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Abstract 

Many studies have compared individual measures of health expectancy across older 

populations by time-invariant variables. However, very few have included time-varying 

variables when calculating health expectancy. Since events in the life course are likely to be 

changing over time in related ways, it is valuable to incorporate time-varying socioeconomic 

factors. This paper proposes a Multiple Multistate Method (MMM) that situates the multistate 

model within the broader family of Vector Autoregression (VAR) models. When estimating 

multistate models with sample survey data, sparseness in the transition matrices often makes 

such models unfeasible should two or more time-varying variables be built into the state spaces. 

This approach allows for the estimation of more complex state spaces (including the modeling 

of time-varying covariates) by reducing less important interactions in the model. We then 

demonstrate the MMM in two empirical applications, showing the flexibility of the approach 

to explore health expectancies with complex state spaces.  
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Introduction 

In recent years, a considerable body of research has developed using multistate models to 

explore health expectancies based on data from longitudinal sample surveys. Several main 

analytical approaches have been developed to estimate multistate life table quantities from 

longitudinal data, including the Stochastic Population Analysis for Complex Events (SPACE) 

program (Cai et al. 2010), the Interpolated Markov Chain Method (IMaCh) (Lièvre et al. 2003), 

and the Gibbs Sampler for Multistate Life Tables Software (GSMLT) (Lynch and Brown 2005). 

However, a shared challenge that these models face is their inability to handle large, complex 

state spaces—a shortcoming that is mostly due to the relatively small sample sizes available 

from longitudinal sample survey data. In multistate models, including a more refined 

categorization of health or having more than one time-varying variable leads to a rapid growth 

in the state space to be estimated. As this state space increases, “the number of transition 

schedules to be estimated increases multiplicatively” (Saito et al. 2014:216). This scaling issue 

leads to issues of sparsity, as observed transitions become rare and age-patterns difficult to 

estimate.  

Due to these methodological challenges, existing studies have mostly computed health 

expectancy or other multistate life expectancies assuming an individual’s socio-demographic 

factors remain constant over time. The literature focuses heavily on differences across time-

invariant factors such as sex and education. A few studies have explored time-varying variables 

such as urban/rural residence (Liu et al. 2019) and marital status (Martikainen 2014) by 

assuming these variables remain unchanged in later life. A small body of recent studies have 

attempted to include time-varying variables by including them in the state space, an approach 

that we hereafter call the “complex multistate model”. Jia and Lubetkin (2020) combined 

marital and disability status into a complex multistate model with two disability states and five 

different states of marital status. The resulting state space is extremely large, and many 
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transition probabilities need to be estimated. Estimating accurate transition probabilities for 

such a large, complex state space requires a massive amount of data, and Jia and Lubetkin 

(2020) use data from Medicare Health Outcomes Survey comprising over 160,000 respondents. 

Huang et al (2021) computed the older Chinese health expectancy of physically active and free 

of cognitive impairment in a complex multistate model. Yet, their state space omitted some of 

the possible states without further explanation. Another working paper by Authors (2022) also 

developed a multidimensional extension to prior work on health expectancy by simultaneously 

modelling changes in morbidity and disability across a set of cohorts in the US Health and 

Retirement Survey (HRS). However, they had to use a very simplified five-state state space 

(using binary measures of any vs. no morbidities and any vs. no disability) to estimate these 

quantities, even with the substantial sample size of the HRS. 

An active strain of research on multistate methods has sought to overcome some of the 

limitations associated with estimating health expectancies in complex state spaces. A recent 

paper by Lynch and Zang (2022) uses a Bayesian approach to account for issues of data sparsity 

when estimating quantities in the complex multistate model. Other studies have also sought to 

incorporate time-varying variables using methods other than the traditional multistate model. 

Chiu (2019) computed the disability-free life expectancy by living arrangements in the US, 

claiming that living arrangement is treated as a time-varying covariate in the model. However, 

the description of the method is unclear about how this time-variant covariate was 

operationalized. Only one method --- the simultaneous equation system used by Yang and Hall 

(2007) --- appears to address this issue. This method estimates health expectancy with several 

time-variant covariates (i.e., BMI, medical events and chronic diseases) within a system of 

equations. Yet, little existing research has applied this method, partly due to its statistical 

complexity. Thus, the aim of this paper is to develop a simple and generalizable method to 

allow increased complexity in multistate state spaces when incorporating multiple time-varying 
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variables, such as multiple dimensions of health, or interactions between health and 

socioeconomic variables, when estimating health expectancies or other multistate life 

expectancies.  

Conceptually speaking, in the multistate model, when an individual moves to a different 

state that individual assumes a new set of transition probabilities. A similar idea can be found 

in the complex multistate model, where a change in one of the time-varying impacts both its 

own transition probabilities and other time-varying variables’ transition probabilities. For 

example, an individual becoming obese shifts not only their probability of whether they will 

be obese in the future but also their probability of developing diabetes.  

In this paper, we introduce a formulation of the complex multistate model with more 

than one time-varying variable (e.g., Authors 2022; Jia and Lubetkin 2020) as a recursive vector 

autoregression (VAR) model. We call this new representation of complex multistate model the 

multiple multistate method (MMM). The concept of this modelling framework shares many 

similarities with the vector autoregressive (VAR) model popular in econometric time series 

studies, which is used to capture the relationship between multiple endogenous variables as 

they change over time. VAR models have not been used in in the context of modelling health 

expectancy before, although they have been applied in actuarial studies to forecast mortality 

(e.g., Chang and Shi 2021; Guibert, Lopez and Piette, 2019; Li and Lu, 2017; Li and Shi, 2021). 

In the methods section, we describe how the MMM can exactly replicate a complex multistate 

model and discuss how the flexibility of the MMM approach can reduce estimation difficulties 

by removing less important interactions when estimating complex state spaces.  

To better illustrate our method, we present two examples. The first example replicates 

a working paper (Authors 2022). Using a five-state multistate model, they estimated the health 

expectancy by both morbidity and disability of the four successive US birth cohorts, born from 
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1914-1923 to 1944-1953. To demonstrate the method, we adopt the same data and compare 

results between the complex multistate model and the MMM. In the second example, we 

explore a similar research question to Jia and Lubetkin (2020). Instead of looking at marital 

status and ADL disability, we select another commonly used health indicator --- self-rated 

health (e.g., Crimmins 2004; Payne 2022). For decades, many studies have discussed the 

association between marital status and health. Most of them suggest a positive or protective 

effect of marriage on health and survival (Goldman et al. 1995; Rendall et al 2011, Verbrugge 

1979). Others also found negative effects of widowhood or divorce (Korinek et al. 2011; 

Verbrugge 1979). Yet only very few studies examined the impact through the lens of multistate 

life expectancy until Jia and Lubetkin (2020). Thus, this example may provide dynamic insight 

into how marital status and health status interact as individuals age.  

Method 

Complex Multistate Model 

To explore the interaction between two time-varying variables with, for example, two 

categories each, the traditional complex multistate method would combine the two variables to 

form five distinct states with one absorbing state for dead. The first time-varying Variable G 

has two categories, 𝑔𝑔1 and 𝑔𝑔2, and Variable H has ℎ1 and ℎ2. There are different approaches to 

estimate transition probabilities or rates for the expectancy (e.g., Allison 1982; Dudel 2021; 

Lynch and Brown 2005); the method in this paper is built on logistic regression, one of the 

most widely used discrete-time methods (Allison 1982; Cai et al. 2010). The state space is 

shown in Figure 1 and the corresponding Table 1 present the matrix of transition probabilities 

within the state space, where the row names represent the current state, and the column names 

the state in time t+1. Each row sums up to one. 
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Using multinomial regression, we can estimate the transition probabilities in equation 

(1), 

logit(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑠𝑠|𝐱𝐱) = ln �Pr�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑠𝑠�𝐱𝐱�
Pr�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑆𝑆�𝐱𝐱�� = 𝛼𝛼𝑠𝑠 + 𝛽𝛽1,𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝛽𝛽2,𝑠𝑠 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑠𝑠 ∙

𝐗𝐗𝑖𝑖,           s ={𝑔𝑔1ℎ2, 𝑔𝑔2ℎ1, 𝑔𝑔2ℎ2, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷}; S ={𝑔𝑔1ℎ1}                        (1) 

where 𝐗𝐗𝑖𝑖 may include other fixed covariates, such as sex or education. Multinomial logistic 

regression estimates a series of binary logistic models comparing each state, s, to the baseline 

state, S (set to 𝑔𝑔1ℎ1), given all the covariates on the right-hand side (Agresti 2007; Fullerton 

and Xu 2018). This regression model assumes, as in prior literature (e.g., Cai and Lubitz 2007; 

Laditka and Wolf 1998; Lim et al. 2019), that the transitions follow a discrete-time Markov 

chain, and the transition probabilities are time-homogeneous and age-specific. A set of 

coefficients is estimated for each comparison to the baseline. The predicted probability of being 

in state, s, in time t+1 given the current state and other covariates can be expressed in equation 

(2),  

Pr(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑠𝑠|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝐗𝐗) = 𝑒𝑒𝛼𝛼𝑠𝑠+𝛽𝛽1,𝑠𝑠∙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+𝛽𝛽2,𝑠𝑠∙𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡+𝛽𝛽𝑖𝑖,𝑠𝑠∙𝐗𝐗𝑖𝑖

∑ 𝑒𝑒𝛼𝛼ℎ+𝛽𝛽1,ℎ∙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+𝛽𝛽2,𝑠𝑠∙𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡+𝛽𝛽𝑖𝑖,ℎ∙𝐗𝐗𝑖𝑖 
ℎ

,          s = {𝑔𝑔1ℎ1, 

𝑔𝑔1ℎ2, 𝑔𝑔2ℎ1, 𝑔𝑔2ℎ2, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷}; c = {𝑔𝑔1ℎ1, 𝑔𝑔1ℎ2, 𝑔𝑔2ℎ1, 𝑔𝑔2ℎ2},          (2) 

where h includes all five possible states, and 𝐗𝐗 includes all the covariates other than 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 and 

𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 in equation (1).  

After obtaining this transition matrix, we can use microsimulation to calculate the 

life/health expectancy. To do this, we generate 100,000 individuals based on the baseline 

characteristics of the start age of the 10-year age group. The probabilities in each row of Table 

1 are mapped into subsets in the interval of 0 to 1 based on the size of each probability. For 

example, the first row would be turned into five subsets: [0, 𝜇𝜇1), [𝜇𝜇1, 𝜇𝜇1 + 𝜇𝜇2), [𝜇𝜇1 + 𝜇𝜇2, 𝜇𝜇1 +

𝜇𝜇2 + 𝜇𝜇3) , [𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3, 𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3 + 𝜇𝜇4)  and [𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3 + 𝜇𝜇4, 1] . Then a random 
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number, X, is drawn from the uniform distribution, 𝑋𝑋~𝑈𝑈(0,1). The next state of the individual 

with certain current state and other characteristics is assigned to whichever subset this random 

number falls into (Laditka and Wolf 1998). Life/health expectancy can also be calculated using 

multistate life table method, with the same transition probabilities and baseline characteristics. 

However, the synthetic cohort from microsimulation can provide much richer information on 

individuals’ life courses, beyond simple estimates of aggregated life expectancy.  

 

(Table 1 & Figure 1 about here) 

 

 With the basis of the traditional multistate model explained, we can introduce the 

Multiple Multistate Method (MMM) and highlight its distinct features. As mentioned in the 

Introduction, one of the main drawbacks of using the traditional multistate model is its inability 

to handle large state spaces. In the case of two categories in each dimension of health and five 

states in total, the traditional multistate model is still manageable. However, when the number 

of categories or the number of time-varying variables increases, the observed transitions often 

become too sparse to reliably estimate. To alleviate this problem, MMM proposes to model 

different time-varying variables separately in multiple logistic regressions.  

Multiple Multistate Method (MMM) 

The concept of MMM shares many similarities with the vector autoregressive (VAR) 

model, which is commonly used in macroeconomic and financial modelling to capture the 

relationship between multiple endogenous variables as they change over time. The advantage 

of VAR models over other regression models such as ordinary least squares is that they do not 

require variables to be exogenous (Enders 2004), so these models are well suited for modelling 

interrelated variables such as macroeconomic variables. In our context, this means that a VAR 

3 Jan 2023

6 tianyu.shen@anu.edu.au



model can jointly estimate a system of equations where, for example, disability can be 

modelled as a function of morbidity, and morbidity can be modelled as a function of disability. 

A VAR model usually takes one of three forms: reduced-form VAR, recursive VAR and 

structural VAR (SVAR) (Stock and Watson 2001). In a reduced-form VAR, each variable is 

modelled as a function of its own past and the past values of the other variables (i.e., the lags 

of the variables), but the model does not capture the contemporaneous effects (Enders 2004). 

On the other hand, recursive and structural VAR models include the lags of the variables 

similar to a reduced-form VAR, but in addition, they also allow the outcome variables in each 

equation to depend on the contemporaneous values of the other variables. The structural VAR 

differs from the recursive VAR in that it incorporates identifying assumptions derived from 

empirical theory and therefore allows for causal inference (Stock and Watson 2020). The 

reduced-form and recursive VAR models are more relevant for the purpose of this paper, as 

our focus is not on causal inference. The advantage of a reduced-form VAR is in its simplicity, 

which is also its disadvantage. Since it does not include the contemporaneous variables, the 

short-run concurrent relationship or shock in the system would be ignored. Thus, whether 

reduced-form VAR is a good model depends on correlation of the change in one variable on 

the other at the same time and the interval of time unit.   

There are applications using VAR on panel data (i.e., a Panel VAR model) even though 

the observation period may be shorter than 10 years (Canova and Ciccarelli, 2013; Holtz-Eakin 

et al. 1988; Kim and Lee, 2008). Most demographic models using longitudinal data to estimate 

multistate life tables would pool all individuals over time for the estimation of transition 

probabilities (e.g., Cai and Lubitz 2007; Payne 2022; Yong and Saito 2012), which provides 

more units of observation and lower complexity than the model with individual effects. VAR 

models are usually estimated with continuous time-series variables such as macroeconomic 

and financial data, where each equation in the VAR system is estimated via Ordinary Least 
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Squares regressions. However, in our context, the variables are binary, and we therefore 

estimate the equations via logit regressions. Such “logistic VAR models” have previously been 

applied in empirical work (e.g., Epskam 2013; Huang et al. 2020). 

In economics, the lag length for the variables in each equation is typically estimated via 

F-tests or information criteria (such as the Akaike information criterion (AIC) or the Bayesian 

information criterion (BIC)) and will also depend on the frequency of the time-series variables 

(Stock and Watson 2020). For example, the number of lags is typically small with annual data, 

with around one or two lags (Wooldridge 2020). Using one lag is consistent with the common 

multistate assumption of a first-order Markov Chain, and annual or biannual survey data 

collection. With the Markov assumption, the current state depends only on the previous state, 

which can be regarded as a univariate autoregression with lag one, VAR(1). When the state 

spaces are the combinations of two variables (a complex multistate), it is possible to turn it into 

bivariate autoregressions with lag one maintaining the Markov assumption. As aforementioned, 

there are various types of VAR models, and the traditional multistate model is close to a 

recursive VAR because the concurrent relationship is estimated as one of the probabilities. In 

the following paragraphs, we will first explain the comparability between the complex 

multistate model and the bivariate recursive VAR(1), and then discuss and examine the 

potential alternative, reduced-form VAR(1) in the Application section. 

 The first problem to separately estimate the time-varying variables is to deal with the 

transition to mortality. A person can possess multiple time-varying characteristics at the same 

time, but there is only one dead state in Figure 1. It is possible to estimate both models with 

death and the transition probabilities to death for the same group of individuals should be 

equivalent because the number of transitions to death are the same in either time-varying 

characteristic. The probabilities to death are theoretically equivalent, so death should only be 

modelled in one of the time-varying variables. As a result, there will be two (or more) ways to 

3 Jan 2023

8 tianyu.shen@anu.edu.au



build the model depending on where the death is modelled. Nevertheless, these models are 

comparable in mathematics and results. To demonstrate this, we describe one type of model in 

the main text and detail the other one in the Appendix 1. Type a, in Figure 2, is where variable 

G can transition to death and variable H does not, whereas Type b, in Appendix Figure A1, 

flips this and only variable H can transition to death. Table 2 and A1 are the corresponding 

transition matrices for each type of model. Both tables have two panels. Panel a represents the 

transitions in the upper model and panel b the lower one. Each row should also sum to one.  

The row names in Table 2 and A1 represent the current state of the time-varying 

variable that is modelled, and state at time 𝑡𝑡 (and 𝑡𝑡 + 1) of the other time-varying variable is 

in subscript. To estimate these probabilities, we could model separately for each subscript or 

by adding interaction terms with all covariates. In this study, we choose to model Type a 

separately in equation (3) and (4) for simplicity (Type b can be found in Appendix 1), 

logit�𝐺𝐺𝑡𝑡+1,ℎ𝑡𝑡� = 𝛼𝛼ℎ𝑡𝑡 + 𝛽𝛽1,ℎ𝑡𝑡𝐺𝐺𝑡𝑡,ℎ𝑡𝑡 + 𝛽𝛽2,𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,ℎ𝑡𝑡 + 𝛽𝛽𝑖𝑖,ℎ𝑡𝑡𝐗𝐗𝑖𝑖,ℎ𝑡𝑡 ,         ℎ𝑡𝑡 = {ℎ1,ℎ2}          (3) 

logit�𝐻𝐻𝑡𝑡+1,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1� = 𝛼𝛼𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1 + 𝛽𝛽1,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1𝐻𝐻𝑡𝑡,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1 + 𝛽𝛽2,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1 +

𝛽𝛽𝑖𝑖,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1𝐗𝐗𝑖𝑖,𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1 ,             𝑔𝑔𝑡𝑡,𝑔𝑔𝑡𝑡+1 = {𝑔𝑔1,𝑔𝑔2}                        (4) 

Thus, there are in total six regressions to estimate, two for 𝐺𝐺𝑡𝑡+1 given ℎ𝑡𝑡 and four for 𝐻𝐻𝑡𝑡+1 

given 𝑔𝑔𝑡𝑡 and 𝑔𝑔𝑡𝑡+1. Additionally, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑔𝑔1ℎ1 are the same observations as 𝐺𝐺𝑡𝑡,ℎ𝑡𝑡=ℎ1 = 𝑔𝑔1, 

and so on.   

 

(Table 2 & Figure 2 about here) 
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If the MMM can exactly replicate the complex multistate model, transition probabilities 

in Table 2 should have equivalent relation with those in Table 1. Pr (𝐺𝐺𝑡𝑡+1,ℎ𝑡𝑡=ℎ1 =

𝑔𝑔1|𝐺𝐺𝑡𝑡,ℎ𝑡𝑡=ℎ1 = 𝑔𝑔1,𝐗𝐗) , or 𝜆𝜆ℎ1.1 , is the joint probability of 

Pr(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑔𝑔1ℎ1|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑔𝑔1ℎ1,𝐗𝐗), or 𝜇𝜇1 , and Pr(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑔𝑔1ℎ2|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑔𝑔1ℎ1,𝐗𝐗), 

or 𝜇𝜇2. Since 𝜇𝜇1  and 𝜇𝜇2  are mutually exclusive, the joint probability is 𝜇𝜇1 + 𝜇𝜇2 . Similarly, 

Pr (𝐺𝐺𝑡𝑡+1,ℎ1 = 𝑔𝑔2|𝐺𝐺𝑡𝑡,ℎ1 = 𝑔𝑔1,𝐗𝐗), or 𝜆𝜆ℎ1.2, is the joint probability of 𝜇𝜇3 and 𝜇𝜇4 (i.e., 𝜇𝜇3 + 𝜇𝜇4). 

Pr (𝐺𝐺𝑡𝑡+1,ℎ1 = Dead|𝐺𝐺𝑡𝑡,ℎ1 = 𝑔𝑔1,𝐗𝐗) , or 𝜆𝜆ℎ1.3  is equivalent to 

Pr(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = Dead|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 = 𝑔𝑔1ℎ1,𝐗𝐗), or 𝜇𝜇5. 

 

(Table 3 about here) 

 

As for panel b in Table 2, the probability of the transition in Variable H is conditional 

on the transition in Variable G, both time 𝑡𝑡  and 𝑡𝑡 + 1 . Thus, Pr (𝐻𝐻𝑡𝑡+1,𝑔𝑔𝑡𝑡=𝑔𝑔1,𝑔𝑔𝑡𝑡+1=𝑔𝑔1 =

ℎ1|𝐻𝐻𝑡𝑡,𝑔𝑔𝑡𝑡=𝑔𝑔1,𝑔𝑔𝑡𝑡+1=𝑔𝑔1 = ℎ1,𝐗𝐗), or 𝜆𝜆𝑔𝑔1.𝑔𝑔1.1, is equivalent to the 𝜇𝜇1
𝜇𝜇1+𝜇𝜇2

, and  𝜆𝜆𝑔𝑔1.𝑔𝑔1.2 is equivalent to 

𝜇𝜇2
𝜇𝜇1+𝜇𝜇2

. Table 3 presents the equivalence of all probabilities between Tables 1 and 2. Noted that 

we use “equivalent” throughout these paragraphs because all these probabilities are predicted 

estimates instead of the actual probabilities and they are likely to be slightly different between 

models.  

The dashed arrow that connects the two models can also be done in two ways like the 

complex multistate model: life table method or microsimulation. In this paper, we only focus 

on the microsimulation method, but the underlying calculation is the same for life table method. 

To get the life/health expectancies, we need to run two independent microsimulations for each 

type of model as there are two sets of transition probabilities. For an individual starting from 
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𝑔𝑔1 and ℎ1, we first draw a random number from the uniform distribution, 𝑈𝑈(0,1), to determine 

the next states of Variable G according to which subset, in subsets [0, 𝜆𝜆ℎ1.1), [𝜆𝜆ℎ1.1, 𝜆𝜆ℎ1.1 +

𝜆𝜆ℎ1.2) and [𝜆𝜆ℎ1.1 + 𝜆𝜆ℎ1.2, 1], the random number falls into. If the number falls in the first subset, 

this individual will become 𝑔𝑔1. Thus, another random number is drawn, from the same uniform 

distribution, to identify the next state of Variable H, in subsets [0, 𝛾𝛾𝑔𝑔1.𝑔𝑔1.1) and [𝛾𝛾𝑔𝑔1.𝑔𝑔1.1, 1], this 

random number falls for the next. In such, we obtain the next state of Variable G and H for this 

individual. Alternatively, if the number falls in the third subset, then the second random number 

is not needed since this individual remains dead in all the future states.  

So far, this model of MMM can exactly replicate the complex multistate model, but it 

does not solve the problem of the sparse transitions in certain category, especially when the 

sample size of the survey is small. The real benefit of MMM disentangling the complex state 

space by dividing one regression in equation (1) to multiple regressions in equations (3) & (4) 

is to enable higher level of flexibility. This makes estimation of more complex models possible 

by allowing the researcher to reduce insignificant interactions and manipulate the relationship 

between time-varying variables according to their research questions and theoretical 

frameworks.  

Applications 

In this section, we first demonstrate the multiple multistate method (MMM) that can exactly 

replicate a five-state multistate model focusing on two dimensions of health as in Authors 

(2022). We then demonstrate how the reduced-form VAR model can be used to estimate 

multistate life table quantities in complex state spaces, reducing estimation difficulties through 

removing less important interactions. The results from these methods are compared to examine 

the differences and understand potential limitations. We then present a further example 

showing how our method can be applied using time-varying variables other than health. This 
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example uses the MMM to explore healthy life expectancy while accounting for changes in 

marital status. All analyses are conducted in R software (R Core Team 2022).   

Data 

Data are from the US Health and Retirement Survey (HRS) (Health and Retirement Study 

2021), a bi-annual national longitudinal survey (Sonnega et al. 2014) for both 

application examples. In example one, our analyses use data from 1998 to 2018 of the 

HRS to estimate cohort partial health expectancy with disability and morbidity across birth 

cohorts. Disability and morbidity are defined the same way as in Authors (2022). Disability 

is classified into two categories: “Disability-free” (DF) and “(Activities of Daily Living) 

ADL disabled” (D). Individuals are classified as “Morbid” (M) if they are ever 

diagnosed with any of the five chronic diseases including cancer, diabetes, heart 

disease, lung disease and stroke, and “Morbidity-free” (MF) otherwise.  

In the second example, we use data from the 2008 to 2018 waves of the HRS to 

estimate remaining healthy life expectancy by sex and marital status for those aged 55 

plus. Marital status is divided into three categories: “married/partnered”, “divorced/

separated” and “widowed/widower”. Individuals who never married are excluded from the 

analyses as they are a very small population and are unlikely to change marital status over 

time in older cohorts. Health is defined by self-rated health, where individuals who responded 

“Excellent” or “Very good” are reclassified as “very good”, “Good” are “fair”, and “Fair” or 

“Poor” are “poor”.  

Example 1: two dimensions of health 

Figure 3 describes the complex multistate model and state space of Authors (2022), replacing 

the variables G & H in the example above to Morbidity and Disability. Note that the state space 

is slightly constrained as compared to Figure 1, as transitions from morbid to morbidity-free 

14 
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are not allowed under the definition of morbidity as ever diagnosed. In this complex multistate 

model, the transition probabilities are estimated using a single multinomial logistic regression 

shown in equation (5). 

logit(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑠𝑠|𝐱𝐱) = ln �Pr�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑠𝑠�𝐱𝐱�
Pr�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡+1 = 𝑆𝑆�𝐱𝐱�� = 𝛼𝛼𝑠𝑠 + 𝛽𝛽1,𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝛽𝛽2,𝑠𝑠 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑠𝑠 ∙

𝐗𝐗𝑖𝑖,           s ={MF-D, M-DF, M-D, Dead}; S ={MF-DF}                        (5) 

where 𝐗𝐗𝑖𝑖 includes terms for age-squared, sex, birth cohorts and interactions between age, sex 

and birth cohorts.  

 

(Figure 3 about here) 

 

We omit the details of how to exactly replicate this complex multistate model using 

MMM with recursive VAR(1) in the main text as the procedure is highly similar to what is 

described in the Method section (for the interested reader, the detailed procedure can be found 

in Appendix 2). Instead, in this section, we focus on describing and comparing one of the 

potential alternatives that utilizes features of MMM to reduce complexity in the state space. 

Instead of modelling morbidity by disability group and disability by morbidity group like 

equations (3) and (4), we add them into the independent variables. To retain some of the non-

linear relationship between age, morbidity and disability at time t, extra interaction terms are 

included. However, the other variables no longer have the interactions with health states. The 

MMM would be estimated by equations (6) and (7).  

logit(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡+1) = 𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 + 𝛽𝛽𝑚𝑚2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 + 𝛽𝛽𝑚𝑚3𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 +

𝛽𝛽𝑚𝑚4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑚𝑚5𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑚𝑚𝑚𝑚𝐗𝐗𝑖𝑖,             (6) 
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logit(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡+1) = 𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 + 𝛽𝛽𝑑𝑑2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 + 𝛽𝛽𝑑𝑑3𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 +

𝛽𝛽𝑑𝑑4𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑑𝑑5𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑑𝑑𝑑𝑑𝐗𝐗𝑖𝑖,             (7) 

where 𝐗𝐗𝑖𝑖 similarly includes terms for age-squared, sex, birth cohorts and interactions between 

age, sex and birth cohorts, as well as interaction between sex, morbidity and disability.  

As discussed above, only one of the equations allows for transitions to mortality, 

although the choice of which state individuals can die from does not matter for the final 

estimates (as shown in Appendix 1). Figure 4 and Table 4 show the state space and the 

corresponding probabilities of one of the models where death is modelled alongside disability. 

Figure 4 is similar to the MMM with recursive VAR(1) in Figure A2 (or Figure 2). Panel a of 

Table 4, the transition matrix for morbidity, is almost the same as Panel a in Table A2 (or Table 

2). Transitions between morbidity states rely on morbidity and disability at time 𝑡𝑡. The major 

difference is in Panel b of Table 4 (the transition matrix for disability), where disability at time 

𝑡𝑡 + 1  is only dependent on morbidity and disability at time 𝑡𝑡  (for example, 

Pr (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡+1 = DF|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 = MF,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 = DF,𝐗𝐗) is 𝛾𝛾𝑚𝑚𝑚𝑚.1), instead of being 

dependent on disability at time 𝑡𝑡 and morbidity at time 𝑡𝑡 and 𝑡𝑡 + 1.  

 

(Figure 4 about here) 

 

The probabilities in Table 4 also have a close relationship with the transition 

probabilities in Figure 3, but we cannot reverse engineer all the probabilities in Figure 3 like 

we did in Table 3 because the relationship between contemporaneous changes in the two 

dimensions of health (or time-varying variables) is approximated. For example, an individual 

with 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 = MF and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 = DF will have the same probability of transitioning 
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to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡+1 = DF 𝑜𝑜𝑜𝑜 D regardless of their morbidity state at time 𝑡𝑡 + 1. Conceptually 

speaking, this is not a bad approximation. People are most likely to be diagnosed with 

morbidities at the early stage of the disease with mild symptoms. The impact of a given disease 

accumulates over the life course and may lead to higher chances of being disabled at older ages. 

Most of the effects of chronic disease are accumulative rather than the result of an instant shock 

to the body (Chou et al. 2021), hence morbidity and disability onset are unlikely to be 

contemporaneous. However, this assumption may not hold true with other variables. For 

example, if the other event is not morbidity but instead a measure of whether the individual 

had experienced a fall, there would likely be a very strong concurrent relationship between falls 

and disability. Additionally, the accumulative effect would be very small. In other words, a 

person who experienced a fall and was not disabled in the first year may indicate that they were 

not severely injured and are not more likely to be disabled in the future years due to the fall. 

Therefore, like all other modelling, it is important to justify the selection of model with the 

empirical and theoretical evidence.  

 

(Table 4 about here) 

 

A comparison of results from the complex multistate method and two types of MMM 

(recursive and reduced-form) is presented in Table 5 and Figures A3, A4 & A5. Health 

expectancies are calculated through three models: complex five-state, MMM with recursive 

VAR(1) and MMM with reduced-form VAR(1) are compared in Table 5. Inside the 

parentheses are 95% confidence intervals from bootstrapping. For brevity, we only show the 

results at age 70 from cohort 1934-1943 (the full comparison for all age groups can be found 

in Figures A3 & A4 in the Appendix). The three models have very close point estimates for all 
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expectancies, with differences under 0.1 for all expectancies. Based on the confidence interval, 

none of them is significantly different from one another. In Figures A3 & A4, the MMM models 

are compared to complex multistate model. The figures are superimposed on each other so that 

it is easier to examine the difference. Figure A5 further disaggregates results in Figure A4 by 

initial morbidity status, which is a type of status-base life expectancy. Similar to Table 5, none 

of the age and gender groups are significantly different. 

In short, the benefit of the alternative model is apparent. The dependent variables have 

fewer categories because they are now estimating the joint probability. Fewer categories mean 

larger sample sizes in each category and more reliable estimates, especially if a given transition 

is rare in some groups. The model is simpler, with fewer interaction terms. Nevertheless, this 

alternative model has additional assumptions. Whether these assumptions are supported can be 

understood and gauged through empirical evidence, allowing the researcher to decide whether 

it is an acceptable trade-off. 

Example 2: marital status and healthy life expectancy 

As a second example to demonstrate the flexibility of MMM, we apply the MMM to model 

self-rated health and marital status. Each outcome has three categories, leading to a 10-state 

state space which is quite large to estimate as a complex multistate model. Furthermore, marital 

status and health are very different domains of the life course. Even though there are papers 

(Goldman et al. 1995; Jia and Lubetkin 2020; Rendall et al 2011) about the association between 

marital status and health/survival, the mechanism is likely to be indirect through behavior 

change (Wilson and Oswald 2005), social support (Becker et al. 2019; Berkman 1984), and 

other long-term accumulated processes (Verbrugge 1979). Thus, it is a good case to 

demonstrate the advantage of MMM when the contemporaneous relationship between 

outcomes is theorized to be weak.  
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(Table 5 about here) 

 

Marriage selection theory suggests that healthier individuals are more likely to get 

married (Goldman 1993; Murray 2000). In our analyses below, we exclude the never-married 

group. We also hypothesize that, conditional on being ever married, the current health of the 

respondent is likely not a strong predictor of marital status but not the other way around. We 

deploy this hypothesis partly because it is conceptually plausible and partly because we want 

to demonstrate the flexibility of the MMM. Therefore, this hypothesis can be removed 

depending on the research question. The regression models are constructed as follows,  

logit(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+1) = 𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 + 𝛽𝛽𝑚𝑚2𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽𝑚𝑚3𝑆𝑆𝑆𝑆𝑆𝑆,             (8) 

logit(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡+1) = 𝛼𝛼ℎ + 𝛽𝛽ℎ1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 + 𝛽𝛽ℎ2ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 + 𝛽𝛽ℎ3𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽ℎ4𝑆𝑆𝑆𝑆𝑆𝑆.             (9) 

The transitions and state space of the model are illustrated in Figure 5, noting that the transition 

to death could be estimated in either equation. We also limit the state space to not allow direct 

transitions between divorced and widowed.   

Since marital status varies over time, the population-averaged expectancies at any age 

are rather difficult to interpret and understand. Instead, we group individuals based on the 

period in the life-course that a marital status change occurs to explore the potential health 

impacts of a marital dissolution (i.e., divorced or widowed) on remaining healthy life 

expectancy, and how these may change over age. Table 6 presents the results of the remaining 

healthy life expectancy by gender and age according to the timing of a change in marital status. 

The first group of people remains married from age 55 to the starting age of remaining life 

expectancy and the other group experience at least once marital dissolution within a certain age 

3 Jan 2023

17 tianyu.shen@anu.edu.au



range (also including people who changing back to married within that age range). For example, 

a married man at age 55 who remained married at 64 could expect 7.39 years healthy life 

expectancy and total of 19.11 years of total remaining life expectancy remaining at age 65. In 

contrast, a married man at age 55 who experienced a marital dissolution between 55 and 64 

could expect to live only 6.12 years of healthy life and 17.75 years of total remaining life at 

age 65.  

 

(Figure 5 about here) 

 

 In general, individuals staying married over the period have higher remaining life 

expectancy. The two groups are also significantly different in their remaining healthy life 

expectancy at ages 65 and 75, and in the percent of remaining life lived in good health. 

However, this beneficial effect on health and survival diminishes with increasing age. Though 

insignificant, individuals who remain married at 85 have slightly higher healthy life expectancy 

compared to those who experience a marital dissolution between 75 and 84. As expected, 

women’s healthy life expectancy and total life expectancy are always higher than men’s at the 

same age. 

 

(Table 6 about here) 

 

Discussion and Conclusion 

This paper introduces and develops a flexible method, the multiple multistate method (MMM), 

to estimate health expectancy in models with more than one time-varying variable. Previously, 
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time-varying variables other than the main health indicator would either be assumed static in 

the health expectancy estimation or be incorporated into the state space. Neither of these 

methods has been widely used, as they both come with substantial drawbacks: the static 

assumption may not be realistic in many cases, and the sample size required to estimate the 

complex multistate state space is larger than available in most longitudinal data sources. In 

addition, the multistate model is used in transition between labor force status (Hayward and 

Lichter 1998; Studer, Struffolino and, Fasang 2018), marital status (Schoen & Canudas-Romo 

2006; Willekens et al. 1982; Zeng et al. 2012) and migration (Land and Rogers 1982; Raymer, 

Willekens, and Rogers 2019). Thus, the method is not confined to health expectancy, and it 

could be used to explore other durational expectancies based on the multistate model. Our 

approach opens new research directions using complex state spaces that are unfeasible to 

explore using the standard complex multistate model. 

The MMM can fully reproduce the complex multistate model, but the advantage of 

MMM lies in its flexibility to trade off reductions in interaction terms for greater complexity 

in the modeled state space. As shown in the first example, the MMM with reduced interactions 

produces very similar results as compared to the complex multistate model. Furthermore, the 

second example also presents coherent findings with other related studies. Our results provide 

similar evidence on the protective effect of marriage on survival and health that is suggested in 

Rendall et al. (2011) and Jia and Lubetkin (2020). The protection effect also fades over age as 

found in the other studies. Robards et al. (2012) suggest that when it comes to the elderly other 

time-varying variables may also be important such as living arrangements, which is highly 

correlated with marital status.  

With the MMM, it is feasible to generalize our framework and apply it to estimate more 

than two time-varying variables at a time. In general, it is recommended to keep the number of 

variables in a VAR small and only include variables that are plausibly related to each other 
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based on theory and empirical evidence (Stock and Watson 2020). This is particularly relevant 

for high-frequency time-series data where it is common to include multiple lags, because it 

would result in a large number of VAR parameters to be estimated (e.g., in Stock and Watson 

(2001), a VAR model with 9 variables and 4 lags would have 333 unknown coefficients to be 

estimated). However, this is less of an issue with annual data and in the context of demography 

where it is common to include only one lag. An alternative way to estimate a large number of 

parameters in VAR models with more than three variables is to impose a common structure on 

the coefficients (Stock and Watson 2001). For example, Bayesian methods have been 

introduced by Litterman (1986) to model six variables and by Sims and Zha (1998) to model 

as many as twenty variables in a VAR framework. The MMM approach could also potentially 

be combined with Bayesian Multistate Life Table Methods (Lynch & Zang 2022) to address 

very complicated research questions with many time-varying variables and relatively large 

state space in each of the multistate model.   

As is common in statistical modeling, the reduced complexity of the MMM approach 

does come with a stronger set of assumptions than the complex multistate model. By providing 

a toolkit to flexibly reduce interaction terms, the MMM method substantially expands the 

complexity of multistate models that can be estimated using longitudinal sample survey data. 

Reducing these interaction terms can most clearly have an impact in cases where the two time-

varying variables of interest have a strong contemporaneous relationship—that is, where a 

change in one variable has a strong, immediate impact on the likelihood of a change in the 

other variable(s). However, what interactions to include, and what to drop, is a question that 

must be largely guided by theory and previous evidence. 

There are other limitations (or assumptions) related to multistate method. The multistate 

life table is essentially a discrete-time Markov process. One of the Markov properties is that it 

is a memoryless system, where the immediate next state only depends on the current state. This 
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is a common limitation of studies using MSLT with left-censored survey data. Cai, Schenker 

and Lubitz (2006) combined the semi-Markov model with backwards simulation algorithm to 

impute the starting point and avoid left-censored issue. This is a promising method to relax the 

Markov assumption by incorporating duration dependence but has not been widely used due to 

the small size and short follow-up period of most social surveys. Another limitation lies in the 

discrete-time approach and assuming no unobserved transitions between time points. The main 

reason for this approach is that HRS (and many other health surveys) are conducted about every 

two years. Cai et al. (2010) and Lynch and Zang (2022) also adopted this approach because of 

the similar limitation in the data. A recent study by Dudel and Schneider (2021) presented a 

way to quantify the potential bias from this assumption. Thus, it is important to bear these 

biases in mind when using the MMM and interpreting the results.   

In conclusion, the MMM provides researchers with a powerful tool to estimate health 

expectancy with more than one time-varying variable (two and beyond) and in complex state 

spaces. Although these types of expectancy-based models are most common in estimating 

health expectancies, our approach could be used to explore a number of other durational 

expectancies such as time in employment, homelessness, and marriage. Overall, the MMM 

represents a flexible approach to estimating durational expectancies in complex models based 

on longitudinal sample survey data, and one that makes a wider array of social research 

questions possible in the multistate framework.  
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Figure 1. Complex multistate model 
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Figure 2. Multiple Multistate Method with bivariate recursive VAR(1) (Type a) 
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Figure 3. Complex Multistate Model with disability and morbidity 
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Figure 4. Multiple Multistate Method with reduced-form VAR(1) 

  

Morbidity-free 
(MF) Morbid (M) 

Disability-free (DF) Disabled (D) 

Dead 

𝛾𝛾𝑑𝑑𝑑𝑑.2 

𝛾𝛾𝑚𝑚𝑚𝑚.4 

𝛾𝛾𝑚𝑚𝑚𝑚.2 

𝛾𝛾𝑑𝑑𝑑𝑑.1 

𝛾𝛾𝑚𝑚𝑚𝑚.6 𝛾𝛾𝑚𝑚𝑚𝑚.3 𝛾𝛾𝑚𝑚𝑚𝑚.1 𝛾𝛾𝑚𝑚𝑚𝑚.5 

𝛾𝛾𝑑𝑑.1 

𝛾𝛾𝑑𝑑.2 

𝛾𝛾𝑚𝑚.4 

𝛾𝛾𝑚𝑚.1 𝛾𝛾𝑚𝑚.5 

𝛾𝛾𝑚𝑚.2 

𝛾𝛾𝑚𝑚.3 𝛾𝛾𝑚𝑚.6 

3 Jan 2023

32 tianyu.shen@anu.edu.au



 

Figure 5. Marital status and health with MMM  
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Table 1. Transition probabilities of the Complex Multistate Model in Figure 1 

 𝑔𝑔1ℎ1 𝑔𝑔1ℎ2 𝑔𝑔2ℎ1 𝑔𝑔2ℎ2 Dead
𝑔𝑔1ℎ1 𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4 𝜇𝜇5
𝑔𝑔1ℎ2 𝜇𝜇6 𝜇𝜇7 𝜇𝜇8 𝜇𝜇9 𝜇𝜇10
𝑔𝑔2ℎ1 𝜇𝜇11 𝜇𝜇12 𝜇𝜇13 𝜇𝜇14 𝜇𝜇15
𝑔𝑔2ℎ2 𝜇𝜇16 𝜇𝜇17 𝜇𝜇18 𝜇𝜇19 𝜇𝜇20
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Table 2. Transition Probabilities of the Multiple Multistate Method in Figure 2 

 

a. Transition Matrix for Variable G b. Transition Matrix for Variable H 
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Table 3. Equivalent probabilities between the complex multistate model and MMM 

Table 2 Panel a Equivalent in Table 1 Table 2 Panel b Equivalent in Table 1 

𝜆𝜆ℎ1.1 𝜇𝜇1 + 𝜇𝜇2 𝜆𝜆𝑔𝑔1.𝑔𝑔1.1 
𝜇𝜇1

𝜇𝜇1 + 𝜇𝜇2
 

𝜆𝜆ℎ1.2 𝜇𝜇3 + 𝜇𝜇4 𝜆𝜆𝑔𝑔1.𝑔𝑔1.2 
𝜇𝜇2

𝜇𝜇1 + 𝜇𝜇2
 

𝜆𝜆ℎ1.3 𝜇𝜇5 𝜆𝜆𝑔𝑔1.𝑔𝑔1.3 
𝜇𝜇6

𝜇𝜇6 + 𝜇𝜇7
 

𝜆𝜆ℎ1.4 𝜇𝜇11 + 𝜇𝜇12 𝜆𝜆𝑔𝑔1.𝑔𝑔1.4 
𝜇𝜇7

𝜇𝜇6 + 𝜇𝜇7
 

𝜆𝜆ℎ1.5 𝜇𝜇13 + 𝜇𝜇14 𝜆𝜆𝑔𝑔1.𝑔𝑔2.1 
𝜇𝜇3

𝜇𝜇3 + 𝜇𝜇4
 

𝜆𝜆ℎ1.6 𝜇𝜇15 𝜆𝜆𝑔𝑔1.𝑔𝑔2.2 
𝜇𝜇4

𝜇𝜇3 + 𝜇𝜇4
 

𝜆𝜆ℎ2.1 𝜇𝜇6 + 𝜇𝜇7 𝜆𝜆𝑔𝑔1.𝑔𝑔2.3 
𝜇𝜇8

𝜇𝜇8 + 𝜇𝜇9
 

𝜆𝜆ℎ2.2 𝜇𝜇8 + 𝜇𝜇9 𝜆𝜆𝑔𝑔1.𝑔𝑔2.4 
𝜇𝜇9

𝜇𝜇8 + 𝜇𝜇9
 

𝜆𝜆ℎ2.3 𝜇𝜇10 𝜆𝜆𝑔𝑔2.𝑔𝑔1.1 
𝜇𝜇11

𝜇𝜇11 + 𝜇𝜇12
 

𝜆𝜆ℎ2.4 𝜇𝜇16 + 𝜇𝜇17 𝜆𝜆𝑔𝑔2.𝑔𝑔1.2 
𝜇𝜇12

𝜇𝜇11 + 𝜇𝜇12
 

𝜆𝜆ℎ2.5 𝜇𝜇18 + 𝜇𝜇19 𝜆𝜆𝑔𝑔2.𝑔𝑔1.3 
𝜇𝜇16

𝜇𝜇16 + 𝜇𝜇17
 

𝜆𝜆ℎ2.6 𝜇𝜇20 𝜆𝜆𝑔𝑔2.𝑔𝑔1.4 
𝜇𝜇16

𝜇𝜇16 + 𝜇𝜇17
 

  𝜆𝜆𝑔𝑔2.𝑔𝑔2.1 
𝜇𝜇13

𝜇𝜇13 + 𝜇𝜇14
 

  𝜆𝜆𝑔𝑔2.𝑔𝑔2.2 
𝜇𝜇14

𝜇𝜇13 + 𝜇𝜇14
 

  𝜆𝜆𝑔𝑔2.𝑔𝑔2.3 
𝜇𝜇18

𝜇𝜇18 + 𝜇𝜇19
 

  𝜆𝜆𝑔𝑔2.𝑔𝑔2.4 
𝜇𝜇19

𝜇𝜇18 + 𝜇𝜇19
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Table 4. Transition Probabilities of the Multiple Multistate Method in Figure 4 

a. Transition Matrix for Morbidity b. Transition Matrix for Disability 

 MF M
MF𝑑𝑑𝑑𝑑 𝛾𝛾𝑑𝑑𝑑𝑑.1 𝛾𝛾𝑑𝑑𝑑𝑑.2
M𝑑𝑑𝑑𝑑 0 1
MF𝑑𝑑 𝛾𝛾𝑑𝑑.1 𝛾𝛾𝑑𝑑.2
M𝑑𝑑 0 1

 

 DF D Dead
DF𝑚𝑚𝑚𝑚 𝛾𝛾𝑚𝑚𝑚𝑚.1 𝛾𝛾𝑚𝑚𝑚𝑚.2 𝛾𝛾𝑚𝑚𝑚𝑚.3
D𝑚𝑚𝑚𝑚 𝛾𝛾𝑚𝑚𝑚𝑚.4 𝛾𝛾𝑚𝑚𝑚𝑚.5 𝛾𝛾𝑚𝑚𝑚𝑚.6
DF𝑚𝑚 𝛾𝛾𝑚𝑚.1 𝛾𝛾𝑚𝑚.2 𝛾𝛾𝑚𝑚.3
D𝑚𝑚 𝛾𝛾𝑚𝑚.4 𝛾𝛾𝑚𝑚.5 𝛾𝛾𝑚𝑚.6
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Table 5. Comparison of three models  

Gender Health 
State Traditional five-state MMM (recursive) MMM (reduced) 

Men 

MF-DF 2.54 
(2.37, 2.73) 

2.52 
(2.36, 2.68) 

2.50 
(2.32, 2.65) 

MF-D 0.24 
(0.20, 0.30) 

0.25 
(0.20, 0.30) 

0.27 
(0.23, 0.31) 

M-DF 4.82 
(4.63, 5.00) 

4.83 
(4.64, 5.00) 

4.87 
(4.70, 5.05) 

M-D 0.96 
(0.90, 1.07) 

1.00 
(0.91, 1.08) 

0.95 
(0.87, 1.03) 

Dead 1.34 
(1.25, 1.41) 

1.33 
(1.26, 1.43) 

1.33 
(1.25, 1.42) 

Women 

MF-DF 3.29 
(3.11, 3.45) 

3.24 
(3.10, 3.43) 

3.23 
(3.05, 3.38) 

MF-D 0.33 
(0.29, 0.39) 

0.33 
(0.29, 0.38) 

0.37 
(0.34, 0.42) 

M-DF 4.02 
(3.86, 4.18) 

4.05 
(3.89, 4.20) 

4.08 
(3.95, 4.25) 

M-D 1.28 
(1.19, 1.39) 

1.31 
(1.22, 1.40) 

1.25 
(1.16, 1.35) 

Dead 0.99 
(0.91, 1.06) 

0.99 
(0.92, 1.05) 

0.98 
(0.91, 1.05) 
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Table 6. Remaining healthy life expectancy by marital status    

Gender Starting age 
(Age range) 

Health 
state Remain married Changed to non-married 

Men 

65 
(55-64) 

Good 7.39 
(7.09, 7.70) 

6.12  
(5.73, 6.52) 

Fair 6.63 
(6.37, 6.88) 

6.19  
(5.88, 6.53) 

Poor 5.09 
(4.84, 5.33) 

5.43  
(5.12, 5.78) 

Total 19.11 
(18.70, 19.51) 

17.75  
(17.20, 18.32) 

75 
(65-74) 

Good 4.31 
(4.05, 4.56) 

3.52 
(3.26, 3.82) 

Fair 4.20 
(3.98, 4.39) 

3.83 
(3.59, 4.07) 

Poor 3.61 
(3.40, 3.82) 

3.81 
(3.53, 4.08) 

Total 12.11 
(11.78, 12.45) 

11.17 
(10.78, 11.58) 

85 
(75-84) 

Good 2.22 
(2.01, 2.45) 

1.89 
(1.68, 2.11) 

Fair 2.29 
(2.09, 2.47) 

2.14 
(1.96, 2.35) 

Poor 2.24 
(2.05, 2.45) 

2.41 
(2.18, 2.65) 

Total 6.76 
(6.46, 7.05) 

6.45 
(6.14, 6.75) 

Women 

65 
(55-64) 

Good 8.89 
(8.51, 9.26) 

7.50 
(7.09, 7.86) 

Fair 7.24 
(6.99, 7.52) 

6.88 
(6.58, 7.16) 

Poor 5.87 
(5.64, 6.13) 

6.37 
(6.08, 6.70) 

Total 22.02 
(21.61, 22.39) 

20.75 
(20.27, 21.15) 

75 
(65-74) 

Good 5.28 
(5.00, 5.57) 

4.45 
(4.19, 4.70) 

Fair 4.87 
(4.64, 5.08) 

4.55 
(4.33, 4.74) 

Poor 4.29 
(4.09, 4.52) 

4.59 
(4.37, 4.84) 

Total 14.44 
(14.11, 14.76) 

13.59 
(13.24, 13.92) 

85 
(75-84) 

Good 2.74 
(2.51, 2.99) 

2.38 
(2.18, 2.57) 

Fair 2.83 
(2.64, 3.02) 

2.70 
(2.53, 2.86) 

Poor 2.77 
(2.56, 2.98) 

2.99 
(2.81, 3.20) 

Total 8.34 
(8.04, 8.62) 

8.06 
(7.82, 8.35) 
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