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High age mortality and frailty. Some remarks
and hints for actuarial modeling 1

Ermanno Pitacco 2

Abstract

This paper provides some introductory remarks to critical biometric
aspects underlying risk identification and risk assessment for life an-
nuity portfolios and pension funds. On the one hand, statistical evi-
dence shows, in many populations, a deceleration in mortality increase
at very old ages, in particular a non-exponential increase in the age-
pattern of mortality. On the other hand, causes of this feature of the
age-pattern of mortality constitute a rather controversial issue. Nev-
ertheless, a deceleration in the mortality increase can analytically be
explained by the (reasonable) assumption of heterogeneity with re-
spect to mortality inside a cohort, and, in particular, in terms of non-
observable risk factors, which can be represented, for each individual
in the population, by his/her “frailty” level.

The presence of mortality heterogeneity heavily impacts on the
riskiness of a life annuity portfolio (or a pension fund), and hence
should carefully be taken into account in the risk management process.
In particular, appropriate parametric models can help in assessing the
impact of heterogeneity among annuitants.
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1 Introduction
A very extensive literature, mainly developed in the last decades, focusses on
mortality at old and very old ages and relevant possible causes, among which
heterogeneity with respect to mortality inside a population. The related
research work involves demography, actuarial sciences, gerontology, biology,
biostatistics, epidemiology, etc. The following list of contributions, although
largely incomplete, aims at showing the main topics addressed. We note
that any classification and the related inclusion of contributions into the
various categories are affected by some degree of arbitrariness. Nonetheless,
a classification can help in singling out the main areas of scientific interest
and research work.

The longevity limits, i.e. the maximum length of life and the modal age
at death have recently been focussed, in particular, by Aarssen and de Haan
(1994), Horiuchi et al. (2013), Le Bras (1976) and Thatcher (1999). However,
earlier interest in these issues is witnessed in Greenwood and Irwin (1939)
(see also the references therein).

The (possible) deceleration in the age-pattern of mortality at very old ages
(see Sect. 2.1) and the underlying causes have recently been addressed, in
particular, by Gampe (2010), Gavrilov and Gavrilova (2011, 2015), Horiuchi
and Wilmoth (1998), Steinsaltz and Wachter (2006) and Wilmoth (1995).
However, it is worth noting that the awareness of such a deceleration can be
dated back to the first half of the 20th century; see Greenwood and Irwin
(1939). For a detailed survey, the reader can refer to Olshansky (1998).

Dynamic aspects of mortality at high ages, i.e. mortality trends and
related forecasts, have been dealt with by Buettner (2002) and Currie (2011).

Country-related features of high age mortality and heterogeneity have
been analyzed in particular by Bourbeau and Desjardins (2007), CMI Work-
ing Paper 85 (2015), Coale and Kisker (1990), Coelho et al. (2007), Gallop
(2002), Horiuchi and Wilmoth (1998), Kannisto (1994), Lindbergson (2001),
Maccheroni and Billari (1996) and Thatcher et al. (1998). It is worth noting
that international comparisons as well as methodological contributions are
also provided in many of the papers cited above.

Parametric models (i.e., “mortality laws”) representing the age-pattern of
mortality play an important role, especially when exploring biological and
physiological features of ageing and looking for a formal link between these
features and the age-pattern of mortality. While the earliest contributions to
the construction of mortality tables and the definition of parametric models
may be dated back to the 17th and 18th centuries (see, for example, the ref-
erences in Haberman (1996), Haberman and Sibbett (1995), Hald (1987) and
Pitacco (2004)), the oldest contributions focussing on biological and physio-
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logical features of mortality date back to the 19th century; see, in particular,
Gompertz (1825, 1860), Makeham (1867, 1890), Thiele (1871), Graf (1905),
Brownlee (1919), Greenwood (1928) and Greenwood and Irwin (1939). In-
teresting reviews on the biodemography of aging and mortality modeling ac-
cording to biological and physiological perspectives are respectively provided
by Olshansky (1998) and Yashin et al. (2000).

Parametric models for representing mortality at high ages have been ad-
dressed by Perks (1932), Beard (1959), Coale and Kisker (1990), Kannisto
(1994), Thatcher (1999), Lindbergson (2001) and Saikia and Borah (2014).
Details on this topic are given in Sects. 3.4 to 3.8. A state-of-art review
is provided by Calduch Verdiell (2007). Doray (2008) focuses on inference
problems for the logistic class of mortality laws.

General parametric mortality models are described and discussed by many
textbooks in the field of life insurance mathematics and technique; see, for
example, Pitacco et al. (2009) and the references therein. We also cite the
detailed review provided by Forfar (2004).

Heterogeneity of a population in respect of mortality can be explained
by differences among the individuals, which constitute “risk factors”; some
of these are observable (age, gender, health conditions, etc.), while others
(the individual’s attitude towards health, some congenital personal charac-
teristics. etc.) are unobservable (see, for example, Pitacco et al. (2009)).
The impact of observable risk factors, in particular when risk factors also
constitute “rating factors”, is usually expressed according to some pragmatic
approach: for example, additive or multiplicative adjustments to the average
age-specific mortality rates are frequently adopted. Conversely, heterogeneity
due to non-observable risk factors can be modeled by adopting the concept of
individual “frailty”. The frailty approach was first proposed by Beard (1959)
but formally defined by Vaupel et al. (1979). A number of contributions
followed these seminal proposals. See, in particular, Hougaard (1984, 1986),
Manton et al. (1986), Steinsaltz and Wachter (2006), Yashin et al. (1985)
and Yashin and Iachine (1997). A compact review is provided by Haberman
and Olivieri (2014).

While Beard (1959) and Vaupel et al. (1979) express the non-observable
heterogeneity in terms of a fixed individual “frailty”, assuming that the indi-
vidual frailty is due to genetic factors and can be expressed by a non-negative
real-valued variable (hence, according to a frailty-continuous setting), other
approaches to non-observable heterogeneity have been proposed.

We first note that non-observable heterogeneity can be represented by
adopting a frailty-discrete approach, instead of a continuous one. The ba-
sic idea is to split a heterogeneous population (a cohort, in particular) into
a given number of homogeneous groups, each group being characterized by

3



a given age-pattern of mortality. Contributions in this framework were pro-
vided in particular by Keyfitz and Littman (1979), Levinson (1959) and Red-
ington (1969); for a detailed review, see Olivieri (2006). Among the most
recent contributions, we cite Avraam et al. (2014).

The idea of individual frailty changing with age underpins a different
approach to heterogeneity modeling. In particular, the model proposed by
Le Bras (1976) relies on the concept of frailty which stochastically changes
with age, that is, throughout the individual life, viz because of physiological
changes and environmental influences. The fixed frailty approach and the
changing frailty approach are compared by Thatcher (1999). Markov aging
models, which generalize Le Bras’s assumption, have been adopted by Su
and Sherris (2012), Lin and Liu (2007), Liu and Lin (2012) and Sherris and
Zhou (2014).

It is worth noting that Yashin et al. (1994) show that changing frailty
models cannot be distinguished from a fixed frailty model: hence, a given
observed age-pattern of mortality can be explained in (at least) two different
ways, which involve two different concepts of changing probability of death
with age on the individual level.

Empirical evidence supporting frailty-based representations of mortality
in a population is documented in many of the papers cited above, as well as,
for example, by Avanzi et al. (2015) and Congdon (1994).

Heterogeneity with respect to mortality, frailty and the related impact on
the results of a life annuity portfolio (or a pension fund) are addressed by
significant research work in the actuarial field. See, in particular, Butt and
Haberman (2002, 2004) and Olivieri (2006). Among the most recent con-
tributions, Meyricke and Sherris (2013) analyze the impact of heterogeneity
and frailty on the actuarial values of both standard life annuities and un-
derwritten life annuities (i.e., “special rate” life annuities). Conversely, the
impact of heterogeneity on tail risk and solvency requirements is focused by
Sherris and Zhou (2014).

The remainder of the present paper is organized as follows. In Sect. 2
some (controversial) conclusions on mortality at high ages, derived from data
analysis, are briefly reported.

Parametric models which can be adopted to represent the age-pattern of
mortality, in particular at old and very old ages, are presented in Sect. 3.
The assumptions underlying some models are singled out, to check their
consistency with (reasonable) features of the high age mortality. We stress
that the parametric models addressed in the present paper comply with a
“static” perspective, whereas trend aspects and relevant forecasting problems
are not considered.

Some actuarial aspects constitute the object of Sect. 4, in terms of relation
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between the mortality law chosen and the consequent assessment of expected
values and riskiness inherent in a life annuity portfolio or a pension plan.

Sect. 5 concludes the paper with some final remarks and an outlook for
future research.

We stress that, from a scientific perspective, no original contribution is
given by this paper. It can be considered as a “primer”, which just aims
to provide some guidelines for future research work in the field of actuarial
aspects of mortality at high ages.

2 The age-pattern of mortality at high ages:
statistical data and controversial issues

We first focus on possible features of the mortality pattern at high ages.
Then, we briefly describe some statistical studies and the related achieve-
ments, concerning high age mortality.

2.1 The “deceleration” in late-life mortality

In several traditional mortality models (e.g. the mortality laws proposed by
Gompertz, Makeham and Thiele), it is assumed that the force of mortality
(or hazard rate) increases exponentially, at least definitely, and hence at a
constant rate.

Conversely, a “deceleration” phenomenon occurs when the force of mor-
tality eventually increases at a decreasing rate. Generally speaking. i.e. not
restricting the context to the mortality of humans, the following mortality
profiles, which decelerate at high ages, can be recognized (see Fig. 1).

• The force of mortality increases at a decreasing rate, for example be-
cause it eventually follows a linear profile (or approaches a slant linear
asymptote).

• The force of mortality stops increasing (or tends to a horizontal asymp-
tote), and then proceeds at a constant rate (or approximately constant
rate). Hence, the rate of increase is (or tends to be) equal to zero. In
this case we say that a mortality “leveling-off” occurs (or a mortality
“plateau” is reached).

• In some species, the force of mortality can eventually decline at old ages,
and this obviously results in a negative rate of increase (the meaning
of “old” being of course related to the species addressed).
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Figure 1: Exponentially increasing vs decelerating force of mortality

2.2 The archive on population data on aging

Thatcher (1999) focused on number of deaths at age 80 and over, observed
in 30 countries, since 1960 (at least). The relevant database is currently held
at the University of Odense and the Max Planck Institute in Rostock.

The age-pattern of mortality resulting from the data appears to be closer
to the mortality profile given by a logistic model, than to that given by the
Gompertz model or the Weibull model (see Weibull (1951)).

Three explanations have been suggested, which formally correspond to
different aging models:

(1) the individual fixed frailty model, originally proposed by Beard (1959)
(see Sect. 3.9);

(2) the stochastic process model, according to which individuals move
through health classes, originally proposed by Le Bras (1976);

(3) the biological theory of aging, according to which the deterioration
process may not continue indefinitely, so that the force of mortality
first increases with age but then reaches a plateau, or even (for some
species) shows a fall (as noted by Thatcher (1999), this theory is con-
troversial).
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2.3 Mortality data of Sweden (1861 - 1990) and Japan
(1951 - 1990)

Horiuchi and Wilmoth (1998) focussed on mortality experience in Sweden
and Japan. In particular, mortality data by cause of death (COD) have been
analyzed and late-life mortality deceleration has been observed.

Two main causes of deceleration have been proposed, each one formally
underpinned by a specific hypothesis:

(1) population heterogeneity hypothesis, that is, a demographic explana-
tion which relies on the population composition; according to such
hypothesis, more frail individuals tend to die earlier;

(2) individual-risk hypothesis, that is, a gerontological explanation, in
terms of senescent process; in this context, mortality deceleration can
be explained by less energy expenditure at high ages, more protected
environment, etc.

The heterogeneity explored by Horiuchi and Wilmoth (1998) and the
relevant results support the population heterogeneity hypothesis.

Further, a new aspect has been singled out: the timing of deceleration,
i.e. the age at which the deceleration phase starts. Predictions about timing
of mortality deceleration can be made according to CODs. Three predictions
have been proposed:

(a) deceleration of mortality due to “selective” CODs tends to occur earlier
than deceleration due to other causes; a COD is considered selective
when the risk of death for that particular cause differs among individ-
uals of the same age;

(b) timing of deceleration of mortality due to most of CODs depends on
individual vulnerability to diseases which constitute CODs;

(c) the overall deceleration (that is, relative to mortality due to all CODs
aggregated) occurs in late-life.

2.4 Social Security Administration Death Master File
(DMF)

Gavrilov and Gavrilova (2011) analyzed the numbers of deaths in the United
States, over age 85. The method of extinct generations was adopted in the
analysis.

7



According to the Authors, three critical aspects can cause deceleration in
the estimated age-pattern of mortality:

(1) mixing different cohorts (as usual when working with census data),
which leads to heterogeneity among cohorts belonging to the popula-
tion;

(2) non-appropriate standard assumptions in the estimation procedures
(e.g. the assumption of constant mortality rate over one-year age in-
tervals);

(3) exaggerated recorded age at death.

From the DMF analysis, the following features can be recognized:

(a) the mortality deceleration is almost negligible up to age 106;

(b) the deceleration is probably caused by poor quality data;

(c) better quality data (in particular for more recent cohorts) show a neg-
ligible deceleration, so that the Gompertz law provides a correct rep-
resentation of the age-pattern of mortality.

2.5 United Kingdom: ONS and CMI data

A detailed analysis of mortality experience is presented and discussed in CMI
Working Paper 85 (2015). In particular, population data provided by the
Office for National Statistics (ONS) and market data collected and elaborated
by the Continuous Mortality Investigation of the Institute and Faculty of
Actuaries are analyzed with major focus on high age mortality.

In the report, critical features of statistical data are singled out, which
might lead to deceleration in the age-pattern of mortality, in particular:

• unreported deaths;

• misstatement of age at death.

A what-if-analysis has also been performed, by assuming the presence of
heterogeneity, that is, the presence of groups with different Gompertz age-
patterns of mortality. Numerical results show that heterogeneity implies the
mortality deceleration phenomenon.
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2.6 Some remarks

From the results briefly described in Sects. 2.2 to 2.5, it clearly emerges that
both the presence of mortality deceleration as well as the causes of possi-
ble deceleration constitute controversial issues. Indeed, conflicting results
obtained from statistical data do not allow to derive univocal conclusions.

As regards possible causes of deceleration, Preston et al. (1999) inves-
tigate the influence of age misreporting on measures of mortality at older
ages. Five types of mortality estimates are considered, and the effect of such
misreporting on mortality estimates is identified. In particular, the Authors
show that the downward bias in death rates at older ages may not be solely
attributable to age exaggeration.

Among the most recent contributions on problems originated by unreli-
able population data, we cite Cairns et al. (2016). A framework is developed,
which allows to assess data reliability and to identify anomalies. The Authors
also propose methods that can be used to improve estimates of population
exposures.

Although data quality can constitute an obstacle in deriving univocal
conclusions, on the one hand the deceleration phenomenon emerges from nu-
merous mortality experiences and, on the other, the presence of deceleration
inside a heterogeneous cohort can also be explained in formal terms. In the
next sections (and, in particular, in Sects. 3.4 to 3.9) we will focus on this
aspect.

3 Graduation via mortality laws
The term “graduation” denotes an adjustment procedure applied to a set of
estimated quantities, in order to obtain adjusted quantities which are close to
a reasonable pattern and, in particular, do not exhibit an erratic behavior.
We note that previous experience and intuition usually suggest a smooth
progression.

In actuarial science (and demography), graduation procedures are typi-
cally applied to raw mortality rates which result from statistical observation.
Graduated series of period mortality rates should exhibit a progressive change
over a series of ages, without sudden and/or huge jumps, which cannot be
explained by intuition or supported by past experience.

3.1 Mortality laws vs polynomial and spline graduation

Various approaches to graduation can be adopted. In particular, two broad
categories can be recognized, i.e., parametric approaches, involving the use
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of mortality laws, and non-parametric approaches.
According to a parametric approach, a functional form is chosen, and

the relevant parameters are estimated in order to find the parameter values
which provide the best fit to the observed data, e.g., to mortality rates.
Various fitting criteria can be adopted for parameter estimation, for example
maximum likelihood, based on a Generalized Linear Models formulation.

The choice of a particular functional form is avoided when a non-parametric
graduation method is adopted. Important methods in this category are:
weighted moving average methods, kernel methods, the Whittaker-Henderson
model, methods based on polynomials and spline functions.

In particular, polynomial and splines graduations only aim at fitting
and smoothing raw mortality rates. These graduation approaches are also
adopted to extrapolate the age pattern of mortality beyond ages for which
reliable observations are available.

Conversely, biological, physiological and possibly behavioral assumptions
underpin many mortality laws, or components of mortality laws. As noted
by Olshansky and Carnes (1997), linking basic biology of humans to life
table functions was first proposed by Gompertz (1825), and later analyzed
by Brownlee (1919).

3.2 The senescence process according to Gompertz

As is well known, a new era for the actuarial science started in 1825 with
the law proposed by Benjamin Gompertz (see Gompertz (1825)), the pi-
oneer of a new approach to survival modeling. Gompertz’s ideas can be
properly expressed in terms of what we now call force of mortality (or in-
stantaneous intensity, or hazard rate). Gompertz’s law constitutes one of the
most influential proposals in the early times of survival modeling. Actually,
many contributions in the field of mortality laws, throughout the latter half
of the 19th century, generalize Gompertz’s law or, anyhow, proceed from
Gompertz’s ideas. Remarkable examples are given by the laws proposed by
Makeham (1867) and Thiele (1871) (see Sect. 3.3).

Let µx denote the force of mortality at age x, defined as follows:

µx = lim
t→0

P[Tx ≤ t]

t
(1)

where Tx denotes the random remaining lifetime of an individual age x. The
senescence assumption is expressed, in the Gompertz model, by:

∆µx = β µx ∆x + o(∆x) (2)
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with β > 0. Hence, given the age interval (x, x + ∆x), the higher is the
initial value µx, the higher is the increment ∆µx. This assumption leads to
the differential equation:

dµx

dx
= β µx (3)

Finally, from Eq. (3) we obtain the Gompertz law:

µx = α eβ x (4)

with α > 0.
As noted by Olshansky and Carnes (1997), the idea that “one simple

function” (like the one given by Eq. (4)) cannot represent the age-pattern of
mortality over the whole life span was first expressed by Gompertz (1860),
who proposed four age intervals, i.e. (in years):

(0, 1), (1, 20), (20, 60), (60, 100)

which should be separately considered for modeling purposes.
This idea was then implemented in particular by Thiele (1871) and He-

ligman and Pollard (1980), although adopting a different approach to single
out interval-specific components of the age-pattern of mortality.

3.3 Generalizing the Gompertz model

The Gompertz exponential function, i.e. the term α eβ x, enters as the senes-
cent component of the force of mortality in various parametric models.

The first Makeham law (see Makeham (1867)) generalizes the Gompertz
model, by assuming:

µx = γ + α eβ x (5)

where the term γ > 0 represents age-independent mortality, e.g. because of
accidents. The second Makeham law (see Makeham (1890)) also includes a
linear term:

µx = γ + ρ x + α eβ x (6)

and hence constitutes a further generalization of the Gompertz law.
In 1867, W. Lazarus proposed another generalization (see Graf (1905))

by adding to the Makeham law a negative exponential term, which decreases
as the age increases and can hence represent the infant mortality:

µx = ϕ e−ψ x + γ + α eβ x; ϕ, ψ > 0 (7)
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The law proposed by Thiele (1871) aims at representing the age-pattern
of mortality over the whole life span:

µx = ϕ e−ψ x + γ e−τ(x−ξ)2 + α eβ x; ϕ, ψ, γ, τ, ξ > 0 (8)

We note that the second term in the right-hand side of Eq. (8), which has a
“Gaussian” shape, can quantify the mortality hump (mainly due to accidents)
at young-adult ages.

Other generalizations of the Gompertz law have been proposed. A sig-
nificant example is given by the GM class of models (namely, the Gompertz-
Makeham class of models), proposed by Forfar, McCutcheon and Wilkie (see
Forfar et al. (1988)). The GM structure is as follows:

µx =
r−1∑
i=0

ai x
i + exp

[
s−1∑
j=0

bj xj

]
(9)

with the proviso that when r = 0 the polynomial term is absent, and when
s = 0 the exponential term is absent. The general model represented by (9)
is usually labelled as GM(r, s). Note that, in particular, GM(0, 2) denotes
the Gompertz law, GM(1, 2) the first Makeham law and GM(2, 2) the sec-
ond Makeham law. Models used by the Continuous Mortality Investigation
Bureau in the UK to graduate the force of mortality µx are of the GM(r, s)
type. In particular, models GM(0, 2), GM(2, 2) and GM(1, 3) have widely
been adopted.

3.4 Deceleration in the senescence process

The mortality laws so far considered assume an exponential growth in the age-
pattern of mortality because of senescence (see, for example, the Gompertz
hypothesis expressed by Eq. (2)). We note that the exponential growth
implies a constant rate of increase in senescent mortality, which, in its turn,
leads to a constant rate of increase in the Gompertz model, that only allows
for senescent mortality, and an approximately constant rate of increase in
the models which generalize the Gompertz law also including other mortality
components.

A non-exponential increase in the age-pattern of mortality can be rep-
resented in several ways. We consider the following modeling choices (see
Fig. 2).

(a) An example of non-exponential force of mortality (over the whole life
span), is given by the model proposed by Weibull (1951):

µx = AxB. (10)
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Figure 2: Exponential vs non-exponential old-age pattern of mortality

(b) A non-exponential increase at very old ages (and hence a non-constant
rate of increase) can be obtained by, e.g., a linear or an asymptotically
linear component of the force of mortality; see Sect. 3.6.

(c) A mortality leveling-off at very old ages can be achieved by adopting
logistic models; see Sect. 3.5.

We note that modeling choices (b) and (c) imply a deceleration in the
age-pattern of mortality, with respect to the Gompertz or Gompertz-related
exponential models (see Sect. 2.1).

3.5 Logistic-type models

Several models have been proposed, that are strictly related each other and
share the purpose of representing a mortality leveling-off (see Sect. 2.1). In
formal terms, the common feature of these models consists in a horizontal
asymptote of the force of mortality. We note that, in all the following models,
the numerator of the fraction is given by a Makeham (or Gompertz) -type
term.

In 1932 W. Perks proposed two mortality laws; see Perks (1932). The
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first Perks law is as follows:

µx =
α eβx + γ

δ eβx + 1
(11)

while the second Perks law has the following, more general, structure:

µx =
α eβx + γ

δ eβx + ε e−βx + 1
(12)

The following law was proposed by Beard (1959):

µx =
α eβx

δ eβx + 1
(13)

We note that (13) can be obtained from the first Perks law (11) by setting
γ = 0.

Among the most recent contributions, we first recall the law proposed by
Kannisto (1994):

µx =
α eβx

α eβx + 1
(14)

which can be obtained by setting γ = 0 and δ = α in the first Perks law.
Thatcher (1999) proposed the following expression for the force of mor-

tality:

µx =
ν α eβx

α eβx + 1
+ κ (15)

The simplified version of (15), used in particular for studying long-term
trends and forecasting mortality at very old ages, has ν = 1 and hence
only three parameters, namely α, β and κ:

µx =
α eβx

α eβx + 1
+ κ (16)

3.6 Linear behavior at very old ages

A late-life deceleration phenomenon can be the result of a linear (or asymp-
totically linear) behavior of the force of mortality.

Lindbergson (2001) proposed the following model:

µx =

{
γ + α eβ x if x ≤ w

γ + α eβ w + ϑ (x− w) if x > w
(17)

where w represents an old age. We note that (17) is a modified version of the
first Makeham law (5), obtained by simply replacing the exponential growth
with a linear growth at very old ages.
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The basic structure of Thiele’s law (8) can also be found in the (first) law
proposed by Heligman and Pollard (1980) to represent the mortality odds:

qx

1− qx

= A(x+B)C

+ D e−E(ln x−ln F )2 + GHx (18)

An interesting property of this law emerges in terms of the related force of
mortality (see Thatcher (1999), Buettner (2002)). At old ages, assume the
approximation:

qx

1− qx

≈ GHx = a ebx (19)

Hence:
ln qx − ln(1− qx) ≈ ln a + b x (20)

Accepting the approximation

µx ≈ − ln(1− qx) (21)

we finally find:
lim

x→+∞
[
µx − (ln a + b x)

]
= 0 (22)

where ln a + b x represents a slant linear asymptote. Then, the result is an
asymptotically linear behavior of the force of mortality.

3.7 The Coale-Kisker assumption

The model proposed by Coale and Kisker (1990) relies on the exponential
age-specific rate of change of the central mortality rates mx:

kx = ln
mx

mx−1

(23)

(see also Buettner (2002) and Wilmoth (1995)). A linear profile of kx beyond
age 85 is assumed, that is:

kx = k85 − (x− 85) s (24)

The parameter s is determined by assuming that k85 is calculated from em-
pirical data, whereas a predetermined value is assigned to the mortality rate
m110. For given values of kx, x = 85, 86, ..., 110, we obtain from (23):

mx = m85 exp

(
x∑

h=86

kh

)
(25)
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From Eq. (25) it follows that the Coale-Kisker model implies an exponential-
quadratic function for central death rates at the relevant ages, i.e.:

mx = exp(a x2 + b x + c) (26)

The model can be used to extrapolate the age pattern of mortality beyond
ages for which reliable observations are available.

3.8 Mortality profile at very old ages according to
parametric models: a summary and a further step

As regards the age pattern of mortality at old and very old ages, the paramet-
ric models we have presented in Sects. 3.2 to 3.7 offer the following modeling
possibilities.

(a) An exponential growth, and hence a constant rate of increase, of the
force of mortality is provided by the Gompertz law as well as by the
Gompertz term in the Makeham laws, the Lazarus law and the Thiele
law.

(b) A decreasing rate of increase in the force of mortality and, in particular,
a mortality leveling-off are the features of mortality laws belonging to
the logistic class.

(c) A decreasing rate of increase in the force of mortality is also implied by
the presence of a linear term (see the Lindbergson model), or a linear
asymptotic behavior of the force of mortality (see the Heligman-Pollard
law).

(d) A different pattern of old-age central rates of mortality is provided by
the Coale-Kisker assumptions.

An interesting link between features (a) and (b) can be established thanks
to an appropriate interpretation of the force of mortality. More precisely, if
we reasonably assume that a population (or an insurance portfolio) consists of
individuals with different age-patterns of mortality, namely if a certain degree
of heterogeneity in the population is allowed for, then we can distinguish
between:

• the individual force of mortality, that is, a force of mortality with
individual-specific (although unknown) parameters;

• the average force of mortality in the population.
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In Sect. 3.9 we focus on a particular setting which aims at describing the
heterogeneity in a population. Then, a particular link between features (a)
and (b) will briefly be described.

3.9 Heterogeneity, frailty and mortality deceleration

We recall that heterogeneity of a population in respect of mortality can be
explained by differences among the individuals (see Sect. 1); some of these are
observable, while others are unobservable. When allowing for unobservable
heterogeneity factors, various approaches can be adopted. In particular, we
can recognize:

(1) discrete approaches, according to which heterogeneity is expressed
through a (finite) mixture of appropriate functions (e.g., forces of mor-
tality, survival functions, life tables in an age-discrete setting, etc.),
each function pertaining to a homogeneous group inside the heteroge-
neous population;

(2) continuous approaches, based on a non-negative real-valued variable
which expresses the individual frailty, whose role is to include all the
unobservable factors influencing the individual mortality.

As already noted, approach (2) was proposed by Vaupel et al. (1979). In
their seminal paper, they extend the earlier work of Beard (see Beard (1959,
1971)) and define the frailty as a non-negative quantity whose level expresses
the unobservable risk factors affecting individual mortality. The underlying
idea is that those people with a higher frailty die on average earlier than
others. In what follows, we deal with this approach only.

With reference to a cohort (defined at age 0 and closed to new entrants),
we consider people current age x. They represent a heterogeneous group,
because of unobservable factors. Let us assume that, for any individual,
such factors are summarized by a non-negative variable, viz the frailty. The
specific value of the frailty of each individual does not change over time, but
remains unknown. On the contrary, because of deaths, the distribution of
people in respect of frailty does change with age, given that people with low
frailty are expected to live longer. We denote by Zx the random frailty at age
x, for which a continuous probability distribution with probability density
function (pdf) gx(z) is assumed. It must be mentioned that the hypothesis
of unvarying individual frailty, which is reasonable when thinking of genetic
aspects, seems weak when referring to environmental factors, which may
change over time then affecting the risk of death; however, there is empirical
evidence which validates quite satisfactorily the above assumption.
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Let µx(z) denote the (conditional) force of mortality of an individual
current age x with frailty level z, that is:

µx(z) = lim
t→0

P[Tx ≤ t|Zx = z]

t
(27)

The individual (conditional) force of mortality can be linked, in various
ways, to a “standard” force of mortality. In Vaupel et al. (1979) a multiplica-
tive link has been proposed:

µx(z) = z µx (28)

where µx = µx(1) represents the force of mortality for an individual with
z = 1, and is considered as the standard force of mortality.

It can be proved (see, for example, Pitacco et al. (2009)) that, given the
pdf of the initial distribution of the frailty, g0(z), and the force of mortality
µx(z) for x, z > 0, we can determine:

• the pdf of the frailty at age x, gx(z), for x > 0;

• the average force of mortality in the cohort:

µ̄x =

∫ +∞

0

µx(z) gx(z) dz (29)

which, according to the multiplicative link, is given by:

µ̄x = µx

∫ +∞

0

z gx(z) dz = µx z̄x (30)

where z̄x is the expected frailty at age x.

In order to further progress in analytical terms (and to find significant
numerical results), some choices are needed, in particular as regards:

• the pdf of the frailty at a given age, e.g. age 0 and hence g0(z);

• the mortality law, that is, a specific parametric model for the standard
force of mortality, µx.

We consider the model proposed by Beard (1959); see also Vaupel et al.
(1979). Hence:

(1) the multiplicative model is adopted to link the frailty-specific force of
mortality to the standard one; see Eq. (28);
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(2) the probability distribution of the frailty is described by a Gamma
with given parameters, Gamma(δ, θ);

(3) the Gompertz law or the Makeham law describes the standard mor-
tality; in what follows, we adopt the Gompertz law µx = α eβ x.

We then find, for the average force of mortality in the cohort:

µ̄x =
α′ eβx

δ′ eβx + 1
(31)

Thus, the Gompertz-Gamma model leads to the first Perks law, with
γ = 0, that is the Beard law (see Eqs. (11) and (13)), with parameters α′, δ′

depending on the parameters δ, θ of the frailty distribution.
As the models in the logistic class (see Sect. 3.5) imply deceleration in

the age-pattern of mortality, we can conclude that, in the setting described
above, the deceleration is a consequence of the presence of frailty in the
cohort.

For a formal approach and more details, see, for example, Pitacco et al.
(2009) and the references therein.

We note that various generalizations of the Gompertz-Gamma or the
Makeham-Gamma model can be conceived. For example, the generalization
proposed by Martinelle (1987) relies on the use of a shifted Gamma distribu-
tion for the frailty, which only takes positive values on the interval [z∗, +∞),
with z∗ > 0.

Further, it is worth noting that a logistic model for the average force of
mortality, µ̄x, can be the result of different settings and assumptions. An
interesting example is given by the stochastic process of ageing proposed by
H. Le Bras. In Le Bras (1976) a cohort, assumed homogeneous at the birth,
is considered; thus, all its members are supposed to be in the same state of
health. Then, people move from one state of health to another, and hence
heterogeneity develops throughout the life of the cohort.

4 Actuarial aspects
Research work in the actuarial field, in particular focussing on the impact of
heterogeneity and frailty on the results of life annuity business and pension
funds has been quoted in Sect. 1. In this Section, we only summarize some
numerical results achieved by Olivieri (2006).

Refer to a portfolio of life annuities. All the annuitants are aged x = 65
initially, that is at time t = 0. The group is closed to new entrants; death is
the only cause of decrement. The same annual benefit b = 1 is paid to all the
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annuitants; we assume that the annual benefit is paid continuously along the
year; 2% is the annual interest rate adopted in calculating actuarial values.

As regards mortality in the cohort, two basic alternatives are considered:

• homogeneity assumption, with force of mortality µx given by the Gom-
pertz law, with α = 9.712× 10−6 and β = 0.109;

• heterogeneity assumption, according to the Gompertz-Gamma model
with Gamma(δ, θ), and standard force of mortality (that is, with uni-
tary frailty) µx(1) = µx.

In the case of heterogeneity, we assume θ = δ, so that at age 0 the average
frailty is equal to 1 (for details, again see Pitacco et al. (2009)). We also note
that:

. lower δ ⇒ stronger heterogeneity;

. higher δ ⇒ weaker heterogeneity;

. δ → +∞ ⇒ homogeneity.

In particular, δ = 30 will be considered as the heterogeneity assumption in
some numerical comparisons (see also Butt and Haberman (2004)).

In the following tables, Y
(j)
t denotes the random present value, assessed

at time t, of the benefits paid to the generic annuitant j (i.e., the individual
liability). The relevant expected value, i.e. the actuarial value of the benefits,
has been calculated according to both the assumptions, that is, homogeneity
and heterogeneity, and in the latter case assuming various parameter values.
Conversely, Y

(Pt)
t denotes the random present value, assessed at time t, of

the benefits paid to the portfolio in force at time t, Pt (i.e. the portfolio
liability), that is:

Y
(Pt)
t =

∑
j∈Pt

Y
(j)
t

Numerical results in Table 1 show that disregarding heterogeneity in the
portfolio lead to underestimation of the actuarial values and hence, in par-
ticular, of the individual reserves.

In Table 2 values of the coefficient of variation, that is

CV[Y
(Pt)
t ] =

√
Var[Y (Pt)

t ]

E[Y
(Pt)
t ]

for various portfolio sizes are reported (as regards the calculation of the
variance, the reader can refer to Olivieri (2006)). Numerical results show
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Table 1: Expected values of individual liabilities. Source: Olivieri (2006)

x + t E[Y
(j)
t ][homog]

E[Y
(j)
t ][heter]

E[Y
(j)
t ][homog]

− 1

δ = 1 δ = 20 δ = 30 δ = 40 δ → +∞
65 14.685 15.288% 1.048% 0.698% 0.523% 0.000%
70 12.027 22.084% 1.459% 0.972% 0.728% 0.000%
75 9.505 32.750% 2.122% 1.413% 1.060% 0.000%
80 7.219 49.684% 3.226% 2.149% 1.611% 0.000%
85 5.252 76.428% 5.107% 3.402% 2.551% 0.000%
90 3.657 117.537% 8.361% 5.573% 4.179% 0.000%
95 2.440 177.114% 14.029% 9.355% 7.017% 0.000%
100 1.568 253.609% 23.906% 15.951% 11.969% 0.000%

Table 2: Coefficient of variation of liabilities for some portfolios.
Heterogeneity assumption: δ = 30. Source: Olivieri (2006)

size nt
x = 65 x + 10 = 75 x + 20 = 85

[homog] [heter] [homog] [heter] [homog] [heter]

10 12.757% 14.921% 16.528% 20.367% 20.846% 27.092%
1 000 1.276% 8.090% 1.653% 12.467% 2.085% 18.173%

10 000 0.403% 8.001% 0.523% 12.372% 0.659% 18.071%

that disregarding heterogeneity leads to underestimation of the (relative)
riskiness in the portfolio, as expressed by the coefficient of variation, and
hence to underestimation of the adequacy requirements, in terms of risk
margin and/or solvency capital.

Although numerical results obviously depend on the probabilistic model
adopted (the Gompertz-Gamma model in the above examples) and the choice
of the relevant parameter values, “qualitative” results (like the higher riskiness
in the presence of heterogeneity) reasonably hold also in other settings.

5 Concluding remarks and outlook
High-age mortality data may be scanty, even when the reference population
has a significant size. Of course, scarcity and possible bad quality of data
cause severe problems in estimating the high-age mortality pattern. Some
(controversial) conclusions have been presented in Sect. 2.

A possible problem in estimating the age pattern of mortality is given by
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population heterogeneity with respect to mortality. Heterogeneity may be
due to:

(a) mixing several cohorts data;

(b) heterogeneity among individuals inside a given cohort.

 Individual  frailty  

Heterogeneity 
(one-cohort  
population) 

Mixing cohorts in 
mortality analysis  

Heterogeneity 
(multiple-cohort  

population) 

Logistic  models  

Deceleration 
in the age-pattern 
of mortality  

Higher variance of:  
- number of survivors 
- cash flows of life annuity 

portfolios 

Causes  

Primary 
effect  

Appropriate 
modeling 

Secondary 
effects  

Figure 3: Heterogeneity, Deceleration, Variance

As regards point (b), assume homogeneity in the cohort in relation to
observable mortality risk factors, e.g. the gender. A residual heterogeneity is
then due to non-observable risk factors. The individual specificity in relation
to non-observable risk factors can be summarized in quantitative terms by
the individual frailty level.

The presence of heterogeneity inside a cohort implies a deceleration of
the late-life mortality in the cohort. This feature can appropriately be rep-
resented by a force of mortality belonging to the logistic class, as results, for
example, from the Gompertz-Gamma model.

Conversely, from an actuarial perspective disregarding heterogeneity leads,
in particular, to underestimation of the risk profile, as shown in Sect.4.

Figure 3 summarizes the above conclusions.
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The complexity of the problem, especially in the actuarial context, calls
for further research. From a risk management perspective, models and results
presented in Sects. 3 and 4 can be placed in the “risk identification”, “risk
assessment” and “impact assessment” phases (see, for example, Olivieri and
Pitacco (2015) and references therein). Actually:

(a) risk identification relies on the awareness of mortality differentiation
because of heterogeneity, in particular due to non-observable risk fac-
tors;

(b) risk assessment aims at finding appropriate probability distribution
of lifetimes, and related typical values (expected value, modal value,
variance, etc.) under various mortality assumptions;

(c) impact assessment calls for appropriate models aiming to quantify li-
ability values under various mortality assumptions.

While the basic guidelines for performing phases (a) to (c) can be found
in the previous Sections, a further phase must be implemented, that is, the
choice of “risk management actions”, among which the product design should
carefully be considered, especially in relation to life annuities and the related
pricing and reserving. Indeed, an appropriate product design can mitigate
risks in terms of the relevant impact on portfolio results.
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