4552

Heston 1.1641 108 0.8689 1.1604 62,662 192.9726

DE 1.1676 95 0.4831 1.1646 64,276 197.3541

Table 4: Comparison of the COS method and Monte Carlo approach in the three-regime cases. All other

parameters are as presented in Table 1.

To highlight this point, we perform convergence analysis for the COS method in Figure 1. In this figure,
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we present the convergence of the COS method in the scenario where the initial state is the GBM. To check

the rate of convergence, we obtain approximations with a grid for larger values of N , and plot the negative

logarithm of the absolute difference between the approximated and true values against log(N). Note that in

theory ε ≈ N−α for N large, where ε is the absolute value of the approximation error. This implies that

− log(|ε|) = α log(N) + c,

as plotted on the right panel of Figure 1, where c is some constant independent of N . From the left plot of

Figure 1, strong convergence is achieved for N < 100 implying low computational cost associated with the COS

method for higher levels of accuracy.
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Figure 1: Convergence plots of the COS method. The line of best fit for − log(|ε|) against log(N) is − log(|ε|) =

−39.7064 + 9.3684 log(N). The reference is taken from the value computed via the COS method using N = 211.

All other parameters are as presented in Table 1.

5.1.2 Sensitivity analysis under the three-regime framework

Having presented convergence tests for the GMMB with fixed guarantee in the above subsection, we now

perform sensitivity analysis to investigate the behaviour of the variable annuity contract with respect to changes

in the underlying state variables. Figure 2 contains subplots of the changes in variable annuity prices with respect

to changes in the guarantee level (G), initial fund value (S0), and maturity of the contract (T ), respectively. In

this analysis, we have assumed the GBM to be the initial state with all other parameters as presented in Table

1.

From Figure 2, we note that the VA price is an increasing function of both the guarantee and underlying

fund value which is in line with increasing risk from the VA provider’s perspective. A humped sensitivity with

respect to the contract maturity is also evident in all our numerical illustrations, with the peak around T = 23.

We have tested the results with other initial states, and the general conclusion is consistent. This behaviour is
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consistent with existing literature on GMMB riders which note the concavity of prices with respect to maturity

(Bernard et al., 2014; Kang and Ziveyi, 2018). This is because a (European) call option and a constant payment

are embedded in the fixed guarantee rider, as shown in the first decomposition of Equation (4.3). The call option

price increases with the time-to-maturity, and the actuarial present value of the constant payment decreases

with the time-to-maturity. The combined effect is reflected by the concave relationship between the VA price

and the time-to-maturity. For completeness, we also provide a surface plot highlighting the behaviour of the

VA contract prices to changes in the initial fund value and time-to-maturity when the initial state is the GBM

in Figure 3. We note consistent behaviour as highlighted in Figure 2.
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Figure 2: The sensitivity of VA prices with respect to G, S0 and T . All other parameters are as presented in

Table 1.

Figure 3: The sensitivity of VA prices with respect to S0 and T . All other parameters are as presented in Table

1.
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In Figure 4, we present the sensitivity of the VA prices with respect to G for varying maturities. From this

figure, we note that deep in-the-money guarantees are more expensive relative to contracts with lower guarantees

as the provider will have higher risk exposure. One key finding to note from all the subplots of Figure 4 is

that for lower guarantees, longer maturity contracts are more expensive relative to shorter maturity contracts.

However, as the guaranteed amount increases, we note a shift with shorter maturity contracts becoming more

expensive relative to longer maturity contracts.
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Figure 4: The sensitivity of VA prices with respect to G with different maturities and initial regimes. All other

parameters are as presented in Table 1.

We now consider the effect of the transition intensities on the VA prices. In particular, we consider

A∗ = δA,

where A is as defined in Equation (5.1). Figure 5 presents the values of the guarantee for varying intensity

levels. As the intensity increases, the impact of the initial states diminishes. Under our parameter set-up, the

prices produced by the GBM and the DE regimes are almost identical due to a relatively small Poisson intensity

that we cannot differentiate as reflected on the left panel of Figure 5. Indeed, this finding is consistent with

that in Figures 5-6 and 9-10 of Fan et al. (2015). On the right panel, we plot the difference in values where the

underlying stock price dynamics start with the GBM and DE models, respectively, and it is evident from this

plot that the differences are diminishing as the intensity grows. This is because with a larger intensity, different

regimes are more likely to transition between each other, thereby less likely to stay the same. Then, the impact

of the initial regimes on the VA prices will diminish.
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Figure 5: The sensitivity of VA prices with respect to intensity level. The price differences on the right panel

are computed as the price of the GMB initial state minus the price of the DE initial state. All other parameters

are as presented in Table 1.

5.2 Variable annuity embedded with ratchet geometric average GMMB

This subsection presents numerical illustrations for the VA contract embedded with a GMMB whose guar-

antee has ratchet features as presented in Subsection 4.2. To be more precise, we consider the payoff function

ϑ(ST , GT ) = max


(

T∏
m=0

Sm

) 1
T+1

, ST

 ,

where the underlying fund dynamics are governed by a three-regime model. It is worth highlighting that the

ratchet features are very distinct to the fixed and roll-up guarantees presented in Subsection 5.1 above. As such,

for all numerical experiments that follow, we will assume that in each of the three states, the underlying fund

evolves according to the Heston (1993) stochastic volatility process (refer to Example 2.2 for details about the

three-regime Heston model). For illustrative purposes, we will consider a transition intensity matrix presented

in Equation (5.1) and base parameters presented in Table 5.

Regime 1 2 3

r1 = 0.01 r2 = 0.02 r3 = 0.03

θ1 = 0.04 θ2 = 0.05 θ3 = 0.06

Table 5: Parameter set for all numerical experiments performed in Subsection 5.2. Unless otherwise stated, we

assume that the initial stock price/underlying fund value is S0 = 0.9, the initial guarantee G = 1 and maturity

T = 15. Across all three regimes, we assume the following parameters for the Heston (1993) stochastic volatility

model: V0 = 0.04, σv = 0.05, κ = 10, and ρ = 0.5.
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Figure 6 presents the convergence analysis for the guarantee with ratchet features. We take the benchmark

solution as that generated by the COS method computed with N = 211 grid points. From the left and right

plots of Figure 6, we note a high convergence rate of the COS method with approximately 50 grid points and the

linear relationship between − log(|ε|) and log(N), which are consistent with the analysis and findings presented

in Subsection 5.1.1.
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Figure 6: The convergence of the COS approach for GMMB with ratchet features. We consider the case with

the geometric average floating strike guarantee presented in Subsection 4.2. The line of best fit is − log(|ε|) =

−266.92 + 61.633 log(N). The reference is taken from the value computed via the COS method using N = 211.

All other parameters used for generating the plots are as presented in Table 5.

Having performed convergence tests, next, we assess the sensitivity of the variable annuity contract prices

relative to changes in the underlying state variables. From the left plot of Figure 7, we note that the variable

annuity contract price increases linearly with an increasing initial value of the fund. This is logical as there will

be a higher probability of higher guarantees which are directly related to the fund value through the ratchet

feature. From the middle plot of Figure 7, we note concave/hump-shaped sensitivity of the contract price with

respect to the maturity of contract, which is again consistent with the fixed guarantee case in Subsection 5.1.1.

The contract price is an increasing function of the initial instantaneous variance, V0 as reflected on the right

plot of Figure 7.

Shocking the intensity matrix has varying impact on the variable annuity contract prices as reflected in

Figure 8. We note that the VA contract prices are divergent with different initial regimes when δ is relatively

low. As the intensity increases, the differences are diminishing, which is consistent with the finding in Subsection

5.1. In the terminology of Fan et al. (2015), the blue line corresponds to a good initial state (regime), where

the guarantee is relatively cheaper than those in the other two initial states. The optimism in the good state

may mislead the VA provider to underestimate the likelihood of a transition from the current state to a bad

one. Then such underestimation of the transition intensity would undervalue the VA contract. Therefore, the
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Figure 7: The sensitivity of the VA price with respect to S0, T and V0. All other parameters used for generating

the plots are as presented in Table 5.

VA contract provider should be cautious about the outlook of market regimes.
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Figure 8: The sensitivity of the VA price with respect to intensity level. All other parameters used for generating

the plots are as presented in Table 5.

We wrap up the analysis by providing a surface plot on how contract price reacts to changes in the initial

variance and maturity in Figure 9 when all other parameters are as presented in Table 5 above. The trend is

the same, that is, increasing V0 implies increasing value. However, the effect of maturity is so strong that one

cannot visually tell the trend in the other dimension. If one focuses at say, T = 30, the increasing trend in V0

is evident.
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Figure 9: The sensitivity of the VA price with respect to V0 and T . All other parameters used for generating

the plots are as presented in Table 5.

6 Conclusion

This paper has considered the valuation of variable annuity contracts embedded with guaranteed minimum

maturity benefit riders whose underlying fund evolves according to generalised regime-switching models. The

environment in each regime is assumed to have distinct features, such as the underlying process driving the

dynamics of the fund. We presented two illustrative examples whose regimes can be characterised by either the

geometric Brownian motion process, double exponential process or Heston (1993) stochastic volatility process.

For the GMMB riders, we considered two distinct cases: a fixed guarantee that shares similar characteristics

with roll-up guarantees and the second being a guarantee with ratchet features involving the geometric average

of the historical fund value until maturity of the contract. Explicit valuation expressions for variable annuity

contracts embedded with fixed and ratchet guarantees have been derived with the aid of the Fourier Cosine

method, which is a proven versatile technique widely known for its computational efficiency in terms of speed

and accuracy.

Efficiency tests for the valuation framework have been analysed relative to Monte Carlo simulation, and

an algorithm for establishing the optimal number of grid points associated with the convergence of the COS

method has been presented. Prior literature has mainly relied on ad hoc techniques when implementing the

COS method.

Various sensitivity tests assessing how the variable annuity prices respond to changes in the key underlying

variables such as contract maturity, guarantee level, transition intensity matrix, among others, have been

presented, highlighting the impact of such changes.
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A Review of classical regime-switching model

In this Appendix, we review the CRS model, namely, the regime-switching jump-diffusion model. Suppose
that the stock price follows:

dSt
St−

= r(αt)dt+ σ(αt)dWt +

∫
R0

[
eξ(y,αt) − 1

]
Ñ(dt, dy, αt), (A.1)

where r(αt), σ(αt), and ξ(y, αt) are the risk-free interest rate, the volatility and the jump ratio of the stock at
time t, and are modulated by the chain as follows:

r(αt) := 〈r, αt〉 , r := (r1, r2, . . . , rn)>,

σ(αt) := 〈σ, αt〉 , σ := (σ1, σ2, . . . , σn)>,

ξ(y, αt) := 〈ξ(y), αt〉 , ξ(y) := (ξ1(y), ξ2(y), . . . , ξn(y))>.

where

rj := r(ej), σj := σ(ej), ξj(y) := ξ(y, ej).

By convention, we assume that rj > 0, σj > 0 and ξj(y) > −1, for all j = 1, 2, . . . , n.
Denote by the log-stock price asXt := log(St). Applying Itô’s formula, we obtain the dynamics of {Xt}t∈[0,T ]:

dXt = µ(αt)dt+ σ(αt)dWt +

∫
R0

ξ(y, αt)Ñ(dt, dy, αt), (A.2)

where

µ(αt) := r(αt)−
1

2
σ2(αt)−

∫
R0

[
eξ(y,αt) − 1− ξ(y, αt)

]
ν(dy, αt). (A.3)

Denote by

dXj
t = µjdt+ σjdWt +

∫
R0

ξj(y)Ñj(dt, dy), (A.4)
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where

Ñj(dt, dy) := Ñ(dt, dy, ej) = N(dt, dy)− νj(dy)dt. (A.5)

Obviously, the CRS model is a special case of the GRS model, since

Xt = x0 +

∫ t

0

µ(αs)ds+ σ(αs)dWs +

∫
R0

ξ(y, αs)Ñ(ds, dy, αs) = x0 +

n∑
j=1

∫ t

0

〈αs, ej〉 dXj
s . (A.6)

It can be shown that the characteristic functions of Xj
T and XT and the discounted characteristic function

of XT are given by

Φj(u; t, x) := EQ
[
eiuX

j
T |Xj

t = x
]

= exp
{
iux+ gj(u, t)

}
, (A.7)

ΦXT (u; t, x) := EQ
[
eiuXT |Xt = x

]
= eiux

〈
αt, exp

{
[−diag(G(u)) +A](T − t)

}
1n
〉
, (A.8)

and

Φ̃XT (u; t, x) := EQ
[
e−

∫ T
t
r(αs)dseiuXT |Xt = x

]
= eiux

〈
αt, exp

{
[−diag(G(u) + r) +A](T − t)

}
1n
〉
, (A.9)

where

G(u) :=
(
G1(u), G2(u), . . . , Gn(u)

)>
,

with

Gj(u) := −
{
iuµj −

1

2
u2σ2

j +

∫
R0

(
eiuξj(y) − 1− iuξj(y)

)
νj(dy)

}
= gjt (u, t),

and

gj(u, t) =

{
iuµj −

1

2
u2σ2

j +

∫
R0

(
eiuξj(y) − 1− iuξj(y)

)
νj(dy)

}
(T − t),

for j = 1, 2, . . . , n.
The generalised characteristic function is given by

Φ̂XT (u,B; t, x) := EQ
[
e−

∫ T
t
r(αs)ds+iuTXTBT |Xt = x

]
=
〈

exp{A(T − t)}αt, Ψ̂(t, x, αt)
〉
, (A.10)

where

Ψ̂(t, x, αt) =
(
Ψ̂1(t, x, αt), Ψ̂2(t, x, αt), . . . Ψ̂n(t, x, αt)

)>
(A.11)

with

Ψ̂j(t, x, αt) = eiujx
〈
αt, exp

{
[−diag(G(uj) + r) +A](T − t)

}
1n
〉
Bj . (A.12)

B Technical proofs

B.1 Proof of Proposition 2.1

Proof. By Itô’s formula, we have

dΦj(u; t,Xj
t , ζt) = d exp

{
iuXj

t + gj(u, t) +D(u, t, ζt)
}

= Φj(u; t,Xj
t , ζt)

{
iudXj

t +
[
gjt +Dt

]
dt+Dζdζt −

u2

2
d
〈

(Xj
t )c, (Xj

t )c
〉

+
1

2

[
Dζζ + (Dζ)

2
]
d 〈(ζt)c, (ζt)c〉+ iuDζd

〈
(Xj

t )c, (ζt)
c
〉
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+

(
eiu∆Xjt+∆D(u,t,ζt) − 1− iu∆Xj

t −Dζ∆ζt

)}
.

Here gjt , Dt, Dζ , Dζζ are abbreviations for (partial) derivatives of gj(u, t) and D(u, t, ζ) with respect to the
corresponding variables t and ζ; (·)c denotes the continuous component of a process; 〈·, ·〉 denotes the quadratic
covariation of two processes; ∆Yt denotes ∆Yt := Yt − Yt−, for any generic (càdlàg) process {Yt}t∈[0,T ].

Denote by

dLD[(t,Xj
t , ζt)](u) := iudXj

t +
[
gjt +Dt

]
dt+Dζdζt −

u2

2
d
〈

(Xj
t )c, (Xj

t )c
〉

+
1

2

[
Dζζ + (Dζ)

2
]
d 〈(ζt)c, (ζt)c〉+ iuDζd

〈
(Xj

t )c, (ζt)
c
〉

+

(
eiu∆Xjt+∆D(u,t,ζt) − 1− iu∆Xj

t −Dζ∆ζt

)
=
{
AD[(t,Xj

t , ζt)](u) + gjt
}
dt+ dMj

t , (B.1)

where AD[(t,Xj
t , ζt)](u) denotes the drift generator (minus gjt ), and Mj

t is the martingale component of

LD[(t,Xj
t , ζ

j
t )](u). Note that Mj

t is independent of the chain.

It follows from the definition that Φj(u; t,Xj
t , ζt) is a Q-martingale. Hence,

AD[(t,Xj
t , ζt)](u) = −gjt (u, t). (B.2)

Again by Itô’s formula, we have

deiuXν+D(u,ν,ζν) = eiuXν+D(u,ν,ζν)

{
iudXν +Dνdν +Dζdζν −

u2

2
d 〈(Xν)c, (Xν)c〉

+
1

2

[
Dζζ + (Dζ)

2
]
d 〈(ζν)c, (ζν)c〉+ iuDζd 〈(Xν)c, (ζν)c〉

+

(
eiu∆Xν+∆D(u,t,ζν) − 1− iu∆Xν −Dζ∆ζν

)}
= eiuXν+D(u,ν,ζν)

n∑
j=1

〈αν , ej〉
{
iudXj

ν +Dνdν +Dζdζν −
u2

2
d
〈
(Xj

ν)c, (Xj
ν)c
〉

+
1

2

[
Dζζ + (Dζ)

2
]
d 〈(ζν)c, (ζν)c〉+ iuDζd

〈
(Xj

ν)c, (ζν)c
〉

+

(
eiu∆Xjν+∆D(u,t,ζν) − 1− iu∆Xj

ν −Dζ∆ζν

)}
= eiuXν+D(u,ν,ζν)

n∑
j=1

〈αν , ej〉
{
AD[(ν,Xj

ν , ζν)](u)dν + dMj
ν

}
= eiuXν+D(u,ν,ζν)

n∑
j=1

〈αν , ej〉
{
− gjν(u, ν)dν + dMj

ν

}
.

By the stochastic product rule, we obtain

d
{
ανe

−
∫ ν
0
rsds+iuXν+D(u,ν,ζν)

}
= {−Diag[G(u, t) + r] +A}ανe−

∫ ν
0
rsds+iuXν+D(u,ν,ζν)dν

+ ανe
−

∫ ν
0
rsds+iuXν+D(u,ν,ζν)

n∑
j=1

〈αν , ej〉 dMj
ν + e−

∫ ν
0
rsds+iuXν+D(u,ν,ζν)dmν .

For ν ≥ t, conditioning on Ft gives

dEQ
[
ανe

−
∫ ν
0
rsds+iuXν+D(u,ν,ζν)

∣∣Ft] = {−Diag[G(u, t) + r] +A}EQ
[
ανe

−
∫ ν
0
rsds+iuXν+D(u,ν,ζν)

∣∣Ft] dν.
Thus,

EQ
[
αT e

−
∫ T
0
rsds+iuXT+D(u,T,ζT )

∣∣Ft] = αte
−

∫ t
0
rsds+iuXt+D(u,t,ζt)Ψ(u, t) (B.3)
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and

Φ̃XT (u; t, x, ζ) = EQ
[
e−

∫ T
t
rsds+iuXT |Xt = x, ζt = ζ

]
= EQ

[
e−

∫ T
t
rsds+iuXT 〈αT , 1n〉 |Xt = x, ζt = ζ

]
= eiux+D(u,t,ζ) 〈αt,Ψ(u, t)1n〉 , (B.4)

where Ψ(u, t) is the fundamental solution to the matrix-valued ordinary differential equation (ODE) (2.11).

If gjt (u, t) are all t-independent, for j = 1, 2, . . . , n, then the fundamental solution can be expressed by
exponential matrix as follows

Ψ(u, t) = exp
{[
−Diag(G(u) + r) +A

]
(T − t)

}
. (B.5)

Substituting (B.5) into (2.10) gives (2.13).

B.2 Proof of Corollary 2.1

Proof. In this proof, let EQt,x,ζ [·] and EQt,x,ζ,αT [·] denote the conditional expectations EQ
[
· |Xt = x, ζt = ζ

]
and

EQ
[
· |Xt = x, ζt = ζ, αT

]
, respectively. Applying the tower property to the generalised characteristic function

gives

Φ̂XT (u,B; t, x, ζ) = EQt,x,ζ

[
EQt,x,ζ,αT

[
e−

∫ T
t
rsds+iuTXTBT

]]
= EQt,x,ζ

[
Φ̃(uT ; t, x, ζ)BT

]
= EQt,x,ζ

[
eiuT x+D(uT ,t,ζ) 〈αt,Ψ(uT , t)1n〉BT

]
= EQt,x,ζ

[〈
αT , Ψ̂(t, x, ζ, αt)

〉]
=
〈

exp{A(T − t)}αt, Ψ̂(t, x, ζ, αt)
〉
. (B.6)

This completes the proof.

B.3 Characteristic function for the ratchet option under CRS model

Recalling for both the CRS and GRS models, we have that for any integer m

Xm = X0 +

m∑
i=1

xi, (B.7)

where

xi :=

n∑
j=1

∫ i

i−1

〈αs, ej〉 dXj
s , (B.8)

Define

xji :=

∫ i

i−1

dXj
s = Xj

i −X
j
i−1. (B.9)

By some algebraic manipulation, we proceed as follows:

ZT = log(GT /ST ) = logGT − logST =
1

T + 1

T∑
m=0

logSm − logST

=
1

T + 1

(
X0 +

T∑
m=1

{
X0 +

m∑
i=1

xi

})
−

(
X0 +

T∑
m=1

xm

)
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=
1

T + 1

T∑
m=1

m∑
i=1

xi −
T∑

m=1

xm

=
1

T + 1

T∑
m=1

xm

T∑
i=m

1−
T∑

m=1

xm

= − 1

T + 1

T∑
m=1

mxm, (B.10)

where xm for m = 1, · · · , T are the independent increments defined by (B.8).
Thus, the characteristic function of ZT is

ΦZT (u) := EQ̃[eiuZT ]

=

T∏
m=1

EQ̃
[
e−iu

m
T+1xm

]
=

T∏
m=1

ΦQ̃xm

(
−u m

T + 1

)
, (B.11)

where ΦQ̃xm (u) is the characteristic function of xm under Q̃.

To derive ΦQ̃xm (u), we need to know the Q̃-dynamics of xm and we have to derive these dynamics case by
case. Subsequently, we consider the case given by the CRS model in this subsection and that by Example 2.2
in Subsection B.4.

Let us construct the Q̃ measure for the CRS model:

dQ̃

dQ

∣∣∣∣
FT

= ηT = e−
∫ T
0
rtdt

ST
S0

= exp

{
− 1

2

∫ T

0

σ2(αt)dt−
∫ T

0

∫
R0

[
eξ(y,αt) − 1− ξ(y, αt)

]
ν(dy, αt)dt

+

∫ T

0

σ(αt)dWt +

∫ T

0

∫
R0

ξ(y, αt)Ñ(dt, dy, αt)

}
. (B.12)

Hence, under Q̃,

W Q̃
t := Wt −

∫ t

0

σ(αs)ds (B.13)

is a standard Brownian motion, the compensator of N(dt, dy) becomes eξ(y,αt)ν(dy, αt)dt, that is

Ñ Q̃
j (dt, dy) := Ñ Q̃(dt, dy, ej) = N(dt, dy)− eξj(y)νj(dy)dt (B.14)

are martingales, for j = 1, 2, . . . , n, and the probability law of the chain αt remains the same as that under Q.
Then, the Q̃-dynamics of the log-stock price process {Xt}t∈[0,T ] is given by

dXt = b(αt)dt+ σ(αt)dW
Q̃
t +

∫
R0

ξ(y, αt)Ñ
Q̃(dt, dy, αt), (B.15)

where

b(αt) := r(αt) +
1

2
σ2(αt) + ν(R0, αt). (B.16)

For any integer m, we have the decomposition

log(Sm) = Xm = X0 +

m∑
i=1

xi, (B.17)
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where

xi :=

∫ i

i−1

b(αt)dt+

∫ i

i−1

σ(αt)dW
Q̃
t +

∫ i

i−1

∫
R0

ξ(y, αt)Ñ
Q̃(dt, dy, αt). (B.18)

By the tower property, we have

ΦQ̃xm (u) = EQ̃
[
eiuxm

]
= EQ̃

[
EQ̃
[
eiuxm |Fαm

]]
. (B.19)

Consider the inner conditional expectation first. It follows from the independence of the Brownian motion, the
random measure and the chain that

EQ̃
[
eiuxm |Fαm

]
= e

∫m
m−1

iub(αt)dt · EQ̃
[
e
∫m
m−1

iuσ(αt)dW
Q̃
t |Fαm

]
· EQ̃

[
e
∫m
m−1

∫
R0
iuξ(y,αt)Ñ

Q̃(dt,dy,αt)|Fαm
]

= exp

{∫ m

m−1

[
iub(αt)−

1

2
u2σ2(αt) +

∫
R0

(
eiuξ(y,αt) − 1− iuξ(y, αt)

)
eξ(y,αt)ν(dy, αt)

]
dt

}
.

(B.20)

Denote by

ψj(u) := iubj −
1

2
u2σ2

j +

∫
R0

(
eiuξj(y) − 1− iuξj(y)

)
eξj(y)νj(dy) (B.21)

and

ψ(u) :=
(
ψ1(u), ψ2(u), . . . , ψn(u)

)>
. (B.22)

Substituting (B.21) into (B.19) and using the tower property again yields

ΦQ̃xm (u) = EQ̃
[
EQ̃
[
EQ̃
[
eiuxm |Fαm

]
〈αm, 1n〉

∣∣Fαm−1

]]
= EQ̃

[〈
αm−1, exp

{
[diag(ψ(u)) +A]

}
1n
〉]

=
〈
exp{A(m− 1)}α0, exp

{
[diag(ψ(u)) +A]

}
1n
〉
. (B.23)

Therefore,

ΦZT (u) =
T∏

m=1

〈
exp{A(m− 1)}α0, exp

{[
diag

(
ψ

(
−u m

T + 1

))
+A

]}
1n

〉
, (B.24)

and the generalised characteristic function of ZT is given by

Φ̂ZT (c(k),H(k)) =
〈

exp{A · T}α0, Ψ̂
〉
, (B.25)

where Ψ̂ = (Ψ̂1, Ψ̂2, . . . , Ψ̂n)> with

Ψ̂j =

T∏
m=1

〈
exp{A(m− 1)}α0, exp

{[
diag

(
ψ

(
−cj(k)

m

T + 1

))
+A

]}
1n

〉
Hj(k). (B.26)

B.4 Characteristic function for the ratchet option under Example 2.2

Under Example 2.2, the Q̃ measure is equivalent to Q as follows:

dQ̃

dQ

∣∣∣∣
FT

= ηT = e−
∫ T
0
rtdt

ST
S0

= exp

{
−

n∑
j=1

∫ T

0

1

2
〈αt, ej〉V jt dt+

n∑
j=1

∫ T

0

〈αt, ej〉
√
V jt dWt

}
. (B.27)
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Hence, under Q̃,

W Q̃
t := Wt −

n∑
j=1

∫ t

0

〈αs, ej〉
√
V js ds (B.28)

is a standard Brownian motion, and the probability laws of the Brownian motion W̄t = W̄ Q̃
t and the Markov

chain αt remain unchanged.
Under the Q̃ measure, the log-stock price process and the variance process follow

dXj
t =

(
rj +

1

2
V jt

)
dt+

√
V jt dW

Q̃
t (B.29)

and

dV jt =
[
κθj + (ρσv − κ)V jt

]
+

√
V jt σv

[
ρdW Q̃

t +
√

1− ρ2dW̄ Q̃
t

]
. (B.30)

The characteristic function of Xj
t is given by

Φj(u; t, T, x, ζ) = EQ̃[eiuX
j
T |Xj

t = x, V jt = ζ] = exp
{
iux+ g̃j(u; t, T ) + D̃(u, t, T )ζ

}
, (B.31)

where

g̃j(u; t, T ) = iurjτ + C̃j(u, t, T ), (B.32)

and C̃j(u, t, T ) and D̃(u, t, T ) are to be determined below.
Applying Itô’s formula yields

dΦj(u; t, T,Xj
t , V

j
t )

= d exp
{
iuXj

t + g̃j(u; t, T ) + D̃(u, t, T )V jt
}

= Φj(u; t, T,Xj
t , V

j
t )

{
iudXj

t −
1

2
u2V jt dt+

[
− iur2 + C̃jt (u, t, T ) + D̃t(u, t, T )V jt

]
dt+ D̃(u, t, T )dV jt

+
1

2
D̃2(u, t, T )V jt σ

2
vdt+ D̃(u, t, T )V jt iuσvρdt

}
= Φj(u; t, T,Xj

t , V
j
t )

{[
1

2

(
iu− u2

)
+ D̃t(u, t, T ) + (ρσv − κ+ iuσvρ)D̃(u, t, T ) +

1

2
σ2
vD̃

2(u, t, T )

]
V jt dt

+
[
C̃jt (u, t, T ) + κθjD̃(u, t, T )

]
dt+

[
iu

√
V jt + D̃(u, t, T )V jt σvρ

]
dW Q̃

t + D̃(u, t, T )V jt σv
√

1− ρ2dW̄ Q̃
t

}
.

Since Φj(u; t, T,Xj
t , V

j
t ) is a Q̃-martingale, setting the drift to be zero gives that C̃j(u, t, T ) and D̃(u, t, T )

satisfy the following ODEs:

C̃jt (u, t, T ) + κθjD̃(u, t, T ) = 0, C̃(u, T, T ) = 0, (B.33)

and

D̃t(u, t, T )−
(
κ− (1 + iu)ρσv

)
D̃(u, t, T ) +

1

2
σ2
vD̃

2(u, t, T )− 1

2
(−iu+ u2) = 0, D̃(u, T, T ) = 0. (B.34)

Let us first consider (B.34), which is a Riccati equation with complex-valued coefficients. To that end, we try
the following ansatz

D̃(u, t, T ) =
R2(τ)

R1(τ)
, τ := T − t, (B.35)

with initial conditions R1(0) = 1 and R2(0) = 0.

Using the product rule to R2(τ) = D̃(u, t, T )R1(τ), together with (B.34), we obtain

dR2(τ)

dτ
= R1(τ)

dD̃(u, t, T )

dτ
+ D̃(u, t, T )

dR1(τ)

dτ
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= R1(τ)

[
−
(
κ− (1 + iu)ρσv

)
D̃(u, t, T ) +

1

2
σ2
vD̃

2(u, t, T )− 1

2
(−iu+ u2)

]
+ D̃(u, t, T )

dR1(τ)

dτ

= −
(
κ− (1 + iu)ρσv

)
R2(τ) +

1

2
σ2
vD̃(u, t, T )R2(τ)− 1

2
(−iu+ u2)R1(τ) + D̃(u, t, T )

dR1(τ)

dτ
. (B.36)

Then matching the coefficients of D̃(u, t, T ) yields

dR1(τ)

dτ
= −1

2
σ2
vR2(τ), R1(0) = 1, (B.37)

dR1(τ)

dτ
= −1

2
(−iu+ u2)R1(τ)−

(
κ− (1 + iu)ρσv

)
R2(τ), R2(0) = 0. (B.38)

Let us rewrite the above system of ODEs in the vector-matrix form

d

(
R1(τ)

R2(τ)

)
=

(
0 − 1

2σ
2
v

− 1
2 (−iu+ u2) −

(
κ− (1 + iu)ρσv

) )(R1(τ)

R2(τ)

)
dτ. (B.39)

The solution of (B.39) is given by(
R1(τ)

R2(τ)

)
= exp

{[
0 − 1

2σ
2
v

− 1
2 (−iu+ u2) −

(
κ− (1 + iu)ρσv

) ] τ}( 1
0

)
. (B.40)

Hence, using the results in Bernstein and So (1993) and some simple algebra, we have

R1(τ) = e−
1
2 (κ−(1+iu)ρσv)τ ·

(
cosh(δτ) +

κ− (1 + iu)ρσv
2δ

sinh(δτ)

)
(B.41)

and

R2(τ) = e−
1
2 (κ−(1+iu)ρσv)τ ·

(
− −iu+ u2

2δ
sinh(δτ)

)
, (B.42)

where

δ =
1

2

√(
κ− (1 + iu)ρσv

)2
+ σ2

v(−iu+ u2). (B.43)

Therefore, plugging the above two expressions into (B.35) and rearranging to get the formulation as in Lord
and Kahl (2010), we derive

D̃(u; t, T ) =
−−iu+u2

2δ sinh(δτ)

cosh(δτ) + κ−(1+iu)ρσv
2δ sinh(δτ)

=
−(−iu+ u2)

2δ cosh(δτ)
sinh(δτ) + (κ− (1 + iu)ρσv)

=
−(−iu+ u2)(1− e−2δτ )

2δ(1 + e−2δτ ) + (κ− (1 + iu)ρσv)(1− e−2δτ )

=

1
σ2
v
[(κ− (1 + iu)ρσv)

2 − d̃2(u)](1− e−d̃(u)τ )

(κ− (1 + iu)ρσv + d̃(u))− (κ− (1 + iu)ρσv − d̃(u))e−d̃(u)τ

=
(κ− (1 + iu)ρσv + d̃(u))(1− e−d̃(u)τ )

σ2
v [c̃(u)− e−d̃(u)τ ]

=
κ− (1 + iu)ρσv + d̃(u)

σ2
v c̃(u)

1− e−d̃(u)τ

1− e−d̃(u)τ/c̃(u)

=
κ− (1 + iu)ρσv − d̃(u)

σ2
v

1− e−d̃(u)τ

1− e−d̃(u)τ/c̃(u)
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=
κ− (1 + iu)ρσv − d̃(u)

σ2
v

1− e−d̃(u)τ

1− ĉ(u)e−d̃(u)τ
,

where

c̃(u) =
κ− (1 + iu)ρσv + d̃(u)

κ− (1 + iu)ρσv − d̃(u)
, ĉ(u) =

1

c̃(u)
,

d̃(u) = 2δ =

√(
κ− (1 + iu)ρσv

)2
+ σ2

v(−iu+ u2).

On the other hand, we have

C̃j(u, t, T ) = κθj

∫ T

t

D̃(u, s, T )ds

= κθj

∫ T

t

R2(T − s)
R1(T − s)

ds =
2κθj
σ2
v

∫ T

t

dR1(T − s)
R1(T − s)

= −2κθj
σ2
v

logR2(τ)

= −2κθj
σ2
v

[
− 1

2

(
κ− (1 + iu)ρσv

)
τ + log

(
cosh(δτ) +

κ− (1 + iu)ρσv
2δ

sinh(δτ)

)]
=
κθj
σ2
v

[(
κ− (1 + iu)ρσv

)
τ − 2 log

(
2δ(eδτ + e−δτ ) +

(
κ− (1 + iu)ρσv

)
(eδτ − e−δτ )

4δ

)]
=
κθj
σ2
v

[(
κ− (1 + iu)ρσv

)
τ − 2 log

(
e−δτ

e2δτ c̃(u)− 1

c̃(u)− 1

)]
=
κθj
σ2
v

[(
κ− (1 + iu)ρσv + d̃(u)

)
τ − 2 log

(
1− ed̃(u)τ c̃(u)

1− c̃(u)

)]
=
κθj
σ2
v

[(
κ− (1 + iu)ρσv + d̃(u)

)
τ − 2 log

(
ĉ(u)− ed̃(u)τ

ĉ(u)− 1

)]
.

In summary, C̃j(u, t, T ) and D̃(u, t, T ) have been represented as the second formulation in Lord and Kahl (2010).
Therefore, the characteristic function of xjm is given by

ΦQ̃
xjm

(u; t) = EQ̃
[
eiux

j
m |Gt

]
= Φj(u; t,m, xjm(t), V jt )

= exp
{
iuxjm(t) + g̃j(u; t,m) + D̃(u; t,m)V jt

}
, t ∈ [m− 1,m], (B.44)

where

xjm(t) :=

∫ t

m−1

(
rj +

1

2
V js

)
ds+

∫ t

m−1

√
V js dW

Q̃
s , (B.45)

and

g̃j(u; t,m) := iurj(m− t) + C̃j(u; t,m). (B.46)

Hence,

ΦQ̃xm (u) = EQ̃
[
eiuxm

]
= EQ̃

[
EQ̃
[
eiuxm |Fm−1

]]
= EQ̃

[
eD̃(u;m−1,m)Vm−1

〈
αm−1, Ψ̃(u;m− 1,m)1n

〉]
, (B.47)

where Ψ̃(u; t,m) is the fundamental solution of the following matrix-valued ODE:

dΨ̃(u; t,m)

dt
=
[
−Diag(G̃(u; t,m)) +A

]
Ψ̃(u; t,m), Ψ̃(u;m,m) = In (B.48)

with

G̃(u; t,m) :=
(
g̃1
t (u; t,m), g̃2

t (u; t,m), . . . , g̃nt (u; t,m)
)>
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and

g̃jt (u; t,m) = −iurj −
κθj
σ2
v

[
(κ− (1 + iu)ρσv + d̃(u)) +

2c̃(u)d̃(u)ed̃(u)(m−t)

1− c̃(u)ed̃(u)(m−t)

]
= −iurj −

κθj
σ2
v

[
(κ− (1 + iu)ρσv + d̃(u)) +

2d̃(u)ed̃(u)(m−t)

ĉ(u)− ed̃(u)(m−t)

]
. (B.49)

To further calculate (B.47), we next show

EQ̃t
[
αT e

uVT
]

= Π̃[u; t, T, αt]e
Ξ̃(u;t,T )Vt , (B.50)

where Π̃ and Ξ̃ are two functions to be determined below.
In the same vein, we derive

d
{

Π̃[u; t, T, αt]e
Ξ̃(u;t,T )Vt

}
= eΞ̃(u;t,T )Vt

{
Π̃t[u; t, T, αt]dt+ Π̃[u; t, T ]dαt

+ Π̃[u; t, T, αt]

[
Ξ̃t(u; t, T )Vtdt+ Ξ̃(u; t, T )dVt +

1

2
Ξ̃2(u; t, T )d 〈Vt, Vt〉

]}
= eΞ̃(u;t,T )Vt

{[
Π̃t[u; t, T, αt] + κθαtΞ̃(u; t, T )Π̃[u; t, T, αt] +

〈
Π̃[u; t, T ], Aαt

〉]
dt

+ Π̃[u; t, T, αt]

[
Ξ̃t(u; t, T ) + (ρσv − κ)Ξ̃(u; t, T ) +

1

2
σ2
vΞ̃2(u; t, T )

]
Vtdt

+ Π̃[u; t, T, αt]Ξ̃(u; t, T )
√
Vtσv

[
ρdW Q̃

t +
√

1− ρ2dW̄ Q̃
t

]
+
〈

Π̃[u; t, T ], dmt

〉}
,

where

Π̃[u; t, T ] :=
(
Π̃[u; t, T, e1], Π̃[u; t, T, e2], . . . , Π̃[u; t, T, en]

)> ∈ Rn. (B.51)

Since Π̃(u; t, T, αt)e
Ξ̃(u;t,T )Vt is a Q̃-martingale, setting the drift to be zero gives that Π̃(u; t, T, ej) and Ξ̃(u; t, T )

satisfy the following ODEs:

Π̃t[u; t, T, ej ] + κθjΞ̃(u; t, T )Π̃[u; t, T, ej ] +
〈

Π̃[u; t, T ], Aej

〉
= 0, Π̃[u, T, T, ej ] = ej , (B.52)

and

Ξ̃t(u; t, T )−
(
κ− ρσv

)
Ξ̃(u; t, T ) +

1

2
σ2
vΞ̃2(u; t, T ) = 0, Ξ̃(u;T, T ) = u. (B.53)

Equation (B.53) is a Bernoulli equation with a complex terminal value, whose solution is given by

Ξ̃(u; t, T ) =


2u

−uσ2
vτ + 2

, if κ− ρσv = 0,

2u(κ− ρσv)
−uσ2

v(e(κ−ρσv)τ − 1) + 2(κ− ρσv)e(κ−ρσv)τ
, if κ− ρσv 6= 0.

(B.54)

On the other hand, Π̃[u; t, T ] is the fundamental solution of the following matrix-valued ODE:

dΠ̃[u; t, T ]

dt
= −

{
κDiag[(θ1, θ2, . . . , θn)>]Ξ̃(u; t, T ) +A

}
Π̃[u; t, T ], Π̃[u;T, T ] = In. (B.55)

Hence, the solution of the first equation (B.52) is given by

Π̃[u; t, T, αt] =
〈
αt, Π̃[u; t, T ]

〉
. (B.56)
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Combining the above derivations gives

ΦQ̃xm (u) = EQ̃
[
eD̃(u;m−1,m)Vm−1

〈
αm−1, Ψ̃(u,m− 1)1n

〉]
= eΞ̃(D̃(u;m−1,m);0,m−1)V0

〈
α0, Π̃[D̃(u;m− 1,m); 0,m− 1]Ψ̃(u;m− 1,m)1n

〉
.

Therefore,

ΦZT (u) =

T∏
m=1

ΦQ̃xm

(
−u m

T + 1

)

=

T∏
m=1

eΞ̃(D̃(−u m
T+1 ;m−1,m);0,m−1)V0

×
〈
α0, Π̃

[
D̃

(
−u m

T + 1
;m− 1,m

)
; 0,m− 1

]
Ψ̃

(
−u m

T + 1
;m− 1,m

)
1n

〉
(B.57)

and the generalised characteristic function of ZT is given by

Φ̂ZT (c(k),H(k)) := EQ̃[eicT (k)ZTHT (k)]

= EQ̃
[
EQ̃
[
eicT (k)ZTHT (k)|αT

]]
= EQ̃ [ΦZT (cT (k))HT (k)]

=
〈

exp{A · T}α0, Ψ̂
〉
, (B.58)

where Ψ̂ = (Ψ̂1, Ψ̂2, · · · , Ψ̂n)> with

Ψ̂j =

T∏
m=1

eΞ̃(D̃(−cj(k) m
T+1 ;m−1,m);0,m−1)V0

×
〈
α0, Π̃

[
D̃

(
−cj(k)

m

T + 1
;m− 1,m

)
; 0,m− 1

]
Ψ̃

(
−cj(k)

m

T + 1
;m− 1,m

)
1n

〉
Hj(k). (B.59)
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