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Abstract

In this paper, we investigate the dynamics of age-cohort survival curves under the as-

sumption that the instantaneous mortality intensity is driven by an a�ne jump-di↵usion

(AJD) process. Advantages of an AJD specification of mortality dynamics include the avail-

ability of closed-form expressions for survival probabilities a↵orded by an a�ne mortality

specification and the ease with which we can incorporate sudden positive and negative shocks

in mortality dynamics, reflecting events such as wars, pandemics, and medical advancements.

As we are interested in modelling the evolution of mortality rates, we propose a state-space

approach to calibrate the parameters of the a�ne mortality process. This ensures consistent

survival curves in the sense that forecasts of survival probabilities have the same parametric

form as the fitted survival curves. As the resulting state-space model is non-Gaussian due to

the presence of jumps, we apply and assess a particle filter-based Markov chain Monte Carlo

approach to estimate the model parameters. We illustrate our methodology by fitting one-

factor Cox-Ingersoll-Ross and Blackburn-Sherris mortality models with asymmetric double

exponential jumps to historical age-cohort mortality data from USA. We find that these

one-factor models with jumps have good in-sample fit, but their forecasting performance

suggests the need for additional latent factors to improve the accuracy of forecasts.
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1 Introduction

In addition to financial risk, life insurance companies also face longevity risk, the risk that a

population survives longer than expected. While improvements in life expectancy is overall

a positive outcome, from an insurer’s perspective, understanding systematic longevity risk is

crucial to maintaining long-run solvency while o↵ering guaranteed lifetime income products.1

Insurers can manage longevity risk in various ways: product re-design, risk-sharing arrange-

ments, hedging, and reinsurance.2 Regardless of which risk management strategy an insurer

chooses, there is a need to understand the evolution of mortality rates to quantify longevity

risk.

It is widely accepted that mortality rates evolve over time in a stochastic manner. While

several trends in mortality rates, including (1) an increase in life expectancy and reduction in

mortality at younger ages, (2) the rectangularization phenomenon (the concentration of the

modal age of death at older ages), and (3) the expansion phenomenon (shift of the Lexis point

to older ages), have been observed at the aggregate level across countries (Ebeling et al. 2018;

Macdonald et al. 1998; Wilmoth and Horiuchi 1999), the rates of improvement in mortality

still varied substantially over time and across age groups (Cairns et al. 2006). Thus, stochastic

mortality models have been proposed, ranging from time-series models to models based on

short-rate models in finance; see for example Booth and Tickle (2008) and Cairns et al. (2009)

for a survey and comparison of these models.

Furthermore, while historical mortality data suggest a steady improvement in human life

expectancy worldwide over the years since World War II, the COVID-19 pandemic has shown

mortality rates can rapidly increase as a result of unexpected phenomena. In an analysis of short-

term mortality fluctuations data for the year 2020, Regis and Jevtić (2022) show that there has

been a sharp increase in the weekly measured total death rate compared to the average over

the period 2015-2019. As the long-term e↵ects of COVID-19 are still under investigation, it is

currently unclear how mortality rates will evolve over time and how the pandemic will a↵ect

future trends in mortality. Thus, there is a greater need to better understand the evolution of

mortality rates given that catastrophic shocks may occur, albeit rarely.

In this work, we study the dynamics of age-cohort survival curves under the assumption

that the instantaneous mortality intensity is driven by an a�ne jump-di↵usion process. Ad-

vantages of an a�ne jump di↵usion specification of mortality dynamics include the availability

of closed-form expressions for survival probabilities a↵orded by an a�ne mortality specification

(see e.g. Du�e et al. 2000) and the ease with which we can incorporate sudden positive and

negative shocks in mortality dynamics, reflecting events such as wars, pandemics, and medical

advancements. Furthermore, we are interested in age-cohort mortality as age-cohort data is

more well-suited to pricing longevity-linked financial and insurance products. In addition, the

use of continuous-time models, such as the a�ne jump-di↵usion model, a↵ords greater synergy

1
We distinguish between systematic and unsystematic longevity risk, since the latter, which represents the

randomness of deaths within a given portfolio, is diversifiable.
2
See, for example, Bravo and Nunes (2021), Cairns et al. (2006), D’Amato et al. (2018), Fung et al. (2019),

and the references therein for other longevity risk (and mortality risk) management strategies.
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with existing insurance or financial pricing models which are typically set in continuous-time

(see e.g. Bi�s 2005; Jevtić et al. 2013; Xu et al. 2020b; Zhou et al. 2021). This paper follows

the stream of research on modelling mortality rates, particularly the intensity-based approach

using a�ne continuous-time stochastic processes as the mortality intensity.3

We contribute to the literature in the following aspects. First, we model the evolution of

age-cohort mortality rates by assuming the instantaneous mortality intensity is an a�ne jump

di↵usion process. In this regard, we extend prior work that focuses only on a�ne di↵usion

models for the mortality intensity and analyze the evolution of mortality rates across cohorts,

in contrast to earlier work that focus on fitting the survival curve of a single cohort. Second,

to estimate the model parameters, we formulate a non-Gaussian state-space representation of

the average force of mortality and develop a particle filter-based Markov chain Monte Carlo

(PMCMC) parameter estimation method. The PMCMC method proposed in this paper can

also be used to estimate the parameters of a�ne mortality models driven by square-root pro-

cesses, which are typically estimated using quasi-linear Kalman filtering.4 Finally, we assess our

mortality models using USA age-cohort mortality rates and show that one-factor a�ne mortal-

ity models with jumps have an in-sample fit that is comparable to three-factor a�ne di↵usion

models. We also find that although forecasts are robust to changes in model parameter values,

our models’ forecasting performance suggest the need for additional latent factors to improve

the accuracy of forecasts.

Bravo and Nunes (2021), Luciano and Vigna (2008), and Russo et al. (2011) specify the

instantaneous mortality intensity as an a�ne jump-di↵usion process.5 However, they focus on

a single cohort or a single fixed age when calibrating their models. In particular, Bravo and

Nunes (2021) and Luciano and Vigna (2008) calibrate their models by minimizing the sum-

of-squared errors between the survival curve implied by the mortality model and the observed

survival curve. Similarly, Russo et al. (2011) calibrate their models against mortality rates

implied by term assurance premiums for a given fixed age of the policyholder. As a result, the

model parameters change depending on the reference cohort considered. In contrast, we assume

an a�ne jump di↵usion process to model the age-cohort mortality rates across several cohorts

within a pre-specified age range. Thus, our approach allows us to characterize the evolution of

mortality rates and to forecast mortality rates for future cohorts.

Furthermore, we extend the a�ne di↵usion model specification of Blackburn and Sherris

(2013); Jevtić et al. (2013); Huang et al. (2022); Ungolo et al. (2021) and incorporate jump

dynamics in the instantaneous mortality intensity. In Section 2, we specify a general a�ne jump-

di↵usion model for a latent process driving the instantaneous mortality intensity, derive the

exponential a�ne representation of survival probabilities, and discuss change-of-measure results

3
A non-exhaustive list of earlier work on continuous-time stochastic mortality models is as follows: Bi�s

(2005); Blackburn and Sherris (2013); Bravo and Nunes (2021); Dahl (2004); Huang et al. (2022); Jevtić et al.

(2013); Jevtić and Regis (2019, 2021); Luciano and Vigna (2008); Milevsky and Promislow (2001); Russo et al.

(2011); Schrager (2006); Ungolo et al. (2021); Xu et al. (2020a,b); Zhu and Bauer (2022).
4
See for example Huang et al. (2022); Jevtić and Regis (2021); Ungolo et al. (2021).

5
Regis and Jevtić (2022) proposed an extension of their multi-population mortality model (Jevtić and Regis

2019) to account for jumps via an a�ne jump di↵usion process, but do not provide further details on its imple-

mentation.
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required to transition from the risk-neutral probability setting to the real-world probability

space.

To estimate the parameters of our model, we formulate a state-space model where the

measurement equation is given by the a�ne representation of the age-cohort average force of

mortality and the state transition equation is given by a discretization of the continuous-time

a�ne jump di↵usion model for the latent factors. In contrast to the single-cohort approach

of Bravo and Nunes (2021) and Luciano and Vigna (2008), our approach produces consistent

survival curves in the sense that forecasts of survival probabilities have the same parametric

form as the fitted survival curves (Blackburn and Sherris 2013). This also allows us to explicitly

include a time-varying measurement error term, whose variance we specify to have a parametric

form that captures the exponentially increasing variation in mortality rates at older ages.6

Parameter estimation in this setting is more complicated since the presence of jumps in

the mortality intensity process implies that the state-transition equation is non-Gaussian. This

rules out the use of the Kalman filter which can only be applied to linear Gaussian state-space

models.7 We thus propose a particle Markov chain Monte Carlo (MCMC) approach which

allows us to estimate the posterior distribution of the model parameters when the state-space

model is neither linear nor Gaussian (Andrieu et al. 2010; Dahlin and Schön 2019); this includes

the case when the state transition model is a jump-di↵usion process (see e.g. Johannes et al.

2009). In Section 4, we formulate the state-space model and provide a contextualized overview

of the particle filter and the particle Metropolis-Hastings algorithm. The specific configuration

of these general algorithms to suit our analysis is discussed in Section 4.4.

In this paper, we focus on the one-factor Cox-Ingersoll-Ross and Blackburn-Sherris mortal-

ity models with jumps. Given the relatively simple model specification, we elaborate on the

parameter estimation and forecasting methodology, which can then be extended to the case of

multiple factors in a straightforward manner. Through an analysis of in-sample fit and fore-

casting performance, we also assess whether a one-factor model with jumps is su�cient or if

additional factors are required. We illustrate our methodology using yearly age-cohort mortality

rates for males aged 50 to 99 born in the USA in the period from 1883 to 1915 (i.e. cohorts with

complete data). We also discuss forecasts of future age-cohort survival curves using our mortal-

ity models and conduct a sensitivity analysis to numerically determine the e↵ect of individual

parameters on the shape of the survival curve forecasts. The results of our parameter estima-

tion, forecasting, and sensitivity analysis results are discussed in Section 5. We summarize and

conclude our investigation in Section 6.

We emphasize that, under our model formulation, jumps manifest as cohort e↵ects rather

than period e↵ects. That is, mortality shocks a↵ect individuals through their birth-year. Fur-

thermore, our formulation assumes that mortality shocks are not transitory, as the mortality

intensity of future cohorts is a↵ected by the mortality intensity of previous cohorts which may

6
See Blackburn and Sherris (2013) for similar comments in the age-period model setting.

7
See for example Blackburn and Sherris (2013); Huang et al. (2022); Jevtić et al. (2013); Jevtić and Regis

(2019); Ungolo et al. (2021); Xu et al. (2020a) for the implementation of the Kalman filter to estimate the model

parameters under an a�ne di↵usion specification of the latent factors.
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have had a jump event. Such an approach makes sense in the event of positive mortality

improvements (e.g. advances in medical treatments) which has a non-transitory e↵ect on mor-

tality rates or large-scale geo-political conflicts which may have long-lasting adverse e↵ects on

life expectancy.

2 Model

In this section, we specify our one-factor a�ne mortality models with jumps. Let (⌦,F ,F,Q)

be a filtered probability space where F = {Ft}t�0 is a Q-complete, right-continuous filtration

under Q. As we are interested in pricing applications, we assume that (⌦,F ,Q) corresponds

to an arbitrage-free market and that the probability measure Q can be used for pricing basic

financial and insurance products. This approach ensures a consistent pricing property for the

fitted survival probabilities; see, for example, Bi�s (2005, Section 5) or Blackburn and Sherris

(2013, Definition 1). We consider a finite time horizon T > 0 and we set F = FT .

We assume there exist Q-complete and right-continuous sub-filtrations G = {Gt}t�0 and

H = {Ht}t�0 of F such that Ft := Gt _Ht, the smallest �-algebra containing Gt and Ht.

Without loss of generality, we consider a newborn whose random lifetime is denoted by ⌧ .

Let H := {Ht}t�0 be the process given by Ht := 1{⌧t}, t � 0 (1{·} is the indicator function) and

consider the natural filtration H generated by H, i.e. H := {Ht}t�0, where Ht := �(Hs : s  t).

Hence, H is the smallest filtration such that ⌧ is anH-stopping time. We refer to Bi�s (2005) and

Blackburn and Sherris (2013) for further details on the stochastic mortality intensity modelling

framework.

2.1 A�ne Jump-Di↵usion Mortality Intensity Process

Let X := {Xt}t�0 denote an a�ne time-homogeneous jump-di↵usion process satisfying the

stochastic di↵erential equation

dXt = ⇠(⌘ �Xt�) dt+ �
p
� + �Xt� dWt + dJt, X0 = x0 (1)

where ⇠, ⌘ 2 R, x0,�, �, � � 0, W is a standard Brownian motion under Q, and Jt is a compound

Poisson process, given by

Jt :=
NtX

i=1

Zi,

where N is a Poisson counting process with intensity � � 0, and {Zi}
1
i=1 is a collection of i.i.d.

random variables with common probability law m(dz). We assume that W , N , and {Zi} are

pairwise independent. We express the dynamics of X in terms of the compensated compound

Poisson process J̃t,

J̃t := Jt � �EQ[Z]t,
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giving us,

dXt = ⇠

✓
⌘ +

�

⇠
EQ[Z]�Xt�

◆
dt+

p
� + �Xt� dWt + dJ̃t, X0 = x0. (2)

We thus define G by Gt := �(Ws, Js : 0  s  t). We assume that X is a cádlág, G-adapted

process (hence, X is G-progressively measurable (Karatzas and Shreve 1988, Proposition 1.13)).

A standard result for a�ne jump-di↵usion process is the exponential-a�ne representation

EQ

"
exp

(
�

Z T

t
(µ0 + µ1Xs) ds

)
euXT

����Gt

#
= exp{A(t, T ) +B(t, T )Xt}, 0  t < T, (3)

where µ0, µ1 2 R, u 2 C, and A and B are solutions to a system of complex-valued ordinary

di↵erential equations, which we state below. See Du�e et al. (2000) for a proof and a more

general discussion.

Theorem 2.1. Suppose A and B are unique solutions of the complex-valued ODEs

dB(t, T )

dt
= µ1 + ⇠B(t, T )�

1

2
�2�B2(t, T ) (4)

dA(t, T )

dt
= µ0 � ⇠⌘B(t, T )�

1

2
�2�B2(t, T )� �(EZ

Q
[exp{B(t, T )Z}]� 1), (5)

with terminal conditions B(T, T ) = u 2 C and A(T, T ) = 0 (the superscript Z in E
Z
Q
[·] indicates

taking the mean with respect to Z). Suppose further that the following integrability conditions

hold:

EQ

"Z T

0

���B(t, T )�
p
� + �Xt't

���
2
dt

#
< 1

EQ

"Z T

0

����(EZ
Q
[exp{B(t, T )Z}]� 1)'t

���
2
dt

#
< 1,

where ' = {'t} is the process defined by

't := exp

(
�

Z t

0
(µ0 + µ1Xs) ds

)
eA(t,T )+B(t,T )Xt , t 2 [0, T ].

Then the representation (3) holds.

We now make additional assumptions on the probability distribution of ⌧ . We assume there

exists a nonnegative G-progressive process µ := {µt}t�0 such that

Q[⌧ > t|Gt] = exp

(
�

Z t

0
µs ds

)
. (6)

That is, the time of death ⌧ is said to admit an F-intensity µ. Given (6), the risk-neutral

survival probability S(t, T ) of an individual, conditional on being alive at time t, surviving until
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time T > t is given by

S(t, T ) := 1{⌧>t}Q[⌧ > T |Ft] = 1{⌧>t}EQ

"
exp

(
�

Z T

t
µs ds

)����Gt

#
(7)

(see for example Filipović 2009, Lemma 12.3). In (7), we note that 1{⌧>t} = 1 since we assume

that the individual is alive at time t, so S(t, T ) is simply equal to the conditional expectation.

We also assume that ⌧ satisfies Q[⌧ > t|G1] = Q[⌧ > t|Gt], for all t � 0. Thus, we say that the

stopping time ⌧ is doubly stochastic.

Suppose the intensity process µ is an a�ne function of Xt, i.e.

µt = µ0 + µ1Xt�, t 2 [0, T ]

with µ0, µ1 � 0. This specification is permitted since X is G-progressively measurable and is

strictly positive with positive probability, provided x0 > 0. Thus, (3) is precisely the risk-neutral

survival probability S(t, T ) defined in (7); that is,

S(t, T ) = eA(t,T )+B(t,T )Xt , 0  t  T, (8)

where A and B are solutions to (4) and (5). Consequently, the average force of mortality µ̄(t, T ),

defined as

µ̄(t, T ) := �
logS(t, T )

T � t
,

is an a�ne function of Xt,

µ̄(t, T ) = �
A(t, T )

(T � t)
�

B(t, T )

(T � t)
Xt, 0  t  T. (9)

Hereafter, we shall refer to A and B as factor loadings and X as the latent factor.

2.2 Specific Models

We consider the case where the mortality intensity is X, i.e. µ = X or where µ0 = 0 and µ1 = 1.

We concentrate on two models nested within (1):

1. Blackburn-Sherris model with jumps (BSj): This model is given by

dXt = �⇠Xt� dt+ � dWt + dJt. (10)

This model is an Ornstein-Ulhenbeck process with jumps. A multi-factor version of this

model with no jumps was used by Blackburn and Sherris (2013) and Jevtić et al. (2013).

2. Cox-Ingersoll-Ross model with jumps (CIRj): This model is given by

dXt = ⇠(⌘ �Xt�) dt+ �
p
Xt� dWt + dJt. (11)
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Given evidence that mortality rates are mean-reverting over time for specific ages (see for

example Njenga and Sherris 2011), we may assume that ⇠ > 0 for both the BSj and CIRj

models. However, since the BSj model specified in (10) has a long-run mean of zero, imposing

the condition ⇠ > 0 may lead to a negative mortality intensity, which violates the assumption

that µ = X must be a nonnegative process. Thus, in our parameter estimation, we allow ⇠

to be any nonzero real number for the BSj model and rely on the estimation methodology to

ascertain any mean-reverting behavior in the mortality rates under this model.8 For the CIRj

model, we impose the restrictions ⇠ > 0 and ⌘ > 0.

Under the BSj and CIRj model, the factor loadings A and B of the risk-neutral survival

probability (8) are available in closed form. The expressions for the factor loadings are presented

in the following proposition.

Proposition 2.2. Under the BSj and CIRj models, the risk-neutral survival probability S(t, T ; a)

is given by (8), where A and B are:

1. BSj:

B(t, T ) = �
1� e�⇠(T�t)

⇠
(12)

A(t, T ) = ��(T � t) +
1

2

�2

⇠3

"
⇠(T � t)� 2(1� e�⇠(T�t)) +

1

2
(1� e�2⇠(T�t))

#

+ �

Z T

t
MZ(B(s, T )) ds

(13)

2. CIRj:

B(t, T ) = �
2(e#(T�t)

� 1)

(⇠ + #)(e#(T�t) � 1) + 2#
(14)

A(t, T ) = ��(T � t) +
2⇠⌘

�2
ln

 
2#e

1
2 (⇠+#)(T�t)

(⇠ + #)(e#(T�t) � 1) + 2#

!
+ �

Z T

t
MZ(B(s, T )) ds,

(15)

where # :=
p
⇠2 + 2�2.

In both cases, MZ(·) is the moment generating function (mgf) of Z under Q.

Proof. The derivation B(t, T ) for both models is similar to that in the no-jump case, since the

jump intensity is constant (see for example Blackburn and Sherris 2013; Huang et al. 2022).

Given the explicit form of B(t, T ), the integration of (5) also proceeds as in the no-jump

case. In our case, we leave the integral involving the mgf of the jump size distribution as is,

although under alternative model parameterizations, this integral can be computed explicitly

(for instance, see Bravo and Nunes 2021). ⌅
8
In their single-cohort analysis, Bravo and Nunes (2021) show that non-mean-reverting processes fit observed

survival curves better than mean-reverting processes. We emphasize, however, that they look at the dynamics

of mortality rates across ages for a fixed cohort, and indeed they find that mortality rates are exponentially

increasing at older ages.
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Models (10) and (11) for the instantaneous mortality intensity imply that we consider jumps

in mortality rates to be persistent mortality shocks, in the sense of Chen and Cox (2009). That is,

a mortality shock experienced by one cohort will a↵ect subsequent cohort mortality rates.9 The

assumption of persistence in mortality shocks makes more sense in our age-cohort context since

historical and natural events events (e.g. wars, pandemics, climate changes and catastrophes)

and medical advancements often have persistent e↵ects on mortality rates.

2.3 Jump Size Distribution

Following Bravo and Nunes (2021), we assume that the jump size random variable Z has an

asymmetric double exponential (ADE) distribution. This jump size distribution, used by Kou

(2002) and Ramezani and Zeng (1998) as an extension of the Gaussian jump size assumption of

Merton (1976) for asset returns, allows for both positive and negative jumps. This is important

since we are also interested in modelling sudden upward or downward mortality shocks.

Under the ADE distribution, the jump size random variable Z has the probability density

function

fZ(z) = ⇢�1e
��1z1{z�0} + (1� ⇢)�2e

�2z1{z<0}, z 2 R,

with parameters ⇢ � 0, and �1,�2 > 0. As such, we write Z ⇠ ADE(⇢,�1,�2). The parameter

⇢ represents the probability of a positive jump, with mean 1
�1

> 0; similarly, 1 � ⇢ represents

the probability of a negative jump, with mean 1
�2

> 0. The corresponding moment generating

function is

MZ(u) =
⇢�1
�1 � u

+
(1� ⇢)�2
�2 + u

, ��2 < u < �1. (16)

The change-of-measure result of the jump component of the model is discussed in terms of

the Poisson random measure N(dt, dz) associated to the counting process Nt and the jump size

distribution mQ(dz) := fZ(z) dz. We establish the required notation here. For any t � 0 and

A 2 B(R) (the Borel �-algebra on R), the random measure N((0, t], A) := Nt(A) counts the

number of jumps with size in A occurring on the interval (0, t]. For A = R we simply write

Nt := Nt(R). Thus, the compound Poisson process may be written as

Jt =
NtX

i=1

Zi =

Z t

0

Z

R

zN(dt, dz)

(see for example Runggaldier 2003, equation 6). The corresponding compensated random mea-

sure Ñ(dt, dz) is given by Ñ(dt, dz) := N(dt, dz) � �mQ(dz) dt, which is related to the com-

pensated compound Poisson process J̃ via J̃t =
R t
0

R
R
zÑ(dt, dz).

9
In contrast, non-persistent mortality shocks can be modelled by subtracting the jumps experienced at time

t� 1 from the latent state value at time t; see Chen and Cox (2009) for a more detailed discussion in the context

of the Lee-Carter model with jumps.

9



2.4 Historical Dynamics of the Mortality Intensity Process

To forecast future survival curves based on historical data, we need to specify the evolution of

the latent process X under the historical probability measure P also defined on the measurable

space (⌦,F). The combined financial and insurance markets are generally considered to be

incomplete, hence the risk-neutral measure Q is not unique. Thus, we are free to specify Q,

specifically its density process relative to P, such that X has a�ne dynamics in both P and Q.

We start with the P dynamics of X, which we also assume to be an a�ne jump-di↵usion

process

dXt = ⇠P (⌘P �Xt�) dt+ �
p
� + �Xt� dWP

t + dJt, (17)

where ⇠P , ⌘P 2 R and �, �, � � 0 are constants, WP is a standard Brownian motion under

P, and Jt :=
PNt

i=1 Zi is a compound Poisson process whose corresponding counting process

Nt has intensity �P and jumps are i.i.d. with common probability density function fP
Z . The

corresponding P-probability law of the jumps is denoted by mP(dz). We denote by ÑP := {ÑP
t }

the compensated Poisson counting process NP
t := Nt��P t and by J̃P := {J̃P

t } the compensated

compound Poisson process JP
t := Jt � �EP[Z]t. The P-compensated random counting measure

associated to Jt is denoted by ÑP (dt, dz). As before, W , N , and {Zi} are pairwise independent.

In particular, the BSj and CIRj models under the P measure are given by

1. BSj:

dXt = �⇠PXt� dt+ � dWP
t + dJt (18)

2. CIRj:

dXt = ⇠P (⌘P �Xt�) dt+ �
p
Xt� dWP

t + dJt. (19)

The transition from P to Q is facilitated by the following Girsanov Theorem for Itô-Lévy

processes. The statement of the theorem below is a one-dimensional version of the statement

in Øksendal and Sulem (2019, Theorem 1.33) (see also Runggaldier (2003, Theorem 2.5)). The

change-of-measure result for the jump part is expressed in terms of the compensated random

counting measure.

Theorem 2.3. Let  D : ⌦⇥ [0, T ] ! R and  J : ⌦⇥ [0, T ]⇥R ! R be F-predictable processes

with  J
t (z)  1 P-almost surely such that the process L := {Lt}t2[0,T ] defined by

Lt := exp

(
�

Z t

0
 D
s dWP

s �
1

2

Z t

0
( D

s )2 ds+

Z t

0

Z

R

ln(1�  J
s (z))Ñ

P (dt, dz)

+

Z T

0

Z

R

h
ln(1�  J

s (z)) +  J
s (z)

i
�PmP(dz) ds

)

is well-defined, is strictly positive for 0  t  T , and satisfies EP[LT ] = 1.

Define the probability measure Q equivalent to P on (⌦,FT ) by

dQ(!)|FT = LT dP(!)|FT .
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Furthermore, we define the processes W and the random measure Ñ(dt, dz) by

dWt =  D
t dt+ dWP

t

Ñ(dt, dz) =  J
t (z)�

PmP(dz) dt+ ÑP (dt, dz).

Then W is a standard Brownian motion under Q and Ñ(dt, dz) is the compensated compound

Poisson counting process under Q corresponding to J .

To ensure that the process X, satisfying (17), is a�ne under both P and Q, we set

 D
t := ⇣1

p
� + �Xt� + ⇣2D̄(Xt�)Xt�, (20)

where ⇣1, ⇣2 2 R and

D̄(x) =

8
><

>:

(� + �x)�1/2 if infx�0{� + �x} > 0

0 otherwise.

This is the essentially a�ne specification of Du↵ee (2002) for the market price of risk process.10

This specification yields the following Q-dynamics of the analyzed models:

1. BSj: Since � = 1 and � = 0, we have infx�0{� + �x} > 0, so D(Xt�) = (� + �Xt�)�1/2.

This implies that

 D
t = ⇣1 + ⇣2Xt�.

As we are free to choose ⇣1 and ⇣2, we set ⇣1 = 0 (this e↵ectively means that the long-run

mean under Q is also zero), and so the dynamics of X under Q are

dXt = �⇠PXt� dt+ �(dWt � ⇣2Xt� dt) + dJt

= �(⇠P + �⇣2)Xt� dt+ � dWt + dJt.

That is, we can relate the risk-neutral and real-world mean-reversion parameters ⇠ and

⇠P via

⇠ = ⇠P + �⇣, (21)

where, for convenience, we set ⇣2 = ⇣.

2. CIRj: Since � = 0 and � = 1, � + �x is not bounded away from zero, hence D(Xt�) = 0.

This results to

 D
t = ⇣

p
Xt�,

where for convenience we set ⇣1 = ⇣. We can thus write (17) as,

dXt = ⇠P (⌘P �Xt�) dt+ �
p
Xt�(dWt � ⇣

p
Xt dt) + dJt

10
See also Cheredito et al. (2007).
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= (⇠P + �⇣)

 
⇠P ⌘P

⇠P + �⇣
�Xt�

!
dt+ �

p
Xt� dWt + dJt.

That is, the risk-neutral and real-world parameters are related via the equations

⇠ = ⇠P + �⇣, ⌘ =
⇠P ⌘P

⇠P + �⇣
. (22)

Although the process  J
t (z) does not appear explicitly in the risk-neutral dynamics of the

latent factor, it a↵ects the intensity of the counting process Nt and the jump size distribution

under Q. We parameterize  J as

 J
t (z) =  J(z) := 1� exp{ 0 +  1z}, z 2 R (23)

where  0, 1 2 R. With this specification, we can write

Ñ(dt, dz) = N(dt, dz)� �mQ(dz) dt,

where

� := e 0EP[e
 1Z ]�P , mQ(dz) :=

e 1z

EP[e 1Z ]
mP(dz). (24)

From equation (24) we deduce that, under Q, the intensity of the counting process Nt is � and

the law of jump sizes is mQ(dz).

The transformation of the P-probability law of the jumps in (24) is an Esscher-type transform

of the jump size distribution with parameter  1 (Gerber and Shiu 1994). Unfortunately, the

Esscher transform fails to preserve the asymmetric double exponential jump size distribution

when changing from P to Q, unlike the case of distributions belonging to the exponential family

of distributions (e.g. Gaussian, exponential). However, for the purposes of calculating the factor

loading A(t, T ), it is su�cient to obtain an expression for the moment generating functionMZ(z)

of Z under Q in terms of the real-world and change of measure parameters. Specifically, we

assume that under P, Z ⇠ ADE(⇢P ,�P1 ,�
P
2 ). From equation (24), it follows that MZ(z) is given

by

MZ(c) =
MP

Z(c+  1)

MP

Z( 1)
, where MP

Z(u) =
⇢P�P1
�P1 � u

+
(1� ⇢P )�P2
�P2 + u

. (25)

We note that MZ(c) is defined whenever ��P2 < c < �P1 and ��P2 < c+  1 < �P1 .

3 Data

The models introduced in Section 2 are used for the analysis of the age-cohort mortality rates,

as sourced from the Human Mortality Database for the cohorts of USA males born between

1883 to 1915, aged 50 to 99. We chose to analyze USA mortality data to represent the mortality

experience of a large developed country. In addition, the cohorts born between 1883 and 1915

will have experienced key historical events, namely the World Wars and the influenza pandemic,

12



which had a significant e↵ect on mortality rates. More precisely, we can obtain the number of

central exposure-at-risk Ec
x,t and the number of deaths Dx,t for each age x and cohort t. We

then estimate the central rate of mortality by

mx,t =
Dx,t

Ec
x,t

,

which are equal to the force of mortality assuming that the force of mortality is constant between

integer ages.

In this analysis, we set the base age to 50. The probability that an individual, aged 50 in

calendar year y, will survive until age 50 + T � y (i.e. until calendar year T ) can be calculated

as

S(y, T ) =
T�yY

k=1

e�m50+k�1,y�50 .

Letting t := y� 50 denote this individual’s birth year (cohort), the corresponding average force

of mortality is given by

µ̄t,k =
1

k

kX

j=1

m50+j�1,t, (26)

for k = 1, 2, . . . , 50, indicating our interest in survival probabilities up to age 99 for individuals

born in cohort t currently aged 50. We note that µ̄t,k in (26) is µ̄(t, t+ k) in (9).

4 Parameter Estimation

In what follows we describe the proposed parameter estimation methodology. We first formulate

the discrete-time state-space models corresponding to the a�ne jump di↵usion mortality models

in Section 2. For completeness, we provide a summary of the particle filtering algorithm for our

state-space model and discuss the implementation of the particle filter that is specific to our

state-space models in Algorithm 1. Then we discuss the particle MCMC algorithm to estimate

the parameter posterior distribution of the state-space models. Lastly, we provide the specifics

of our the implementation of the methodology.

4.1 State-Space Representation

We characterize the parameter estimation problem of the a�ne jump di↵usion models presented

in this work in terms of a state-space representation, similar to Blackburn and Sherris (2013),

Huang et al. (2022), Ungolo et al. (2021), and Xu et al. (2020a). This approach di↵ers from the

earlier works of Luciano and Vigna (2008), Jevtić et al. (2013), Bravo and Nunes (2021), and

Bravo (2021), who use cohort-specific parameters estimated by minimizing the square di↵erence

between observed and theoretical survival probabilities.

Therefore, the approach of this work yields consistent survival curves, which depend on the

same parameters across all cohorts under analysis. In this way, it is possible to estimate the

13



dynamics of the latent variable Xt which is of great importance when projecting survival curves

for future cohorts.

Despite the continuous-time nature of the modelling framework, we need to work with a

one-year discretized version of the state-space modelling approach given the nature of available

data.

To this end, note that the evolution of Xt under the CIRj model (19) over the time interval

[t��t, t] (with 0  �t < t) can be approximated as

Xt = Xt��t + ⇠P (⌘P �Xt��t)�t+ �
p
Xt��t�WP

t +
NtX

i=Nt��t+1

Zi,

where an Euler-Maruyama scheme is employed, along the lines of Golightly (2009) and Johannes

et al. (2009). Here, �WP
t := WP

t � WP
t��t is the increment of WP which has a normal

distribution N(0,�t). For simplicity, we assume that there is at most one jump occurring on

[t � �t, t]. In this context the jump is interpreted as a positive or negative mortality shock

experienced by the cohort born in year t. Thus,
PNt

i=Nt��t+1 Zi can be written as Zt�Nt, where

Zt ⇠ ADE(⇢P ,�P1 ,�
P
2 ) and �Nt := Nt�Nt��t is equal to 1 if a jump occurs during the period

[t � �t, t] and 0 otherwise. This is consistent with the assumptions of the Poisson model for

jump-di↵usion processes (see e.g. Merton 1976; Runggaldier 2003), in which it is assumed that

P[�Nt = 1] = �P�t + O(�t), where O(·) is the big-O notation. Hence, when estimating the

model, we approximate the distribution of �Nt by means of a Bernoulli(�P�t) distribution (see

also Golightly (2009) and Johannes et al. (2009)). Finally, setting �t = 1 corresponding to the

annual frequency of mortality data, we can simplify the notation and obtain

Xt = Xt�1 + ⇠P (⌘P �Xt�1) + �
p
Xt�1$t + Zt�Nt, X0 = x0, (27)

where $t ⇠ N(0, 1), Zt ⇠ ADE(⇢P ,�P1 ,�
P
2 ), and �Nt ⇠ Bernoulli(�P ).

Similarly, for the BSj model, we obtain the following state-transition equation:

Xt = Xt�1 � ⇠PXt�1 + �$t + Zt�Nt, X0 = x0, (28)

where $t ⇠ N(0, 1), Zt ⇠ ADE(⇢P ,�P1 ,�
P
2 ), and �Nt ⇠ Bernoulli(�P ).

The state-space characterization of the parameter estimation problem is completed by the

measurement equation, where the average force of mortality is an a�ne function of the latent

state variable Xt:

µ̄t = Ā+ B̄Xt + ✏t, ✏t ⇠ N(0, H), (29)

where µ̄t, Ā, and B̄ are 50⇥ 1 vectors with entries

µ̄t = [µ̄t,k]
50
k=1, Ā =

"
�
Â(k)

k

#50

k=1

, B̄ =

"
�
B̂(k)

k

#50

k=1

,
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with µ̄t,k given by equation (26), Â(k) = A(0, k), and B̂(k) = B(0, k). From Proposition 2.2,

we note that A(t, t + k) and B(t, t + k) only depend on (t + k) � t = k and not on t, so for

convenience we set t = 0 when computing the factor loading vectors Ā and B̄. The measurement

error covariance matrix H is assumed to be a diagonal matrix, reflecting the assumption that

measurement noise is independent between ages. Furthermore, to account for the increasing

variation in mortality rates at older ages, we assume that the measurement error variances Hk,k

have the parametric form

Hk,k = erc +
er1

k

kX

i=1

ee
r2 i, k = 1, . . . , 50, (30)

where r1, r2, rc 2 R are additional parameters to be estimated from the data11.

Let ⇥ denote the set of parameters which characterize the a�ne models of this work:

1. BSj: ⇥ = (x0, ⇠P ,�,�P , ⇢P ,�P1 ,�
P
2 , ⇣, 0, 1, r1, r2, rc)

2. CIRj: ⇥ = (x0, ⇠P , ⌘P ,�,�P , ⇢P ,�P1 ,�
P
2 , ⇣, 0, 1, r1, r2, rc).

Key to the estimation of ⇥, is the likelihood function of µ̄1:T , denoted by p(µ̄1:T |⇥), which can

be conveniently factorized as:

p(µ̄1:T |⇥) = p(µ̄1|⇥)
TY

t=2

p(µ̄t|µ̄1:t�1,⇥). (31)

Let Lt = (Xt, Zt,�Nt) denote the vector of latent variables.12 Furthermore, we denote

by g✓(µ̄t|Lt) = g(µ̄t|Lt,⇥ = ✓) the conditional probability density function of µ̄t given Lt and

⇥ = ✓ and by f✓(Lt|Lt�1) = f(Lt|Lt�1,⇥ = ✓) the conditional probability density function of Lt

given Lt�1 and ⇥. The measurement model and the state transition model are characterized by

the following two densities g✓(µ̄t|Lt) and f✓(Lt|Lt�1), respectively. Using the Bayesian filtering

recursions (see e.g. Särkkä 2013, Theorem 12.1) we can write p✓(µ̄t|µ̄1:t�1) as

p✓(µ̄t|µ̄1:t�1) =

Z
g✓(µ̄t|Lt)p✓(Lt|µ̄1:t�1) dLt

p✓(Lt|µ̄1:t�1) =

Z
f✓(Lt|Lt�1)p✓(Lt�1|µ̄1:t�1) dLt�1

p✓(Lt|µ̄1:t) =
g✓(µ̄t|Lt)p✓(Lt|µ̄1:t�1)

p✓(µ̄t|µ̄1:t�1)
,

(32)

for t = 2, 3, . . . , T , where

g✓(µ̄t|Lt) = N✓(µ̄t; Ā+ B̄Xt, H) (33)

11
Huang et al. (2022) and Xu et al. (2020a) refer to this as the “Poisson” variation in historical mortality rates

reflecting the size of the population at each age.
12
We treat the jump size and indicator random variables Zt and �Nt that appear in the dynamics of Xt as

additional latent variables of interest. As a result, conditional on Zt and �Nt, Xt has a normal distribution

driven by the white noise error term $t.
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f✓(Lt|Lt�1) = p✓(Xt|Xt�1, Zt,�Nt)p✓(Zt|�Nt)p✓(�Nt), (34)

with

p✓(Xt|Xt�1, Zt,�Nt) =

8
><

>:

N✓(Xt;Xt�1 � ⇠PXt�1 + Zt�Nt,�2) for BSj

N✓(Xt;Xt�1 + ⇠P (⌘P �Xt�1) + Zt�Nt,�2Xt�1) for CIRj

and p✓(Zt|�Nt)p✓(�Nt) given by

p✓(z|�n)p✓(�n) = (�P )�n
h
⇢P�P1 e

��P1 z
1{z�0} + (1� ⇢P )�P2 e

�P2 z
1{z<0}

i
+ (1� �P )1��n,

for z 2 R and �n = 0, 1.

The presence of non Gaussian latent components following the inclusion of jumps, yields a

non-Gaussian likelihood function. This means that there is not a closed form solution for the

integrals in equation (32). For this reason, in this work we propose the use of particle filtering

for approximating such integrals and obtain a likelihood function of the data, for a given value

of the parameter ⇥.

4.2 Particle Filtering Algorithm

Introduced by Gordon et al. (1993), the particle filter is a sequential Monte Carlo method to

estimate the distribution of the latent state variables by using a set of random samples, or

particles. Due to its flexibility, the particle filter has been applied to perform inferences on

stochastic volatility and jump-di↵usion models for stock prices (see for example Johannes et al.

2009; Golightly 2009). For a more general discussion, see for example Andrieu et al. (2010);

Doucet and Johansen (2011); Särkkä (2013).

The particle filter approximates (sequentially for t = 1, . . . , T ) the filtering distribution

p✓(Lt|µ̄1:t) (see equation (32)) using a system {w(i)
t , L(i)

t }
Np

i=1 of Np particles L(i)
t and associated

weights w(i)
i .

The particles are sampled from an importance density q✓(L1:t|µ̄1:t) instead of the full poste-

rior density p✓(L1:t|µ̄1:t) as the latter is unknown. The importance density is chosen such that

p✓(L1:t|µ̄1:t) > 0 implies q✓(L1:t|µ̄1:t) > 0. Owing to the sequential nature of the algorithm, the

importance density satisfies the following recursion

q✓(L1:t|µ̄1:t) = q✓(Lt|L1:t�1, µ̄1:t)q✓(L1:t�1|µ̄1:t�1), (35)

for some function q✓(Lt|L1:t�1, µ̄1:t).

In our implementation, we choose the so called bootstrap filter (Gordon et al. 1993), which

implies q✓(Lt|Lt�1, µ̄1:t) = f✓(Lt|Lt�1). This choice is motivated by the ease with which we can

sample from f✓(Lt|Lt�1) via the state transition equation (28) or (27). An alternative option

is the use of the auxiliary particle filter (APF) (Pitt and Shephard 1999; Johansen and Doucet

2008) which incorporates future data µ̄t+1 in the importance distribution. However, the APF
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requires the evaluation or approximation of

p✓(µ̄t+1|Lt) =

Z
g✓(µ̄t+1|Lt+1)f✓(Lt+1|Lt) dLt+1,

which is not tractable in our setting since Lt is multi-dimensional.

Hence at time t, we have the particles {L(i)
1:t�1}

Np

i=1 with corresponding weights {w(i)
t�1}

Np

i=1.

Before we generate new particles at time t, a further resampling step is performed to avoid

generating too many particles with zero, or very close to zero weight, the so called degeneracy

problem. Following Andrieu et al. (2010) and Dahlin and Schön (2019) we perform the multi-

nomial resampling step of the particles at time t� 1. To keep track of the resampling history,

we let a(i)t denote the parent index of particle i at time step t.

Let v(i)t and w(i)
t denote the unnormalized and the normalized weights respectively, calculated

as

v(i)t =
g✓(µ̄t|L

(i)
t )f✓(L

(i)
t |L

a
(i)
t

t�1)

q✓(L
(i)
t |L

a
(i)
t

t�1, µ̄1:t)
, w(i)

t =
v(i)tPNp

j=1 v
(j)
t

. (36)

An estimate of the factors in the likelihood function of equation (31) is given by

p̂✓(µ̄t|µ̄1:t�1) ⇡
1

Np

NpX

i=1

v(i)t , (37)

resulting to the following estimate for the marginal likelihood,

p̂✓(µ̄1:T ) = p̂✓(µ̄1)
TY

t=2

 
1

Np

NpX

i=1

v(i)t

!
.

The use of particle filtering for estimating the likelihood function for the two mortality

models of this work is summarized in Algorithm 1. Algorithm 1 shows in further detail our

implementation of the bootstrap particle filter to approximate the marginal likelihood p✓(µ̄1:T )

for both the BSj and CIRj models. Note that we use the log-sum-exp trick, similar to Dahlin

and Schön (2019), to avoid overflow or underflow problems in the numerical computations for

the likelihood. The procedure formulated here closely follows the particle filter discussed by

Andrieu et al. (2010); Dahlin and Schön (2019), among others.

4.3 Particle Markov Chain Monte Carlo Algorithm

The bootstrap particle filter discussed in the previous section is then integrated into a Markov

chain Monte Carlo (MCMC) algorithm to obtain a sample of Nm draws {✓[k]}Nm
k=1, from the

posterior distribution of the parameters

p(✓|µ̄1:T ) =
p(✓)p(µ̄1:T |⇥ = ✓)R

p(✓0)p(µ̄1:T |⇥ = ✓0) d✓0
,

where p(✓) is the parameter prior density.
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Algorithm 1: Bootstrap filter to approximate p(µ̄1:T |⇥ = ✓) = p✓(µ̄1:T ).
Result: Likelihood estimate p̂✓(µ̄1:T )

Input: Model parameters ⇥ = ✓, average force of mortality data µ̄1:T , number of particles Np

/* Construct the measurement model, and the state-transition model */
Compute the risk-neutral parameters using (21) or (22);

Compute the coe�cients Ā and B̄ and the covariance matrix H of the measurement error of the

measurement equation (33);

Define g✓(µ̄t|Lt) and f✓(Lt|Lt�1) as functions of µ̄t, Lt = (Xt, Zt,�Nt), and Xt�1 following (33) and

(34);

Initialize the log-likelihood log p̂✓(µ̄1:0) = 0;

Set the weights w(i)
0 :=

1
Np

, i = 1, . . . , Np;

/* Likelihood estimation at time t = 1, . . . , T */
for t = 1 to T do

Sample a
(1:Np)
t from a multinomial distribution with probabilities (w(1)

t�1, . . . , w
(Np)
t�1 ) ;

for i = 1 to Np do

Sample �N (i)
t ⇠ Bernoulli(�P

) and $(i)
t ⇠ N(0, 1);

Sample u(i) ⇠ Unif(0, 1);

if u(i)  ⇢P then

Sample Z(i)
t ⇠ Exponential(�P

1 );

else

Sample Z(i)
t ⇠ Exponential(�P

2 ) and set Z(i)
t  �Z

(i)
t ;

end

Compute

X(i)
t =

8
>><

>>:

X
a
(i)
t

t�1 � ⇠PX
a
(i)
t

t�1 + �$(i)
t + Z(i)

t �N (i)
t for BSj

X
a
(i)
t

t�1 + ⇠P (⌘P �X
a
(i)
t

t�1 ) + �

r

X
a
(i)
t

t�1$
(i)
t + Z(i)

t �N (i)
t for CIRj

(for CIRj, set X(i)
t  |X(i)

t |) ;
Form L(i)

t := (X(i)
t , Z(i)

t ,�N (i)
t );

end

Compute the unnormalized weights v(i)t using equation (36);

end

Compute the normalized weights

w(i)
t =

v(i)tPNp
j=1 v

(j)
t

=
exp{ṽ(i)t }

PN
j=1 exp{ṽ

(j)
t }

where ṽ(i)t := log(v(i)t )�max{log v(1:Np)
t };

Compute the log predictive likelihood estimate

log p̂✓(µ̄t|µ̄1:t�1) = max{log v(1:Np)
t }+ log

 NpX

i=1

exp{ṽ(i)t }
!
� log(Np)

and update the log-likelihood estimate log p̂✓(µ̄1:t) = log p̂✓(µ̄1:t�1) + log p̂✓(µ̄t|µ̄1:t�1);

Compute the filtered state estimate L̂t =
PNp

i=1 w
(i)
t L(i)

t ;

Store particles L
(1:Np)
t , ancestor indices a

(1:Np)
t , normalized weights w

(1:Np)
t , and filtered state estimate

L̂t;
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Before we discuss the MCMC algorithm, we recall the restrictions on our model parameters.

In the CIRj model we require

x0, ⇠
P , ⌘P ,�,�P1 ,�

P
2 2 (0,1), �P , ⇢P 2 [0, 1].

For convenience, we remove the parameter constraints by sampling from the posterior distribu-

tion of their unconstrained transformations. Therefore, for the nonnegative parameters, we use

the log-transformation, while for the parameters constrained between 0 and 1, we use the logit

transformation. Therefore, let ⇥̃ denote the set of unconstrained parameters

⇥̃ := {xl0, ⇠
P,l, ⌘P,l,�l,�P,`, ⇢P,`,�P,l1 ,�P,l2 , ⇣, 0, 1, r1, r2, rc}, (38)

where the superscript l denotes the log transformation and the superscript ` denotes the logit

transformation. For the BSj model, we perform the same transformations, except for the mean

reversion rate ⇠P . Since all transformations applied are one-to-one functions, the marginal

likelihood p✓(µ̄1:T ) can still be calculated by first recovering the original parameters ⇥ from the

given transformed parameter values ⇥̃ and then proceeding as discussed in Section 4.2.

To generate the Markov chain {✓̃[k]}Nm
k=1 sampled from the parameter posterior distribution

p(d✓̃|µ̄1:T ), we first set a parameter prior p(✓̃) and a proposal density q(✓̃0|✓̃[k�1]) from which we

sample new candidate parameter values conditional on the previous state ✓̃[k�1] of the Markov

chain. The proposal density must be selected such that the support of the target distribution

is covered. Given an initial value ✓̃[0], the rest of the Markov chain is generated via a particle

Metropolis-Hastings (PMH) algorithm.

Pseudocode Outline 4.1 (Particle Metropolis-Hastings). Given the parameter prior p(✓̃),

the proposal density q(✓̃0|✓̃[k�1]), an initial value ✓̃[0], and the inputs for the particle filter in

Algorithm 1, do for k = 1, . . . , Nm

1. Sample a candidate ✓̃⇤ ⇠ q(✓̃⇤|✓̃[k�1])

2. Reverse the parameter transformations to obtain ✓⇤ and ✓[k�1]

3. Using the particle filter approximations for p✓⇤(µ̄1:T ) and p✓[k�1](µ̄1:T ) calculate the ac-

ceptance probability

↵(✓̃⇤, ✓̃[k�1]) = min

(
1,

p(✓̃⇤)p✓⇤(µ̄1:T )

p(✓̃[k�1])p✓[k�1](µ̄1:T )

q(✓̃[k�1]
|✓̃⇤)

q(✓̃⇤|✓̃[k�1])

)
.

4. Generate a sample u ⇠ Unif(0, 1) and set ✓̃[k] = ✓̃⇤ if u  ↵(✓̃⇤, ✓̃[k�1]); otherwise, reject

✓̃⇤ and set ✓̃[k] = ✓̃[k�1].

The parameters are sampled by using Gibbs sampling for blocks of parameters (Chib and

Greenberg 1995; Hastings 1970), defined as follows:

1. initial state: ⇥̃1 = xl0
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2. di↵usion parameters: ⇥̃2 = (⇠P,l, ⌘P,l, �l) (for the CIRj model), ⇥̃2 = (⇠P , �l) (for the

BSj model)

3. jump parameters: ⇥̃3 = (�P,`, ⇢P,`,�P,l1 ,�P,l2 )

4. change of measure parameters: ⇥̃4 = (⇣, 0, 1)

5. measurement error parameters: ⇥̃5 = (r1, r2, rc)

We assume that the parameter prior p(✓̃) can be decomposed as p(✓̃) =
Q5

g=1 p(✓̃g), i.e. the

parameter groups are independently distributed a priori.

To generate candidate parameter values, we use a multivariate Gaussian distribution as the

proposal distribution for each of the parameter groups. However, instead of specifying a constant

covariance matrix of the Gaussian proposal distribution, we use the robust adaptive Metropolis

(RAM) algorithm, proposed by Vihola (2012), in which the covariance matrix is updated after

each MCMC iteration. The RAM algorithm is a modification of standard adaptive Metropolis

algorithms (see for example Andrieu and Thoms 2008; Haario et al. 2001, for a summary) in

which one can simultaneously “learn” about the shape of the target distribution and coerce

a particular acceptance rate. The RAM algorithm also has the advantage that it does not

rely on the empirical covariance of previously generated samples, and thus it can be used to

approximate target distributions with heavy tails. In our implementation, the RAM algorithm

is implemented as follows.

Pseudocode Outline 4.2 (Robust Adaptive Metropolis (RAM)). Given the parameter prior

p(✓̃) =
Q5

g=1 p(✓̃g), an initial parameter value ✓̃[0] = (✓̃[0]1 , . . . , ✓̃[0]5 ), initial covariance matrices

S
[0]
1 , . . . ,S[0]

5 , a number " 2 (12 , 1], the desired mean acceptance rate ↵? 2 (0, 1), and the inputs

for the particle filter in Algorithm 1, do

For k = 1, . . . , Nm

For g = 1, . . . , 5

1. Generate a candidate ✓̃⇤g = ✓̃[k�1]
g +C

[k�1]
g rk, where C

[k�1]
g is the lower Cholesky factor of

S
[k�1]
g and rk ⇠ N(0, I) of the appropriate size.

2. Using the particle filter approximations, calculate the acceptance probability

↵[k]
g = min

(
1,

p(✓̃⇤g)

p(✓̃[k�1]
g )

p⇤g(µ̄1:T )

p[k�1]
g (µ̄1:T )

)
.

Observe that the proposal density does not appear here since the Gaussian proposal is

symmetric, i.e. q(✓̃⇤|✓̃[k�1]) = q(✓̃[k�1]
|✓̃⇤).

See Remark 4.3 for further details on the likelihood values p⇤g(µ̄1:T ) and p[k�1]
g (µ̄1:T ) in-

troduced here in view of the Gibbs sampling procedure.

3. Sample u ⇠ Unif(0, 1) and set ✓̃[k]g = ✓̃⇤g if u  ↵[k]
g ; otherwise, reject ✓̃⇤g and set ✓̃[k]g =

✓̃[k�1]
g .
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4. Calculate the updated covariance matrix S
[k]
g using the equation

S
[k]
g = C

[k�1]
g

 
I+ k�"(↵[k]

g � ↵?)
rmr

>
m

|rm|2

!
(C[k�1]

g )>,

where |rm| is the Euclidean norm of rm.

Remark 4.3. For the gth group, with g � 2, the calculation of the particle filter-approximated

likelihood values p⇤g(µ̄1:T ) and p[k�1]
g (µ̄1:T ) use the kth iteration values ✓̃[k]1 , . . . , ✓̃[k]g�1. For ex-

ample, if g = 3, then

p⇤3(µ̄1:T ) := p(µ̄1:T |⇥̃1 = ✓̃[k]1 , ⇥̃2 = ✓̃[k]2 , ⇥̃3 = ✓̃⇤3, ⇥̃4 = ✓̃[k�1]
4 , ⇥̃5 = ✓̃[k�1]

5 )

p[k�1]
3 (µ̄1:T ) := p(µ̄1:T |⇥̃1 = ✓̃[k]1 , ⇥̃2 = ✓̃[k]2 , ⇥̃3 = ✓̃[k�1]

3 , ⇥̃4 = ✓̃[k�1]
4 , ⇥̃5 = ✓̃[k�1]

5 )

Furthermore, since the parameter groups are assumed to be independent in the prior, only the

prior of the current group g is needed in the calculation of ↵[k]
g .

4.4 Implementation

Configuration of the Prior Distribution

The prior distribution of the parameters must respect the constraint that survival curves are

monotonically decreasing functions of residual life time, eventually decaying to zero at very old

ages. Furthermore, candidate parameters must also result in survival curves that capture the

observed rectangularization and the expansion phenomenon in recent mortality trends (see for

example Ebeling et al. 2018; Macdonald et al. 1998; van Raalte 2021; Wilmoth and Horiuchi

1999).

To this end, for each model, we generated parameter values from independent uniform

distributions with widely spaced bounds and produced the corresponding survival curve using

the exponential a�ne form (8) until we obtained a survival curve that has the “correct” shape.

The corresponding parameter values are then taken to be the mean of the prior distribution of

the unknown parameters.

To ensure that all candidate parameters generated through the PMH algorithm also pro-

duce reasonably shaped survival curves, we use a Gaussian parameter prior for each group of

parameters in the PMH-RAM algorithm. For each parameter group, we assume a diagonal prior

covariance matrix. The parameters of the Gaussian prior are provided in Table 1.

Implementation of the PMH Algorithm

In the implementation of the robust adaptive Metropolis algorithm, we set the initial covariance

matrix equal to the covariance matrix of the prior distribution and used the values " = 0.6 and

↵⇤ = 0.234, following Vihola (2012). In our numerical experiments, we found no considerable

improvement in the algorithm’s performance for other values of " and ↵⇤.
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Initial parameter values were chosen randomly from the collection of parameter values from

which the prior distribution means were extracted. Several initial values were used to assess

whether the convergence of the RAM/PMH algorithm is robust with respect to the starting

values.

We use Np = 100 particles in each run of the particle filter to estimate the log-likelihood at

each iteration of the PMH/RAM algorithm. This choice provides a satisfactory level of precision

in the log-likelihood estimator, while allowing us to minimize the computational time required

to generate su�ciently many Markov chain samples.13

The construction of Markov chains with varying starting points was implemented using

parallel computing. To this end, we used an RStudio Server (R version 4.0.2) on the Katana

computational cluster housed in UNSW Sydney (https://doi.org/10.26190/669x-a286).14

For each model, the PMH algorithm was run for 72 hours. This resulted to around 12,000

Markov chain values for each parameter set. We discarded the first 4,000 iterations as the burn-

in and used the remaining 8,000 samples for parameter inference. To reduce the autocorrelation

in the samples used for parameter inference, we only retain the 5th draw of the sample after

burn-in.

Parameters of the no-jump version of our mortality models were also estimated using the

PMH algorithm. In this case, we skip the proposal step for the jump parameters and set �P0 = 0

in the particle filter function in the proposal step for all other parameter groups.15 For brevity,

the no-jump versions of our models shall be referred to as the 1FBS and 1FCIR models.

5 Results

5.1 Parameter Estimates

The parameter estimates were derived from the Markov chains as follows. After removing the

burn-in samples and thinning the remainder with a lag of 5, we calculate the mean of the thinned

sample and reverse the transformation applied (see equation (38)) to obtain an estimate for the

model parameters. For example, we set x̂0 = exp{ 1
Nthin

PNthin
k=1 xl[k]0 }, where Nthin is the number

of observations in the thinned sample.16 Estimates of the jump parameters �P and ⇢P are

13
For general guidance see Doucet et al. (2015).

14
We note that the computations performed in this paper can also be implemented on a standard multi-core

personal computer at no additional computational expense. The use of parallel computing is only useful in

generating Markov chains from di↵erent initial points in parallel.
15
Alternatively, a Kalman filter-based algorithm can be designed to estimate the parameters of the one-factor

Blackburn-Sherris model with no jumps, as it has a linear Gaussian state-space representation (see e.g. Black-

burn and Sherris 2013). However, the same cannot be done for the CIR model with no jumps since it state

transition distribution is a non-central �2
distribution; thus, a Kalman filter approach to the CIR model is only

an approximation. Thus, our approach using the particle filter is a unifying methodology as it is able to handle

nonlinear and/or non-Gaussian state-space models.
16
Estimating x0 by first undoing the transformation on xl

0 and taking the mean results to a larger estimate

since, by Jensen’s inequality, we have

x̃0 :=
1

Nthin

NthinX

k=1

ex
l[k]
0 � exp

(
1

Nthin

NthinX

k=1

xl[k]
0

)
= x̂0.

22

https://doi.org/10.26190/669x-a286


Table 1: Model parameter estimates based on the mean of the parameter posterior and goodness-
of-fit measures.

BSj CIRj BS CIR

x0 0.010020 0.010094 0.010174 0.010159

⇠P -0.074686 0.001992 -0.072817 0.001993

⌘P - 0.005996 - 0.005987

� 0.000598 0.008394 0.000549 0.008385

�P 0.030039 0.004991 - -

⇢P 0.849973 0.899953 - -

�P1 1.490847 7.000935 - -

�P2 1700.668653 700.092918 - -

⇣ 0.019804 -9.013548 0.047416 -9.013413

 0 -3.498794 -2.501417 -3.428912 -2.499303

 1 0.605229 -1.199590 0.670053 -1.200624

r1 -19.010625 -23.006194 -19.205511 -23.006434

r2 -1.551787 -1.063222 -1.554578 -1.065118

rc -15.003413 -15.000239 -14.808785 -14.999570

Neg. Log-lik. -9061.315453 -8767.583533 -9053.121720 -8781.302991

RMSEµ̄ 0.001922 0.004516 0.001846 0.004440

RMSES 0.004740 0.005812 0.004968 0.005742

AIC -18096.630906 -17507.167065 -18080.243440 -17534.605982

BIC 24777.369094 28664.832935 11593.756560 15437.394018

treated similarly; we first take the mean of the thinned samples for �P,` and ⇢P,` then undo the

logit transformation. Parameter estimates are shown in Table 1.

The latent process {Xt}
T
t=1 is then estimated by the filtered state estimates {X̂t}

T
t=1 derived

from the particle filter using the final parameter estimates shown in Table 1 and 10,000 particles.

The filtered state estimates and the estimated factor loadings for each model can be found in

Figures 1 and 2, respectively. Figure 1, in particular, provides evidence towards the improve-

ment of life expectancy of more recent cohorts, as implied by the decreasing behavior of the

filtered estimates of the instantaneous mortality intensity, regardless of the stochastic model.

In addition, all models exhibit the same fluctuation pattern (see e.g. the filtered state estimates

around the cohort born in 1900), regardless of whether there are jumps in the underlying latent

state dynamics. The presence of jumps, however, tends to induce a change in the overall level

of the latent state estimates. In particular, the jumps a↵ect the Blackburn-Sherris models more

than the CIR models, as seen by the larger gap between the filtered state estimates in Figure

1 and the di↵erence in the minimum value of B(t, T ) in Figure 2. Furthermore, from Figure 2,

We use the estimator x̂0 since the PMH algorithm generates the posterior distribution for xl
0, not x0 (see also

Ungolo et al. 2020, Section 7.2). Alternatively, one can design the PMH algorithm so that it the prior is set

on the original parameters, but proposals are generated for the transformed parameters (see for example Dahlin

and Schön 2019, Section 6.3). This approach accounts for the parameter transformation by including a Jacobian

term in the calculation of the acceptance probability.

23



0.009

0.010

0.011

0.012

1890 1900 1910

Cohort

F
ilt

e
re

d
 S

ta
te

 E
st

im
a
te

With jumps

Without jumps

1FBS

1FCIR

Figure 1: Filtered state estimates X̂t by model
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Figure 2: Factor loadings A(t, T ) and B(t, T ) by model.
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we see that the magnitude of B(t, T ) is larger at older ages, so the latent state Xt thus tends

to have a greater e↵ect at older ages.

At this juncture, we emphasize that the current approach is unable to determine which

cohorts experienced mortality shocks, since the inclusion of jumps in the latent factor dynamics

induces a parallel shift in latent state estimates, rather than pronounced peaks or troughs. This

is because, due to the relatively small number of cohorts in the USA data set, it is not possible

to filter out the unobserved jump parts separately. Nonetheless, the jumps in our models can

capture the variability in mortality rates beyond what can be captured by a pure di↵usion

process.

For the 1FBSj model and its no-jump counterpart, applying a nonnegativity constraint on

⇠P (by considering the transformed variable ⇠P,l) actually produces worse results. Under this

model, the latent factor process has a long-run mean of ⌘P = 0. Thus, if we force the latent

factor process to be mean-reverting, then the particle filter estimate of {Xt} tends to contain

negative values. This is not appropriate since, in the one-factor setting, {Xt} represents the

instantaneous mortality intensity which needs to be a nonnegative process. Thus, it is better

not to impose a nonnegativity constraint on ⇠P for the 1FBSj model.

In addition to model parameter estimates, Table 1 also contains estimates of the negative

log-likelihood, the root mean squared error (RMSE) for both the average force of mortality and

the survival curves, and the AIC and BIC for each model. Here, the RMSE for the survival

curves S(t, T ) (RMSES) is computed as

RMSES =

vuut 1

50⇥ 33

50X

k=1

33X

t=1

[S(t, t+ k)� Ŝ(t, t+ k)]2,

as we have 33 cohorts and 50 ages in the data set; a similar formula was used for the RMSE for

µ̄ (RMSEµ̄). The AIC and BIC were computed as

AIC = 2⇥Neg. Log-Lik. + 2⇥ ](⇥)

BIC = 2⇥Neg. Log-Lik. + 2⇥ ](⇥)⇥ 33⇥ 50,

where ](⇥) is the number of parameters.

Additional summaries and visualizations of the Markov chains generated by our implemen-

tation of the PMH algorithm can be found in Appendix S2.2. In particular, Table 2 provides

the mean and standard deviation of the (marginal) transformed parameter posterior distribu-

tion based on the thinned sample after excluding the burn-in period. Figures S3 to S10 show

the trace plots and the marginal posterior densities of the transformed parameters. The trace

plots show several Markov chains with di↵erent initial points and indicate that convergence was

attained after a few thousand iterations. In the trace plots, we changed the y-axis scales after

the burn-in period of 4000 iterations. The density plots combines all chains for each parameter

and excludes the burn-in period. For all parameters and for all models, we observe that the

marginal posterior distributions are almost symmetric. A few marginal posteriors appear to be
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Figure 3: Estimated 1915 cohort survival probabilities

bimodal, but the two modes are very close to each other.

5.2 In-Sample Fit Assessment

We now discuss how well the one-factor a�ne mortality models (with and without jumps)

estimate the survival probabilities and average force of mortality relative to the data used in

the parameter estimation.

Based on the error metrics, AIC, and BIC shown in Table 1, the BSj and BS models provide

a better fit to both the average force of mortality and survival probabilities across all cohorts,

compared to their CIR counterparts. In addition, the presence of jumps in the latent factor

dynamics only provides a marginal improvement in model fit. This is consistent with the very

small magnitude of the estimated �P , especially in the CIRj model. Interestingly, the BSj and

BS models return a lower negative log-likelihood despite having fewer parameters than their

CIR counterparts.

Figure 3 shows the estimated survival curve for the cohort of USA males currently aged 50

born in the year 1915 alongside the observed survival curve. Overall, all models are able to

capture the general shape of the survival curve. However, we observe that all models tend to

underestimate the survival probability at the middle ages (around 75 to 85) and overestimate

the survival probability at the older ages (around 85 to 100).17 While the underestimation in the

middle ages is similar among the four models, the Blackburn-Sherris models are more accurate

than the CIR models when estimating the survival probability at older ages. We also note that,

for both the Blackburn-Sherris and the CIR models, survival probability estimates from the

17
Bravo and Nunes (2021) observed a similar phenomenon when modelling survival curves for the USA indi-

viduals born in 1885.
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Figure 4: In-sample mean absolute percentage errors (MAPE) for estimated survival probabil-
ities

model with and without jumps are very close. Separate comparisons between the actual and

estimated survival curves for each model can be seen in Figures S1 and S2.

We assess the accuracy of the models with respect to the entire estimation data set by

plotting the mean absolute percentage errors (MAPE) by age. The MAPE for the survival

probabilities is computed for each age k by

MAPEk =
1

33

33X

t=1

�����
S(t, t+ k)� Ŝ(t, t+ k)

S(t, t+ k)

�����⇥ 100%, k = 1, . . . , 50

where S(t, t+k) is the observed k-year survival probability for an individual aged 50 born in the

year t and Ŝ(t, t+ k) is the estimated survival probability computed using the final parameter

estimates and the exponential-a�ne formula, Ŝ(t, t + k) := exp{Â(k) + B̂(k)X̂t} under the

relevant model (see Section 4.1 for the relevant notation; recall that we considered 33 cohorts

born from 1883 to 1915). The MAPE for the average force of mortality is calculated similarly

by replacing S(t, t+ k) by µ̄t,k.

We plot the MAPE for the average force of mortality and the survival probabilities in Figures

5 and 4, respectively. In Figure 4, we change the y-axis scaling at age 85 since the MAPE for

the CIR models increases sharply towards the older ages. Both figures show that while the CIR

model tends to more accurately estimate mortality rates at the middle ranges, these models

perform poorly at very old ages compared to the Blackburn-Sherris models. Models with no

jumps also tend to perform marginally better than their counterparts with jumps.

Figure 6 shows the heat map of raw residuals (observed less estimated value) for survival

probabilities. Notably, the Blackburn-Sherris models more accurately estimate the survival
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Figure 7: Heat map of standardized residuals for estimated average force of mortality

probabilities across all ages, compared to the CIR models, with errors only occurring in the

more recent cohorts in the data set. In contrast, the CIR models tend to accurately capture

the survival probabilities before age 90, and thereafter consistently overestimate the survival

probability at older ages. We note however that there is no considerable di↵erence in the

residuals between the models with and without jumps. Furthermore, we note that the in-

sample fit achieved by our one-factor models is inferior to that achieved by the three-factor

models considered by Huang et al. (2022) and Ungolo et al. (2021), especially at older ages.

Additional insight on the model fit can be gleaned from the heat map of standardized

residuals for the average force of mortality in Figure 7. For each cohort t, the standardized

residual ⌫t is computed as ⌫t = L
�1(µ̄t� ˆ̄µt), where L is a lower-triangular 50⇥ 50 matrix such

that \Cov(µ̄t) = LL
> and µ̄t and ˆ̄µt are the observed and estimated average force of mortality,

respectively. From (29), we have \Cov(µ̄t) = H + B̄Var(Xt)B̄>; we approximate Var(Xt) via

the sample variance of the particles {X(i)
t }i=1,...,Np . The standardized residuals show that the

CIR and CIRj models consistently underestimate the average force of mortality at older ages,

although we observe larger standardized residuals with the BS and BSj models, especially in

the more recent cohorts. However, the smaller magnitude of standardized residuals in the CIR

and CIRj models may be due to the larger values of \Cov(µ̄t) under these models.

In both residual plots, we observe a period e↵ect which manifests in the diagonals, given our

age-cohort setting. In particular, we note that in the 1950s and 1970s, the observed µ̄t is lower

than model estimates. These may refer to a period of increased improvements in mortality

outcomes past World War II. Njenga and Sherris (2011) also identified a similar trend in USA

mortality rates for males around this period: there is a slight increase in mortality rates in

the 1950s and in the 1970s, with mortality rates trending downward thereafter (see Figure 1 of

Njenga and Sherris (2011)). This analysis also shows that the jumps in our models are unable
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to capture period e↵ects, since the jumps are indexed by the cohort year.

In terms of the overall ability to capture the dynamics of the average force of mortality and

the survival curves across cohorts, the above analysis shows that the Blackburn-Sherris model

outperforms the CIR model.

5.3 Forecasting Performance

In this analysis, we forecast the survival curve for the cohort born in 1916 and compare the

forecast to the observed survival curve. Forecasts can be generated by calculating the conditional

mean of the latent factor X1916 given X1915 = X̂1915. In general, if h � 0 denotes our forecast

horizon (e.g. the one-cohort-ahead forecast corresponds to h = 1), then forecasts of the average

force of mortality and the survival probability can be calculated as

ˆ̄µt+h,k = �
Â(k)

k
�

B̂(k)

k
EP[Xt+h|Xt]

Ŝ(t+ h, t+ h+ k) = exp{Â(k) + B̂(k)EP[Xt+h|Xt]},

for each k = 1, . . . , 50. These equations generate forecasts that are optimal under a quadratic

loss function (Christensen et al. 2011, Section 5.1). For the one-factor Blackburn-Sherris model

with jumps, the conditional mean EP[Xt+h|Xt] is available in closed form and is given by

EP[Xt+h|Xt] = e�⇠
P hXt +

�PEP[Z]

⇠P
(1� e�⇠

P h)

(see Appendix S1 for the derivation). The conditional mean for the no-jump Blackburn-Sherris

model can be obtained by setting �P = 0. In contrast, the conditional mean for the one-factor

CIR model with jumps is not available in closed form, so we resort to Monte Carlo simulations

using the state-transition equation (27) to generate forecasts under the CIR model.

In Figure 8, we compare forecasts of the 1916 cohort survival curve with the observed

survival curve. Immediately, we observe that forecasts from the CIR models outperform those

from the Blackburn-Sherris models. The forecast from the CIR model also mirrors the features

observed from the in-sample estimates in that there is some degree of underestimation in the

middle ages and overestimation in the older ages. In contrast, the forecasts from the Blackburn-

Sherris models consistently underestimate the survival probability at all ages. This inaccuracy

arises from the non-mean-reverting feature of the latent factor under the Blackburn-Sherris

models. Given our parameter estimates, forecasts for Xt under the Blackburn-Sherris models

tend to increase with t, implying a worsening in mortality rates for future cohorts. In addition,

since B̂(k) > 0 given our parameter estimates, increasing values in Xt result to smaller survival

probabilities. From this figure, we also see that there is no noticeable di↵erence in the forecasting

performance of the CIR model with and without jumps. On the contrary, the presence of jumps

in the Blackburn-Sherris model leads to a bigger underestimation in survival probabilities at

younger ages, compared to the no-jump case. The discrepancy, however, tapers o↵ towards the

middle and older ages.
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Figure 8: 1916 survival curve forecasts based on the estimated conditional mean of the latent
factor

In the one factor setting, prediction bands for the survival curve can be generated by replac-

ing EP[X1916|X1915] in the forecasting equations with the appropriate quantile of the simulated

values of X1916. Given that extreme values may occur in the simulations due to the presence of

jumps, we also calculate the “median” survival curve which corresponds to the median of the

simulated values of X1916.

Figures 9 and 10 show forecasts of the 1916 cohort survival curve using the mean and median

value of X1916 and a 90% prediction band based on the simulated quantiles. From these figures,

it is clear that CIR has a superior forecasting performance compared to the Blackburn-Sherris

models, since the true survival curve is contained within the CIR models’ prediction band, even

at older ages. In addition, it is only with the Blackburn-Sherris model with jumps that we

observe a discrepancy between the survival curve forecasts generated using the mean and the

median of X1916, indicating that the evolution of the survival curve may be more sensitive to

jumps if the latent factor indeed follows the 1FBSj dynamics.

The jumps in our mortality models allow us to forecast scenarios where there are mortality

jumps; that is, our mortality rate forecasts incorporate possible stress or shock mortality events.

This may be one factor which contributes to the quality of the forecasts from the CIRj models.

On the other hand, we may attribute the poor forecasting performance of the Blackburn-Sherris

models to the use of just one latent factor in the model. We note that the forecasts we generate

from the CIR and CIRj models are comparable to those of Huang et al. (2022) and Ungolo et al.

(2021) who used three-factor models (with no jump). This may be due to our use of the particle

filter, which more accurately captures the non-Gaussian distribution of the latent factor under

the CIR and CIRj models. In contrast, Huang et al. (2022) and Ungolo et al. (2021) employ a

quasi-linear Kalman filter for the three-factor CIR model, which approximates the latent state
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Figure 9: 1916 survival curve forecasts with the one-factor Blackburn-Sherris model with a 90%
prediction interval
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distribution with a Gaussian distribution. Nevertheless, a multi-factor extension of our a�ne

mortality models with jumps may be necessary to improve the general forecasting performance.

5.4 Sensitivity Analysis

In this section, we investigate how sensitive forecasts of future age-cohort survival curves are

to changes in instantaneous mortality intensity model parameters. Specifically, assuming the

mortality model for cohorts born from 1883 to 1915 is correct (see Table 1), we analyze how

forecasts of the survival curve for the cohort born in 1916 will be a↵ected by changes in the

dynamics of the mortality intensity process. We do this by introducing shocks to each model

parameter based on the standard deviation of the parameter posterior distribution (see Table

2). Shocks in the value of X1915 used in projections of X1916 are based on the standard deviation

computed using the filtering distribution estimated via the particle filter given the parameter

values in Table 1. Figures S11 to S14 display the forecasts for the 1916 cohort survival curve

resulting from the shocks in the model parameters alongside the observed survival curve.

We find that survival curve forecasts for all models are robust to shocks in the model

parameters and the latent mortality intensity for the 1915 cohort, when the shocks are consistent

with the degree of parameter uncertainty implied by the parameter posterior distribution. That

is, survival curve forecasts obtained by shocking the transformed parameter by units of its

respective posterior standard deviation (i.e. ±i standard deviations from the posterior mean,

i = 1, 2, 3, 4) are very close to the forecasts obtained in the previous section.

However, since the forecasts are similar despite introducing parameter shocks, there is no

substantial improvement in the accuracy of the forecasts. In Figures S11 and S12, forecasts

obtained with the Blackburn-Sherris model with and without jumps still exhibit noticeable

errors at the middle ages relative to the true survival curve. Similarly, Figures S13 and S14 show

that there is still a slight underestimation and a slight overestimation of survival probabilities at

middle and older ages, respectively, under the CIR model with and without jumps. This suggests

that, to improve the accuracy of forecasts, we must revisit the mortality model structure itself,

i.e. consider multi-factor mortality models with jumps.

6 Conclusion

In this paper, we studied a stochastic mortality model where the mortality intensity process

is an a�ne jump-di↵usion process. This specification allows one to model sudden positive or

negative mortality shocks (in the form of jumps in the mortality intensity) which may not be

captured with pure di↵usion mortality models (see e.g. Blackburn and Sherris 2013; Jevtić et al.

2013; Xu et al. 2020b). This specification is also mathematically advantageous in that survival

probabilities are available in closed form up to the solution of a system of ODEs, which in

our setting can also be solved in closed form. Thus, a�ne jump-di↵usion mortality models

lend themselves easily towards pricing life insurance and other longevity-linked products within

continuous-time valuation frameworks. In our setting, mortality shocks manifest as cohort
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e↵ects, rather than period e↵ects, and are persistent shocks whose a↵ect permeates across

cohorts.

Using one-factor Blackburn-Sherris and Cox-Ingersoll-Ross mortality intensity models with

jumps and age-cohort mortality rates for USA males born from 1883 to 1915, we analyze the

evolution of the unobserved mortality intensity across cohorts. This approach eventually allows

us to forecast survival probabilities for future cohorts. As such, our work extends that of Bravo

and Nunes (2021) and Luciano and Vigna (2008) who adopt a single-cohort approach in their

use of a�ne jump-di↵usion models to analyze survival probabilities. Since the corresponding

state-space representation of our model is nonlinear and non-Gaussian, we propose a particle

filter-based Metropolis-Hastings algorithm to estimate our model parameters and to facilitate

statistical inference. This Bayesian approach is informed by historical mortality trends and

parameter values that lead to the usual shape of survival curves. This approach more accurately

captures the non-Gaussian distribution of the latent factor, in contrast to quasi-Kalman filtering

approaches used by Huang et al. (2022), Jevtić and Regis (2021), and Ungolo et al. (2021) for

CIR-type models.

Our analysis shows that the Blackburn-Sherris models, with and without jumps, have better

in-sample fit compared to their CIR counterparts and that the presence of jumps in the latent

factor dynamics introduce only a marginal improvement in fit. In particular, we found that the

CIR models tend to overestimate the survival probabilities at older ages. A simulation-based

forecasting analysis, however, shows that the CIR models yield more accurate forecasts of the

survival curves. Nevertheless, the inclusion of jumps in our model allows us to incorporate stress

or shock events when making mortality rate forecasts for future cohorts. A sensitivity analysis

also shows that survival curve forecasts are robust relative to the parameter uncertainty implied

by the posterior parameter distributions.

This investigation can be extended in several directions. First, our age-cohort mortality

model can be modified so that the jumps manifest as period e↵ects, since mortality shocks

tend to be identified through historical events (e.g. wars, pandemics, medical advancements)

rather than through cohorts. Second, forecasting performance may be improved by modelling

the mortality intensity as the sum of multiple latent factors, each modelled as an a�ne jump-

di↵usion process. The parameter estimation framework set forth in this paper can be extended

to the multi-factor case, but may result to added computational complexity due to the increase

in the dimension of the parameter space.18 Third, since this paper uses complete cohort data,

the parameter estimation methodology must be modified if incomplete cohort data are used

for forecasting mortality rates for yet-to-be-born cohorts. Lastly, the parameter estimation

framework proposed here can accommodate an extension of the multi-population mortality

models of Jevtić and Regis (2019) to include jumps, consistent with what was proposed by

Regis and Jevtić (2022). Work along these lines are currently in progress and shall be reported

in future papers.

18
In the multi-factor setting, we can then also consider the arbitrage-free Nelson-Siegel model with jumps.
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Supplemental Materials
A�ne Mortality Models with Jumps: Parameter Estimation

and Forecasting

S1 Forecasting Equations for Blackburn-Sherris Model with Jumps

This appendix shows the derivation of a closed-form expression for the conditional mean EP[Xt|Xs]

for any 0  s  t, where X is given by the one-factor Blackburn-Sherris model with jumps (18).

First, we note that equation (18) can be written as

dXt = �(⇠PXt� � �PEP[Z]) dt+ � dWP
t + dJ̃P

t ,

where J̃P
t := Jt � �PEP[Z] is the compensated compound Poisson process under P.

Next, we consider the process Yt = f(t,Xt), where f(t, x) = �⇠P e⇠
P tXt. Using the Itô

formula for jump-di↵usion processes, we obtain

dYt =
h
�⇠P e⇠

P tXt� � (⇠PXt� � �PEP[Z])(�⇠P e⇠
P t)
i
dt+ �(�⇠P e⇠

P t) dWP
t

+ E
Z
P

h
�⇠P e⇠

P t(Xt� + ZNt) + ⇠P e⇠
P tXt� � ZNt(�⇠

P e⇠
P t)
i
�P dt

+
h
�⇠P e⇠

P t(Xt� + ZNt) + ⇠P e⇠
P tXt�

i
dÑP

t ,

where ÑP
t := Nt � �P t is the compensated Poisson counting process under P. Simplifying and

integrating over the interval [s, t] yields

Yt = Ys � �PEP[Z]⇠P
Z t

s
e⇠

P u du�

Z t

s
�⇠P e⇠

P u dWP
u �

Z t

s
⇠P e⇠

P uZNu dÑ
P
u .

Putting back Yt = �⇠P e⇠
P tXt and simplifying yields the expression

Xt = e�⇠
P (t�s)Xs +

�PEP[Z]

⇠P
(1� e�⇠

P (t�s)) +

Z t

s
�e�⇠

P (t�u) dWP
u +

Z t

s
e�⇠

P (t�u)ZNu dÑ
P
u .

We can then take the conditional expectation of Xt given Xs, giving us

EP[Xt|Xs] = e�⇠
P (t�s)Xs +

�PEP[Z]

⇠P
(1� e�⇠

P (t�s)). (S1)

The stochastic integrals vanish upon taking the conditional expectation as they are independent

of Xs and are increments of P-martingale processes. For purposes of forecasting the annual

mortality intensity given the previous year’s mortality intensity, we can specialize (S1) by taking

s = t� 1, giving us

EP[Xt|Xt�1] = e�⇠
P
Xt�1 +

�PEP[Z]

⇠P
(1� e�⇠

P
). (S2)

1



In the no-jump case, conditional on Xt�1, Xt has a normal distribution whose mean and

variance are given by

E[Xt|Xt�1] = e�⇠
P
Xt�1, Var[Xt|Xt�1] =

�2

2⇠P
(1� e2⇠

P
).

S2 Supplementary Figures

S2.1 Comparison with 1915 Survival Curve by Model
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Figure S1: Comparison between actual and estimated 1915 survival curves under the one-factor
Blackburn-Sherris model
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Figure S2: Comparison between actual and estimated 1915 survival curves under the one-factor
CIR model
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S2.2 MCMC Prior Distribution Parameters, Results, and Plots

Table 1: Means and standard deviations of the Gaussian parameter prior.

BSj CIRj BS CIR

Mean SD Mean SD Mean SD Mean SD

xl0 -4.6052 0.0100 -4.6052 0.0100 -4.6052 0.0100 -4.6052 0.0100

⇠P -0.0750 0.0032 - 0.0100 -0.0730 0.0032 - -

⇠P,l - - -6.2146 0.0100 - - -6.2146 0.0100

⌘P,l - - -5.1160 0.0100 - - -5.1160 0.0100

�l -7.4186 0.0032 -4.8283 0.0100 -7.5056 0.0032 -4.8283 0.0100

�P,` -3.4761 0.0100 -5.2933 0.0100 - - - -

⇢P,` 1.7346 0.0100 2.1972 0.0100 - - - -

�P,l1 0.4055 0.0100 1.9459 0.0100 - - - -

�P,l2 7.4384 0.0100 6.5511 0.0100 - - - -

⇣ 0.0200 0.0100 -9.0000 0.0100 0.0480 0.0100 -9.0000 0.0100

 0 -3.5000 0.0100 -2.5000 0.0100 -3.4300 0.0100 -2.5000 0.0100

 1 0.6000 0.0100 -1.2000 0.0100 0.6700 0.0100 -1.2000 0.0100

r1 -19.0000 0.0100 -23.0000 0.0100 -19.2000 0.0100 -23.0000 0.0100

r2 -1.5000 0.0100 -1.0000 0.0100 -1.5400 0.0100 -1.0000 0.0100

rc -15.0000 0.0100 -15.0000 0.0100 -14.8000 0.0100 -15.0000 0.0100
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Table 2: Parameter posterior means and standard deviations after excluding the burn-in period and applying a thinning interval of 5.

BSj CIRj BS CIR

Mean SD Mean SD Mean SD Mean SD

xl0 -4.603139 0.016629 -4.595778 0.020312 -4.587940 0.022389 -4.589426 0.024703

⇠P -0.074686 0.000167 - - -0.072817 0.000242 - -

⇠P,l - - -6.218819 0.022660 - - -6.218233 0.028930

⌘P,l - - -5.116663 0.022118 - - -5.118181 0.028092

�l -7.421121 0.005224 -4.780276 0.004773 -7.507142 0.008877 -4.781338 0.006017

�P,` -3.474760 0.016696 -5.295118 0.023011 - - - -

⇢P,` 1.734386 0.016697 2.196699 0.023319 - - - -

�P,l1 0.399344 0.016552 1.946044 0.022951 - - - -

�P,l2 7.438777 0.016601 6.551213 0.023686 - - - -

⇣ 0.019804 0.016651 -9.013548 0.022387 0.047416 0.027966 -9.013413 0.029177

 0 -3.498794 0.016532 -2.501417 0.023326 -3.428912 0.028169 -2.499303 0.028983

 1 0.605229 0.016890 -1.199590 0.023450 0.670053 0.028313 -1.200624 0.030052

r1 -19.010625 0.016769 -23.006194 0.023335 -19.205511 0.028272 -23.006434 0.029147

r2 -1.551787 0.010409 -1.063222 0.010783 -1.554578 0.017838 -1.065118 0.013409

rc -15.003413 0.016515 -15.000239 0.022651 -14.808785 0.027855 -14.999570 0.029408
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Figure S3: Trace plots for the parameter Markov chains generated by the PMH algorithm for the BSj model.
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Figure S4: Density plots for the parameter Markov chains generated by the PMH algorithm for the BSj model.
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Figure S5: Trace plots for the parameter Markov chains generated by the PMH algorithm for the BS model.
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Figure S6: Density plots for the parameter Markov chains generated by the PMH algorithm for the BS model.
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Figure S7: Trace plots for the parameter Markov chains generated by the PMH algorithm for the CIRj model.
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Figure S8: Density plots for the parameter Markov chains generated by the PMH algorithm for the CIRj model.
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Figure S9: Trace plots for the parameter Markov chains generated by the PMH algorithm for the CIR model.
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Figure S10: Density plots for the parameter Markov chains generated by the PMH algorithm for the CIR model.
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S2.3 Sensitivity Analysis
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Figure S11: Sensitivity of 1916 cohort survival curve forecast with respect to model parameters under the BSj model. Note: x0 above represents
the initial value used in the simulation of X1916, which in this case is X1915.
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Figure S12: Sensitivity of 1916 cohort survival curve forecast with respect to model parameters under the BS model. Note: x0 above represents
the initial value used in the simulation of X1916, which in this case is X1915.
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Figure S13: Sensitivity of 1916 cohort survival curve forecast with respect to model parameters under the CIRj model. Note: x0 above represents
the initial value used in the simulation of X1916, which in this case is X1915.
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Figure S14: Sensitivity of 1916 cohort survival curve forecast with respect to model parameters under the CIR model. Note: x0 above represents
the initial value used in the simulation of X1916, which in this case is X1915.
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