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Abstract

We introduce a fast upper envelope scan (FUES) method to solve and esti-
mate dynamic programming problems with discrete and continuous choices.
FUES builds on the standard endogenous grid method (EGM). EGM applied
to problems with continuous and discrete choices, however, does not by itself
generate the optimal solution, as the first order conditions used to retrieve the
endogenous grid are necessary but not sufficient. FUES sequentially checks
EGM candidate solution points and eliminates those not on the upper enve-
lope of the value correspondence by only allowing discontinuities in the policy
function at non-concave regions of the value correspondence. Unlike previous
methods used to perform EGM in discrete-continuous dynamic models, FUES
does not require the monotonicity of the policy functions. It is also compu-
tationally efficient, straightforward to implement, and for sufficiently large
EGM grid sizes, guaranteed to recover the optimal solution.
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1 Introduction

Stochastic dynamic programming has become one of the primary tools used by
quantitative researchers in fields such as economics, finance, decision theory and
artificial intelligence to characterize optimal behavior across time. In such prob-
lems, today’s decisions affect the payoffs today but also the payoffs and constraints
faced by the agent in the future (Bertsekas, 2022; Stachurski, 2022). To solve these
models, dynamic programming theory provides us with a general computational
procedure (i.e., value function iteration - VFI) that does not require assumptions
on the convexity and smoothness of the payoffs and constraints.1 A drawback of
VFI, however, is that it relies on numerical optimization or root-finding methods
to iterate on the Bellman equation. In richer, more realistic models that demand
additional state spaces, the grid size on which VFI iterates grows exponentially
with each added state due to the curse of dimensionality (Rust, 1996).2 When the
grid size of a problem becomes very large, it is either inefficient or practically im-
possible to use a VFI that relies on numerical methods alone to solve the problem.

In practice, computational efficiency can, however, be gained by using first order
conditions (FOCs) such as Euler equations. Euler equations can improve computa-
tional speed and accuracy by combining Coleman-Reffett iteration (Coleman, 1990;
Reffett, 1996) with the endogenous grid method - EGM (Carroll, 2006).3 In con-
trast to VFI, EGM relies on the analytical inversion of the Euler equation and may
completely remove costly numerical root-finding or optimization steps (Iskhakov,
2015). The existing dynamic programming theory behind deriving Euler equa-
tions requires, however, (i) concavity of the payoffs and transition functions, and
(ii) convexity of the feasibility constraints – both conditions jointly referred to as

1Under certain boundedness restrictions - see Stachurski (2022).
2The high-dimensional economics literature is as large as it is varied, but it ultimately spans

two categories of problems. First, high dimensionality arises when the agent chooses a number of
quantities - for instance, where the decision space is related to the household portfolio allocation
across assets (Kaplan et al., 2020) or to multi-product decisions (Midrigan, 2011). Second, it also
arises when a number of different agents are modeled, possibly interacting via equilibrium prices
such as, for instance, in Krusell and Smith (1998).

3Other methods to use FOCs include the envelope condition method (Maliar and Maliar, 2013;
Arellano et al., 2016), and deep learning methods that minimize the Euler equation error (Maliar
et al., 2021). While here we present FUES in the context of EGM, FUES and our theoretical results
carry over to any solution method that uses FOCs to solve for optimal solutions in a discrete-
continuous optimization problem.
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the convexity of the problem. Unfortunately, real world applications are increasingly
posing problems that violate convexity, such as, for instance, in models used to
understand frictions (Skiba, 1978; Rust, 1987; Khan and Thomas, 2008; Kaplan and
Violante, 2014; Dobrescu et al., 2016; Attanasio et al., 2018; Kaplan et al., 2020),
the dynamics of housing stock adjustments (Yogo, 2016; Fagereng et al., 2019), as-
set pricing in the presence of frictions (Cooper, 2006) or the effect of mortgage
refinancing on life-cycle asset allocation (Laibson et al., 2021). Without convex-
ity, EGM generates in such cases a value correspondence with possibly multiple
sub-optimal solutions, all satisfying the necessary conditions.

Our contribution is to present a general, efficient, and user-friendly scan method
to compute the upper envelope of the value correspondence generated by EGM,
and obtain the optimal policy function for dynamic programming problems with
discrete and continuous choices. The fast upper envelope scan (FUES) works by
noting that the upper envelope of the value correspondence is the supremum of
choice-specific concave value functions, with each value function corresponding
to a history-dependent future sequence of discrete choices. The convex regions
of the upper envelope occur where different choice-specific value functions cross,
with the optimal policy function experiencing discontinuous jumps only in these
regions. As a result, FUES sequentially checks if the inclusion of a potential opti-
mal point forms a concave or convex region of the upper envelope. If it forms a
concave region, the point is eliminated as sub-optimal if it induces a jump in the
policy function. If, however, it forms a convex region of the upper envelope, the
candidate point is considered optimal and retained.

We start by illustrating FUES in practice via three applications. The first appli-
cation implements FUES in the context of a one-dimensional problem using the
classic example of a model with discrete and continuous choices - i.e., a life-cycle
model with discrete retirement and continuous consumption decisions. The sec-
ond application implements FUES in a portfolio allocation problem where pre-
vious EGM methods that calculate upper envelopes in discrete-continuous mod-
els (Iskhakov et al., 2017) fail due to the non-monotonicity of the policy func-
tion. Featuring both liquid and illiquid savings, this example also shows how
our method can be applied to multidimensional problems that do not satisfy the
conditions for ‘pure EGM’ (Iskhakov, 2015), by breaking up such problems into
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a one-dimensional EGM step and a root-finding step. The third application im-
plements FUES in the context of an infinite horizon model with discrete housing
and continuous financial wealth that, unlike previously, requires finding a value
function that is a fixed point to the Bellman operator.

Next, we provide the theoretical foundation for FUES in its general form and show
that if (i) the size of the jumps between policy functions is bounded below (as is the
case when the policy functions only contain finitely many jumps), (ii) the grid size
is large enough relative to the size of the policy function jumps, and (iii) the en-
dogenous grid is well-behaved around the crossing points between choice-specific
value functions, then FUES recovers the optimal value function without error. The
first two conditions above ensure FUES can differentiate a jump in the policy func-
tion when it induces a shift in the future discrete choices from a smooth change in
the policy along a given sequence of choices. The third condition ensures that the
optimal and sub-optimal points where value functions intersect are correctly iden-
tified. Despite (i)-(iii) being quite abstract to verify in practice, FUES continues to
perform well even at lower grid sizes in all the applications we investigated.

FUES advances considerably the latest methods to solve discrete-continuous dy-
namic models proposed in both Fella (2014) and Iskhakov et al. (2017). These
methods can successfully compute the upper envelope of the choice-specific value
functions4 but, as mentioned, they rely on the monotonicity of the optimal policy
functions. While Iskhakov et al. (2017) does not suggest any way to circumvent
non-monotonicity, Fella (2014) identifies optimal points by using the numerical
solution of the Bellman equation in non-concave regions of the value correspon-
dence. Doing so, however, can be computationally costly and thus impractical to
use in problems with multiple states and large grids. In this respect, our method
advances the literature in three ways. First, FUES does not require the monotonic-
ity of any of the policy functions. Second, we prove the efficacy of FUES in the
general case, which implies that FUES can be applied as a black-box method to
identify upper envelopes. Third, FUES is considerably easier to implement and
does not require knowing the shape of the policy functions, which is very useful
in large, high-dimensional models.

Turning to the broader literature, the scan method we present here is informed by

4See also Druedahl and Jørgensen (2017) that uses triangulation to construct the upper envelope.
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the methods used to calculate convex hulls of points (Graham, 1972). However,
in the context of the existing literature and up to our best knowledge, we are the
first to propose a scanning algorithm to identify upper envelopes. Additionally,
dynamic programming problems with discrete and continuous choices are a spe-
cial case of mixed integer non-linear programming problems, where discrete and
continuous choices optimize an arbitrary function. Relatively recent studies have
characterized both sufficient and necessary first and second order conditions for
classes of such problems (Jeyakumar et al., 2007; Jeyakumar and Srisatkunarajah,
2009), but so far, a condition that is both sufficient and necessary in the general set-
ting remains elusive. Rather than derive sufficient first or second order conditions,
our method recovers the optimal solution by computationally approximating the
upper envelope of those points that satisfy the necessary conditions.

The paper proceeds as follows. In Section 2, we start by solving and discussing
our main results in the context of three well-known applications. Section 2.1 intro-
duces FUES informally using the simple retirement choice model in Iskhakov et al.
(2017) where agents choose their savings and labor force participation; here we
also compare the performance of FUES to that of the DC-EGM method proposed
by Iskhakov et al. (2017). Section 2.2 further demonstrates FUES in an applica-
tion where DC-EGM fails, using a model in which agents choose whether or not
to adjust their illiquid housing stock. Finally, Section 2.3 showcases FUES in the
discrete choice model proposed by Fella (2014) where agents decide to hold liq-
uid and illiquid assets via discrete choices. In Section 3, we follow our study of
these applications by formally stating FUES in its general form and providing the
proofs on how FUES accurately obtains the upper envelope without error. Section
4 concludes.

2 Illustrative applications

This section illustrates FUES using well-known dynamic optimization applica-
tions. We will briefly introduce each problem, discuss how their discrete choices
result in non-convexity, and detail how FUES can be implemented to retrieve the
optimal solution.
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2.1 Application 1: Finite horizon retirement choice model

Let us start from the finite horizon retirement and savings choice model in Iskhakov
et al. (2017).

2.1.1 Model environment

Consider an agent that consumes, works (if they so choose) and saves from time
t = 0 until time t = T. At the beginning of each period, the agent starts as a worker
or retiree, with the state variable denoting their beginning-of-period work status
given by the discrete variable dt. If the agent works, they earn a per-period wage
y. Every period, the agent can choose to continue working during the next period
by setting dt+1 = 1, or to permanently exit the workforce by setting dt+1 = 0. If
the agent chooses to work the next period, they will incur a utility cost δ at time t.
We assume all agents start as workers so d0 = 1. Agents can also consume ct and
save in capital at, with at ∈ S and S : = [0, ā] ⊂ R+. The intertemporal budget
constraint is:

at+1 = (1 + r)at + dty− ct (1)

Per-period utility is given by log(ct) − δdt. Letting the function u be defined by
u(c) = log(c), the agent’s maximization problem becomes:

Vd0
0 (a0) = max

(ct,dt+1)
T
t=0

{
T

∑
t=0

βtu(ct)− δdt+1

}
(2)

subject to Equation (1), at ∈ S for each t, and the fact that the agent cannot return
to work after retiring (i.e., dt+1 = 0 if dt = 0). Let Vdt

t denote the beginning of
period value function. If the agent enters the period as a worker, the agent’s time t
value function will be characterised by the Bellman equation:

V1
t (a) = max

c,d′∈{0,1}

{
u(c)− d′δ + βVd′

t+1(a′)
}

(3)
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where a′ = (1 + r)a + y− c and a′ ∈ S. If the agent enters the period as a retiree,
the agent’s value function becomes:

V0
t (a) = max

c

{
u(c) + βV0

t+1(a′)
}

(4)

with a′ = (1 + r)a− c. The optimization problem for the retiree is a standard con-
cave problem. For the worker, however, the optimization problem is not concave
since she optimizes jointly a discrete choice and a continuous choice. Moreover,
even conditional on d′ = 1, the next period value function V1

t+1 will not be concave
since the value function represents the supremum over all future feasible combina-
tions of discrete choices. The non-concavity of V1

t+1 produces the ‘secondary kinks’
described in Iskhakov et al. (2017).

To see how the choice at time t implicitly controls the future sequence of discrete
choices and produces the secondary kinks, write the time t worker’s value function
as:

V1
t (a) = max

c
max
d∈D

{
u(c)− d′δ + βQd

t+1(a′)
}

(5)

where Qd
t+1 is the t + 1 value function conditional on a given sequence of future

discrete choices d, with d = {d′, d′′, . . . }. In particular, we have:

Qd
t+1(a) = max

(ck)
T
k=t+1

{
T

∑
k=t+1

βtu(ck)

}
(6)

subject to Equation (1), at ∈ S for each t, and holding the sequence d fixed. The
set D contains all feasible sequences of discrete choices that can be made from t
to T. By writing the Bellman equation as above at equation (5), we are able to see
how the maximand on the RHS of Equation (5), for a given sequence of discrete
choices d, will be concave. However, the max operator over the discrete choices
does not preserve concavity, and so V1

t will not be concave. Rather, V1
t will be the

upper envelope of overlapping concave functions, with each concave function cor-
responding to a different sequence of future discrete choices. Figure 1 characterises
such a situation, where the upper envelope of concave functions is not concave.

To sum up, value function non-concavity, even holding the choice d′ fixed, is
brought on by the implicit changes in the entire future sequence of discrete choices
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Value function
d- specific value functions Qd

t

d1
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d3

d4

Assets (t)

V
al

ue

Figure 1: The time t worker value function V1
t is the upper

envelope of concave functions, where each concave function
is a value function conditional on a sequence of future discrete
choices. The subscript ‘i’ on di indicate distinct sequences of
discrete choices.

as one controls the choice variable c in Equation (5). In this case, the Bellman equa-
tion, Equation (3), still holds and one can numerically implement VFI to compute a
solution. The challenge arises when, in high-dimensional models, solving the Bell-
man equation using numerical methods becomes burdensome computationally. A
more computationally efficient strategy involves recovering the policy function by
solving for points that satisfy the FOCs (i.e., the Euler equations) of the Bellman
equation. However, since the upper envelope is not concave, the points satisfying
the FOCs could be associated with any future sequence of discrete choice in Figure
1, and may not be on the upper envelope.

2.1.2 The Euler equation

We now discuss the FOCs and then proceed to our contribution (i.e., the FUES)
as a way to use necessary first order information to efficiently compute Vt. If the
agent chooses dt+1 = 1 (i.e., they continue as a worker in t + 1), we can write the
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time t worker Euler equation as:

u′(c1
t ) ≥ β(1 + r)u′(ct+1)

where c1
t is the time t consumption policy conditional on dt+1 = 1, while ct+1 is

the unconditional time t + 1 consumption policy. On the other hand, if the agent
chooses dt+1 = 0 (i.e.,they retire), then the Euler equation is:

u′(c0
t ) ≥ β(1 + r)u′(c0

t+1)

Functional Euler equations. It will now be helpful to write the Euler equation
in its functional form. Let σd

t : S × {0, 1} → R+ be the conditional asset policy
function for the worker at time t if d = 1 and for the retiree if d = 0. We call σd

t

the conditional policy because it will depend, through its second argument, on the
discrete choice - to work or not to work in t + 1 - made by the worker at time t. The
time t and time t + 1 policy functions will satisfy the functional Euler equation:

u′((1+ r)a + dy− σd
t (a, d′)) ≥ β(1+ r)u′((1+ r)σd

t (a, d′) + d′y− σd′
t+1(a′, d′′)) (7)

where a′ = σd
t (a, d′). On the choice of whether to work or not, the time t worker

will chose dt+1 = 1 if and only if:

u((1 + r)a + y− σ1
t (a, 1))− δ + βV1

t+1(σ
1
t (a, 1))

> u((1 + r)a + y− σ1
t (a, 0)) + βV0

t+1(σ
1
t (a, 0)) (8)

Since the discrete choice is itself a function of the state, we can also define a discrete
choice policy function It : S× {0, 1} → {0, 1}. As such, we will have d′ = It(a, d)
and d′′ = It+1(a′, d′), where It is evaluated to satisfy (8) each period conditional
on the t + 1 value function.

2.1.3 Computation using EGM and FUES

We now turn to how FUES can identify the upper envelope from a set of points
that satisfy the Euler equations. Fix a time t and suppose the value function Vd

t+1,
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the discrete choice function It+1 and the optimal policy function σd
t+1 for d = 0 and

d = 1 are known. Let X̂t, V̂t and X̂′t be sequences of points satisfying the Euler
equation for workers:

u′((1 + r)x̂i + dy− x̂′i) = β(1 + r)u′((1 + r)x̂′i + yd′ − σd′
t+1(x̂′i, d′′)) (9)

v̂i = u((1 + r)x̂i + dy− x̂′i)− dδ + Vd
t+1(x̂i) (10)

where d′′ = It+1(x̂′i, d′), x̂i ∈ X̂t, v̂i ∈ V̂t and x̂′i ∈ X̂t. Such a sequence of points
can be generated analytically using EGM. In particular:

(1 + r)x̂i + dy− x̂′i = u′,−1
[

β(1 + r)u′((1 + r)x̂′i + yd′ − σd′
t+1(x̂′i, d′′))

]
(11)

In the case of the EGM, X̂t is the endogenous grid of points, X̂′t is the exogenous
one, and V̂t is the value correspondence.

Next, order the points in X̂t, V̂t and X̂′t in ascending order of the endogenous grid
points X̂t. Consider the left panel of Figure 2 as a stylised plot of the endogenous
grid points X̂t and associated continuation payoffs V̂t generated by EGM. Assume
for the purpose of illustration that the EGM points are associated with two over-
lapping future choice-specific value functions. The right panel of Figure 2 displays
the policy functions (i.e., next period assets) associated with each future choice-
specific value function. Pick a point x̂i, with x̂i ∈ X̂t such that x̂′i is optimal given
x̂i and it lies on the upper envelope. Note if the points x̂i+1 and x̂′i+1 imply a dif-
ferent future sequence of discrete choices to x̂i and x̂′i, then x̂′i+1 will experience a
‘discontinuous jump’ from x̂′i. However, for x̂′i+1 to be on the upper envelope, it
must be that x̂′i+1 can only jump if it occurs after the crossing point between two
value functions (for instance, the point x̂6). That is, (x̂′i+1, v̂i+1) can only jump if
it makes a convex ‘left turn’ from the line joining (x̂′i−1, v̂i−1) and (x̂′i, v̂i). On the
other hand, if (x̂′i+1, v̂i+1) makes a concave ‘right turn’, it cannot jump for it to be
on the upper envelope. The reason is that if (x̂′i+1, v̂i+1) has made a right turn, for
(x̂′i+1, v̂i+1) to be on the upper envelope, it must be on the concave value function
yielding the same future sequence of discrete choices d as implied by (x̂′i, v̂i). If a
right turn is associated with a jump (e.g., point x̂7), then it must be on a value func-
tion associated with a sub-optimal set of future discrete choices. We formally prove
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this argument in Section 3. Informally, we can use the intuition from Figure 2 to
implement the FUES method as follows (see Section 3 for a formal pseudo-code):5

Box 1: FUES method

1. Compute X̂t, V̂t and X̂′t using standard EGM.
2. Set a pre-determined ‘jump detection’ threshold M̄.
3. Sort all sequences in order of the endogenous grid X̂t.
4. Start from point i = 2. Compute gi =

v̂i−v̂i−1
x̂i−x̂i−1

and gi+1 = v̂i+1−v̂i
x̂i+1−x̂i

.

5. If | x̂
′
i+1−x′i

x̂i+1−x̂i
| > M̄ and a right turn is made (gi+1 < gi), then remove point

i + 1 from grids X̂t, V̂t and X̂′t. Otherwise, set i = i + 1.
6. If i + 1 ≤ |X̂t|, then repeat from step 5.

Optimal point
Sub-optimal point

(x̂1, v̂1)

(x̂2, v̂2)
(x̂5, v̂5)

(x̂3, v̂3)

(x̂4, v̂4)

(x̂6, v̂6)

(x̂8, v̂8)

(x̂7, v̂7)
(x̂9, v̂9)

Endogenous grid (assets (t))

V
al

ue

(x̂1, x̂′1)
(x̂2, x̂′2)

(x̂3, x̂′3)
(x̂4, x̂′4)

(x̂7, x̂′7)
(x̂9, x̂′9)

(x̂5, x̂′5)
(x̂6, x̂′6)

(x̂8, x̂′8)

Endogenous grid (assets (t))

Po
lic

y

Figure 2: FUES eliminates points that cause a concave ‘right turn’ (left
panel) from an optimal point and also cause a discontinuous jump in pol-
icy (right panel).

5Note that it may be possible to analytically derive an approximate jump detection threshold
value (M̄) and a grid size value based on the theoretical curvature of the policy function at each
point using the value of the marginal utility and the future policy function. In practice, we find that
selecting a reasonable value for M̄ based on experimentation and verifying that the upper envelope
is recovered works just as well.
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Figure 3: Value correspondence and optimal points for t = 17.
Parameters from Iskhakov et al. (2017), Figure 3.

The method will yield a set of refined grids Xt, Vt and X′t. To address the occasion-
ally binding lower bound asset constraint, we follow the approach by Iskhakov
et al. (2017). The policy and value functions can then be interpolated over these
grids to yield the time t approximated solution for the worker who chooses to
continue working. The retiree value and policy functions can be calculated using
standard EGM since the retiree problem is concave at each time t. Once the retiree
problem is solved for time t, the discrete choice at time t of whether or not to work
at time t + 1 can be evaluated. The procedure can then be repeated at t− 1 as per
standard backward policy iteration.

Numerical example. We apply FUES to solve the model studied in Iskhakov et al.
(2017), with Figure 3 showing how FUES removes sub-optimal points in the value
function (left panel) and selects the optimal policy function (right panel). Figure 4
plots the policy functions for workers at different ages, as a direct comparison to

12



Figure 4: Optimal consumption functions for workers.
Parameters from Iskhakov et al. (2017), Figure 3.

Figure 3 in Iskhakov et al. (2017).6 Despite a modest grid size of 2,000 points and
performing only naive linear interpolation, we find that FUES is able to accurately
pick up the upper envelope of the future choice-specific value functions, and also
accurately replicate the shape of the consumption functions. Moreover, the added
computational time involved in running FUES is only a small proportion of the
overall EGM time. This means that FUES has inherited EGM’s computational effi-
ciency, which has been shown to be orders of magnitudes higher than that of VFI
(Iskhakov et al., 2017).7

For comparison, we also compute the upper envelope using DC-EGM as in Iskhakov
et al. (2017) using the code libraries provided by Carroll et al. (2018). For a 1003

grid of parameter values for β, r, and y and holding the jump detection threshold
M̄ fixed, we find that FUES recovers an identical solution to DC-EGM for each

6In doing this comparison, note that we retain liquid assets as a state variable (since we do not
need to prove monotonicity), while plot Figure 3 in Iskhakov et al. (2017) uses total wealth - i.e., the
sum of liquid assets, asset returns and wages - as a state variable.

7On a single core Intel Xeon ’Cascade Lake’ CPU, the overall EGM time to compute the policy
functions for 20 years was 1.2 seconds, while FUES only took 0.3 seconds.
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parameter value.8

2.1.4 Forward and backward scans

So far, we assumed that if a point (x̂i+1, v̂i+1) makes a left turn from point (x̂i, v̂i),
then it is a sufficient and necessary condition for the point (x̂i+1, v̂i+1) to lie af-
ter a cross-point of value functions between itself and (x̂i, v̂i). However, a point
(x̂i+1, v̂i+1) may lie after a crossing point and yet not generate a left turn with re-
spect to point xi. This situation is presented in the left panel of Figure 5. We also
assumed that the first point after a crossing point (x̂i+1, v̂i+1) must be on the op-
timal choice-specific value function. However, a selected point may be the first
point after a crossing between choice-specific value functions and not be optimal.
This situation is presented in the right panel of Figure 5, where the point (x̂i, v̂i) is
sub-optimal but will not be removed by the basic FUES method since it is on the
same discrete choice as the optimal point right before the crossing point.

To rectify the issue seen in the left panel of Figure 5, we can implement a forward
scan before a point is eliminated. A forward scan picks a point x̂q to the right of
x̂i+1 that is on the same value function as x̂i. The point x̂q can be found by checking
points after i + 1 on the endogenous grid and finding the first point whose policy
function does not jump from the point x̂i. We can then check to see if the point x̂i+1

dominates the line segment joining (x̂i, v̂i) to (x̂q, v̂q), drawn as gw in the left panel
of Figure 5. If x̂i+1 dominates the line segment, it means x̂i+1 lies after a crossing
and must be included as an optimal point.

8To independently check FUES’s sensitivity to various parameter values, use the code available
here.
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(x̂i−1, v̂i−1)

(x̂i, v̂i)

(x̂i+1, v̂i+1)

(x̂m, v̂m)

g2

g1

(x̂q, v̂q)

(x̂i−2, v̂i−2)

(x̂i−1, v̂i−1)

(x̂i+1, v̂i+1)

(x̂q, v̂q)
g1

(x̂i, v̂i)

Optimal point

Sub-optimal point

Endogenous grid (assets(t)) Endogenous grid (assets(t))

g2gw
gw

Figure 5: Forward and backward scans to improve accuracy of FUES
around crossing points.

To rectify the issue seen in the right panel of Figure 5, we can implement a back-
ward scan after making a left turn. A backward scan picks a point x̂q to the left of
x̂i that is on the same value function as x̂i+1. The point x̂q can be found by check-
ing points before i on the endogenous grid and finding the first point whose policy
function does not jump from the point x̂i+1. We can then check to see if the point
x̂i is dominated by the line segment joining (x̂i+1, v̂i+1) to (x̂q, v̂q), drawn as gw in
the right panel of Figure 5. If x̂i is dominated by the line segment, then it means x̂i

lies after a crossing and must not be included as an optimal point.

Finally, note that the forward and backward scan procedures can be used to attach
approximations of the choice-specific value functions crossings to the endogenous
grid. For instance, in the right panel of Figure 5, a crossing point can be attached
by taking the intersection of the line segment gw with the line segment g2.

2.1.5 Requirements for FUES accuracy and performance on lower grid sizes

Let us now briefly discuss the conditions required for FUES to guarantee it deletes
all sub-optimal points, but only these ones. We present a formal proof and state
conditions under which FUES recovers the upper envelope in Section 3.
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First, note that to guarantee a zero approximation error, the formal FUES theory
requires that the pathologies discussed in Section 2.1.4 do not occur. In practice,
even if this does not hold, we still see the forward and backward scan performing
well in approximating the optimal points around choice-specific value function
crossings.

Second, the formal treatment of FUES also requires the jumps between two choice-
specific policy functions to be detectable. Note that every time we move between
the two segments of the policy function in Figure 3, a large jump in x′ occurs. For
FUES to guarantee that an optimal point is picked up, one condition we require is
that the jump size between all policies generated by different discrete choice com-
binations is sufficiently large compared to the distance between the endogenous
grid points. This ensures that when a jump to a sub-optimal point occurs, it is
registered by FUES. Moreover, policy functions are all required to be smooth and
have a common Lipshitz constant, which ensures that changes along a policy func-
tion, given a sequence of discrete choices, are not so large as to incorrectly delete
optimal points. The Lipshitz condition on the problem here is straightforward to
satisfy, since there are only finitely many policy functions at any given time t, and
each one is smooth given a future sequence of discrete choices.

Despite the above requirement of a sufficiently dense endogenous grid, we find
FUES performs well on lower grid sizes too. Figures 10 - 13 compare the upper
envelopes of FUES with DC-EGM, with grid sizes as small as 200, for t = 17 and
using the baseline Iskhakov et al. (2017) parameters. Even though lower grid sizes
result in a poorer approximation of the discrete jump point, as can be expected
with any EGM method that uses a uniform exogenous grid, we find that FUES
performs as well as DC-EGM. Indeed, for each grid size we explore, the FUES
upper envelope matches DC-EGM.

One limitation of the proofs we present in Section 3 is that when there are infinitely
(uncountably) many possible discrete choices, it may not be possible to show that
jump sizes are bounded below. With the addition of taste shocks that generate
a smoothed version of the model presented here by incorporating uncountably
many future discrete choices, we see, however, that jump sizes are sufficiently
large. In such cases, FUES is then able to successfully pick the optimal grid points
(see Figures 8 - 9 in the Appendix).
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2.2 Application 2: Continuous housing stock with adjustment fric-

tions

Having introduced FUES via a simple application, we now turn to demonstrate it
in a housing frictions example where the DC-EGM method outlined by Iskhakov
et al. (2017) cannot be applied due to the non-monotonicity of the policy function.
Interestingly, the example in this section also features two dimensions of savings,
one for liquid assets and one for illiquid (housing) assets. Despite being a verita-
ble workhorse in the housing frictions literature (Kaplan and Violante, 2014; Yogo,
2016; Dobrescu et al., 2022), the conditions that Iskhakov (2015) requires for mul-
tidimensional ‘pure EGM’ do not hold here, with the set of Euler equations not
analytically invertible. As such, this example also shows how one-dimensional
EGM and FUES can be practically applied to a multidimensional setting where the
Iskhakov (2015) conditions fail. The solution strategy will involve numerically ob-
taining all the roots of the liquid assets Euler equation along a single dimension,
and then evaluate the optimal non-monotonic housing policy, and implicitly the
optimal liquid asset policy, using EGM and FUES.9

2.2.1 Model environment

To start, let a non-negative liquid asset (i.e., financial wealth) be denoted by at

and a non-negative housing asset be denoted by Ht. The liquid asset earns a rate
of return r and for simplicity we assume housing earns no returns. Investments
can be made in and out of the stock of at without friction. However, adjusting
the housing stock to a value Ht+1 requires a payment of τHt+1, with τ > 0. In
each period t, with t = 0, 1 . . . , T, the agent consumes non-housing goods ct, and
invests a total of Ht+1 in the housing stock and at+1 in the liquid stock. The agent
also makes a discrete choice dt, where investment in and out of the housing stock
can only be made if dt = 1; otherwise if dt = 0 then Ht+1 = Ht. Finally, in
each period, the agent earns a stochastic wage yt and we assume (yt)T

t=0 is a finite,

9We point out that non-monotonicity and multidimensionality are in general separate issues.
The inapplicability of DC-EGM (Iskhakov et al., 2017) arises not because of the failure of the multi-
dimensional conditions in Iskhakov (2015). Moreover multiple dimensions and failure of Iskhakov
(2015) are not necessary conditions for non-monotonicity to arise in a policy function.
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Markov process.

The following budget constraints will hold for each t. First, total investments and
consumption cannot exceed total available wealth each period:

yt + (1 + r)at + dtHt ≥ ct + at+1 + (1 + τ)Ht+1 (12)

Second, in terms of payoffs, the agent lives up to time T, after which they die and
value the bequest they leave behind according to a function θ : R+ → R ∪ {−∞}.
Per-period utility is given by a real-valued function ϕu

t : R+ ×R+ → R ∪ {−∞}
defined as:

ϕu
t (ct, Ht+1) = 1t≤Tu(ct, Ht+1) + 1t=T+1θ(cT+1) (13)

where u is a concave, jointly differentiable, increasing function. In the per-period
utility function, the agent earns payoffs from non-housing consumption ct and the
housing stock available at the end of the period, Ht+1.10 Formally, the agent’s
dynamic optimization problem becomes:

V0(a0, H0, y0) = max
(at,Ht,dt)

T+1
t=0

T+1

∑
t=0

βtEϕu
t (ct, Ht+1) (14)

such that (12) and (13) hold, Ht ≥ 0 and at ≥ 0 for each t and a0, H0 and y0

are given. The expectation above is taken over the wage process (yt)T
t=0. The

sequential problem implies the following recursive Bellman equation:

Vt(a, H, y) = max
a′,H′,d

{
ϕu

t (c, H′) + βEyVt+1(a′, H′, y′)
}

(15)

where the prime notation indicates next period state values satisfying the budget
constraint, and c = yt + (1 + r)a + dH− a′ − d(1 + τ)H′. In the Bellman equation,
expectations are now conditional on time t realization of the wage process y.

One final remark. In contrast to Application 1, the application here features uncer-
tainty. The solutions to the sequential problem in Equation (14) provide the paths
of the discrete choices. Within a path, each period’s discrete choice depends on
the history of shocks up to that time. However, we assume the exogenous shock

10See Yogo (2016) for a similar formulation.
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takes on finitely many values each period. There are thus finitely many possible
future sequences of history-dependent discrete choices that can be collected in a
finite set D, similar to Application 1 (see discussion of Equation (5)). As a result,
the intuition related to what causes the secondary kinks we discussed via Figure 1
carries over to the context of this application too.

2.2.2 The Euler equations

The problem will feature two Euler equations, one for each state. For periods prior
to the terminal one, the Euler equation for the liquid assets will be:

u1(ct, Ht+1) ≥ β(1 + r)Etu1(ct+1, Ht+2) (16)

where we have used the subscript ‘1’ to refer to the first partial derivative of u and
will use the subscript ‘2’ to refer to the second partial derivative of u. If dt = 1, the
Euler equation for the housing stock will be:

(1 + τ)u1(ct, Ht+1) ≥

Marginal value of
housing services stream︷ ︸︸ ︷

Et

ι−1

∑
k=t

βt−ιu2(ck, Hk+1) + Etβ
t−ι (u1(cι, Hι+1))︸ ︷︷ ︸
Marginal value of

liquidating housing at time ι

(17)

The intuition of the Euler equation (16) for the liquid stock is standard. The Euler
equation for the housing stock (17), however, features a stochastic time subscript
ι, defined as the next time period when dι = 1. Since the next time the stock is
adjusted will be stochastic, ι becomes a random stopping time. The Euler equation
for the housing stock then tells us that the shadow value (price) of investment (or
withdrawal) from the housing stock is given by the discounted expected value of
the stock when the stock is next liquidated,11 along with the stream of housing services
provided up to the time of liquidation.

11See Section 4.1 in Kaplan and Violante (2014) for a similar intuition, and Appendix C.3 in Do-
brescu et al. (2022) for a formal treatment.
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Functional Euler equations. Since the solution sequence for the problem will
be recursive, there exists measurable functions σa

t , σH
t and It such that Ht+1 =

σH
t (at, Ht, yt), at+1 = σa

t (at, Ht, yt) and dt = It(at, Ht, yt) for each t. Also let σa,d
t

and σH,d
t denote the choice-specific policy functions conditional on the time t dis-

crete choice d ∈ {0, 1}. Inserting the policy functions back into (16) and (17) yields
the functional Euler equation for the housing stock:

u1(c, H′)(1 + τ) ≥ βEyIt+1(a′, H′, y′)u1(c′, H′′) + u2(c, H′)

+ (1− It+1(a′, H′, y′))β
[
EyΘt+1(a′, H′, y′) + u2(c′, H′)

]
(18)

where:

c′ = (1 + r)σa,1
t (a, H, y) + σH,1

t (a, H, y) + y′

− σa,1
t+1(a′, H′, y′)− σH,1

t+1(a′, H′, y′)(1 + τ) (19)

c = (1 + r)a + H + y− σa,1
t (a, H, y)− σH,1

t (a, H, y)(1 + τ) (20)

H′′ = σH,1
t+1(a′, H′, y) (21)

and we have a′ = σa,1
t (a, H, y) and H′ = σH,1

t (a, H, y). The additional term Θt+1

is a multiplier denoting the continuation marginal value of the housing stock if
the time t + 1 stock is not adjusted. For a set of recursive t + 1 recursive policy
functions, we can compute Θt as a function of the states as follows:

Θt(a, H, y) = EyIt+1(a′, H′, y′) + u2(c, H′)

+ βEy(1− It+1(a′, H′, y′))
[
Θt+1(a′, H′, y′) + u2(c′, H′)

]
(22)

The functional Euler equation for the liquid assets stock becomes:

u1(c, H′) ≥ β(1 + r)Eyu1(c′, H′′) (23)

with c, c′ H′ defined analogously to (19) and (20), and where if the time t discrete
choice is not to adjust, then d = 0.
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2.2.3 Computation using EGM and FUES

Suppose we know Vt+1, {σa,d
t+1, σH,d

t+1}d∈{0,1}, It+1 and Θt+1. We can first apply stan-
dard EGM with FUES to evaluate σa,0

t for non-adjusters since only one Euler equa-
tion - i.e., equation (23) - will hold. For each possible time t housing state Ht in
the housing grid and exogenous state yt, we can approximate σa,0

t (·, Ht, yt) by first
setting an exogenous grid of a′ values (holding H′ = Ht fixed since no adjustment
takes place) and then creating an endogenous grid of t period liquid assets using
Equation (23) and the budget constraint (12). FUES can then be applied as de-
scribed in Section 2.1.3 to eliminate the sub-optimal points, allowing us to obtain
an approximation of the policy function σa,0

t .12

Let us now calculate the housing policy functions for adjusters. First, note we can
evaluate consumption today c, for a given value of H′ and a′ as follows:

c = u−1
1 ((1 + r)βEyu1(c′, H′′), H′) (24)

where u−1
1 is the analytical inverse of u1 in its first argument. The procedure to

evaluate the policy functions for adjusters is as follows:

12Once again, to address occasionally binding constraints, we follow the approach Iskhakov et al.
(2017).
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Box 2: FUES and EGM for adjuster policy function

1. Fix y, fix an exogenous grid over H′, H̃′ and initialise empty arrays for
the housing policy (Ĥ′), current period value (V̂), liquid assets policy
function (Â′) and endogenous wealth grid (X̂).

2. For each ĥi ∈ H̃′:
(i) Evaluate the P multiple roots to Equation (18) in terms of a′, with

c evaluated by Equation (24) and H′ fixed as ĥi; collect the roots in
a tuple (â′,0, . . . , â′,p, . . . â′,P).

(ii) For each root in (â′,0, . . . , â′,p, . . . , â′,P), evaluate the endogenous
grid points of wealth (x̂0, . . . , x̂p, . . . , x̂P) using the budget con-
straint:a

x̂p = â′,p + (1 + τ)ĥi + c

and evaluate the current period values (v̂′,0, . . . , v̂′,p, . . . v̂′,P) as:

v̂′,p = u(c, ĥi) + EyVt+1(â′,p, ĥi)

(iii) Append the P multiple roots (â′,0, . . . , â′,p, . . . â′,P) to Â′, the time
t values to V̂, the endogenous grid points to X̂, and P copies of ĥi

to Ĥ′.
3. Apply FUES (Box 1, Section 2.1.3) to the grids V̂, X̂ and Ĥ to recover

the refined endogenous grid points X, value grid V, and policy grids
A′ and H′.

aTo save computation time, the endogenous grid for adjusters is defined in terms of cash-
on-hand x, where x = (1 + r)a + H + y since once housing is liquidated, only total wealth
will affect the agent’s decision.

We can apply the above steps to each y in the exogenous shock grid. With σH,1
t

and σa,1
t approximated on a uniform grid, we can then construct σH

t and σa
t in the

standard way by comparing the value function for adjusters and non-adjusters at
each point on the uniform grid of current period states.

Before we turn to the numerical example, let us discuss how the non-monotonicity
of the endogenous grid points arises for the housing-adjusting policy functions.
The EGM above generates an exogenous grid Ĥ′, and an endogenous grid X̂ that
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satisfy:

u1(ĉ, Ĥ′) = βEyIt+1(ψ̂t(x̂, Ĥ′), Ĥ′, y′)u1(c′, H′′) + u2(c, H′)

+ (1− It+1(ψ̂t(x̂, Ĥ′), Ĥ′, y′))βEy
[
Θt+1(ψ̂t(x̂, Ĥ′), Ĥ′, y′) + u2(c′, H′)

]
(25)

where:
ĉ = x̂− ψ̂t(x̂, Ĥ′)− (1 + τ)Ĥ′ (26)

and the terms c′ and H′′ are defined as in equations (19) - (21). The function ψ̂t gives
the value of a′ that satisfies the liquid asset Euler equation (23), for a given value of
x̂ and Ĥ′. To see the source of the non-monotoncity of H′ in terms of the x̂ above,
first note how holding ψ̂t fixed, the term on the LHS of Equation (25) above falls
as wealth x̂ increases, resulting in a higher level of housing investment. However,
allowing ψ̂t to also adjust alongside x̂ implies that ψ̂t may experience a discontin-
uous jump up, causing a discontinuous rise in the marginal utility of consumption
today and a discontinuous fall in housing investment. Such a discontinuous jump
in ψ̂t occurs because ψ̂t is not evaluated for a fixed future path of discrete choices. If
in a future period the agent reaches a threshold level of wealth and upgrades their
housing stock, they will discontinuously decrease their non-housing consumption,
causing a jump in the RHS of Equation (23).13

Numerical example. To parametrise the model, we use a separable specification
for non-housing consumption and housing as follows:

u(c, H) =
cγ−1 − 1

γ− 1
+ α log(H) (27)

and define the bequest function as θ(c) = θ̄u(c, 0). To parametrize the model, we
set γ = 3, α = 0.66, β = .93, τ = .18, r = 0.01, θ̄ = 1.34 and T = 60. For simplicity,
we assume i.i.d income shocks with a random variable z̃ taking values in [0.1, 1]
with equal probability, and assume yt = ỹt(z̃) where ỹt is the wage function for

13In terms of the monotone comparative static arguments given by Iskhakov et al. (2017) in The-
orem 4., allowing a′ to adjust implicitly as a function H′ implies that the continuation value no
longer enjoys the single crossing property since now the per-period payoff u also exhibits a jump
and is not concave.
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Figure 6: EGM wealth points plotted on a uniform exoge-
nous grid in the housing model with frictions.

females in Dobrescu et al. (2016).

We implement VFI with a combination of Nelder-Mead and Brent’s method to
perform numerical optimization at each point on the state space for adjusters and
non-adjusters. Discretizing the model on a 300 × 300 grid, despite the interme-
diate root-finding step, still shows EGM with FUES outperforming VFI. The map
of endogenous grid points to the exogenous grid Ĥ′ for a 59 year old is shown
in Figure 6. Additionally, Figure 14 in the Appendix compares the policy func-
tion computed via VFI with the one computed via FUES and EGM.14 First note
that there are multiple endogenous grid points for each value of the exogenous
grid. Also, the endogenous grid has no discernible monotone segments that can
be identified by the DC-EGM procedure suggested by Iskhakov et al. (2017). More-
over, the optimal endogenous grid ‘jumps down’, implying the policy function is
not monotone. We can see, however, how FUES recovers the optimal points by
zooming in on the top right-hand section of the exogenous grid in Figure 7. Once
again, we see our method successfully recovering the upper envelope by eliminat-

14On a single core CPU, VFI used approx. 260 secs/iteration; EGM + FUES used approx. 7 secs.
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Figure 7: Value function and optimal housing policy func-
tion for the top right-hand section of the endogenous grid
in the housing model with frictions.

ing all jumps in the policy function that do not result in a left turn on the value
function.

2.3 Application 3: Infinite horizon housing choice model

In our final example, we turn to the discrete choice model of housing decisions
posed by Fella (2014). Unlike the previous example, the housing choice grid itself
is discrete. Because of this, we no longer have to use root-finding procedures in
addition to the EGM.
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2.3.1 Model environment

Consider an agent who draws an infinite sequence of bounded, stationary, Markov
labor income shocks (yt)∞

t=0. Each period the agent decides how much to consume
of durable goods ct, how much to save in liquid assets at+1, and how much to save
in housing assets Ht+1. Similar to Application 2, housing assets serve a dual role,
namely they are a form of investment good but also provide consumption services.
Moreover, housing can only be purchased in discrete amounts on a finite grid H,
and adjusting the housing stock each period incurs a fixed transaction cost τHt+1,
with τ ∈ [0, 1). We assume no borrowing and so, at ≥ 0 must hold.

Formally, the budget constraint for each household can be stated as:

at+1 = (1 + r)at + yt − (Ht+1 − Ht)− τ1Ht+1 6=Ht Ht+1 − ct (28)

with the per-period utility function defined as:

u(c, H) = α log(c) + (1− α) log(H) (29)

The agent’s maximization problem yields the following value function:

V0(a, y, H) = max
(at,Ht)∞

t=0

E
∞

∑
t=0

βtu(ct, Ht+1) (30)

such that (28) and (29) hold, Ht ∈ H and at ≥ 0 for each t, and a0, y0, h0 = a, y, H.
We can write the Bellman equation as:

V(a, y, H) = max
c,H′

{
u(c, H′) + EyV′(a′, y′, H′)

}
(31)

such that a′ satisfies the feasibility condition. Since this is an infinite horizon prob-
lem, recall the fixed point to the Bellman equation yields the value function, and
the maximizing correspondence yields the policy functions.
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2.3.2 The Euler equation

Let us write down the necessary Euler equation. Consider time t + 1 policy func-
tions σa

t+1 and σH
t+1, which map the time t + 1 states (i.e., liquid assets at+1 and

housing Ht+1) to time t + 2 states. We then have at+2 = σa
t+1(at+1, Ht+1) and

Ht+2 = σH
t+1(at+1, Ht+1). A necessary condition is for at+1 to solve the Euler equa-

tion in terms of a′ as follows:

u′((1 + r)at + yt −Φ(Ht, Ht+1)− a′)

≥ Eyt(1 + r)βu′((1 + r)a′ + yt+1 −Φ(Ht+1, Ht+2)− σa
t+1(a′, Ht+1)) (32)

where we let Φ(Ht, Ht+1) = (Ht+1 − Ht)− τ1Ht+1 6=Ht Ht+1 to ease the notation.

Once again, to state the source of the non-concavity here, recall that the standard
approach in concave models is to solve a′, then approximate σt, σt−1, σt−2 and so
on until σt converges. However, in the case of discrete choices, even if the choices
Ht+1 and Ht+2 are held fixed or calculated to maximize the value function, the
difficulty arises when we try to compute the policy functions recursively. Given
the time t + 1 asset policy function σa

t+1, ct+1 may not be monotone and there may
be multiple roots to the above equation in a′ because σa

t+1 has implicitly inherited
discrete choices from future periods. As a result, we may implicitly select a sub-
optimal discrete choice for periods after time t + 2 and hence select a sub-optimal
local turning point a′.

2.3.3 Computation using EGM and FUES

In light of our discussion in Section 2.1, the use of FUES to the application here is
straightforward. To proceed with computation using EGM and FUES, we can start
with an initial guess for the value function and policy functions, VT, σa

T and σH
T .

Since there is only one Euler equation, we can use EGM without any root-finding
steps and calculate the endogenous grid for each H, H′ choice fixed. We then fol-
low the procedure detailed in Section 2.1.3 to remove sub-optimal grid points and
evaluate the discrete choice policy function. Once approximations of VT−1, σa

T−1

and σH
T−1 are obtained, we continue to iterate until ‖VT−i−VT−i−1‖∞ < ε for some
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pre-determined ε > 0. We use the same parameters as Fella (2014), except we set
the lower bound on assets to zero, we use 2-state i.i.d income shocks, and work
with a housing grid size of 4 points. Figure 15 in the Appendix shows the asset
policy functions for different beginning-of-period housing levels (but allowing the
end-of-period housing choice H′ to be endogenous). Once again, we see that FUES
is able to recover the optimal policy function. Note that while the infinite horizon
policy function implicitly defines infinitely many future discrete housing choices,
the policy functions only contain finitely many jumps.15

3 Theoretical foundation

In this section, we formally define a general discrete-continuous optimization prob-
lem, apply the EGM and state the FUES method as a formal pseudo-code. Once we
have stated the formal version of FUES, we provide the proof that FUES recovers
the optimal endogenous grid points.

3.1 The general discrete-continuous optimization problem

Let the set D be a finite family of discrete choices and let
{

Gd}
d∈D

be a family
of continuously differentiable, increasing and strictly concave functions indexed
by the discrete choices. Assume that Gd : S × Z → R ∪ {−∞} for each d, with
S ⊂ R and Z ⊂ R, and that S and Z are compact. In the context of a dynamic
programming problem, each element in the choice set D will be a future sequence
of history-dependent choices (and not a single discrete choice at a given time), or
a set of maps from future sequences of shocks to discrete choices. However, for
simplicity, going forward we refer to each d as a discrete choice. The function
Gd will be the maximand on the right hand side of the Bellman operator, holding
the discrete choice fixed (see discussion in context of applications below). Now,
consider the following problem of maximizing the upper envelope, U, of the choice

15Nonetheless, in a general infinite horizon model, we have not been able to define conditions
that guarantee only finitely many jumps.
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specific functions with respect to a continuous choice variable z:

V(x) = max
z

U(x, z) (33)

where:
U(x, z) = max

d
Gd(x, z) (34)

such that x is fixed. Next, define I(x, z) = arg max
d

Gd(x, z) as the optimal discrete

choice holding the arguments of each Gd fixed. Also, define the optimal policy
function as:

σ(x) = arg max
z

U(x, z) (35)

and the choice-specific policy function and choice-specific value function as:

σd(x) = arg max
z

Gd(x, z), Qd(x) = max
z

Gd(x, z) (36)

Finally, define a twice differentiable and invertible transition function f : S× Z →
S that maps the current period choice and state to next period state in a dynamic
programming problem. We set x′ to denote the next period state, where x′ will
obey x′ = f (x, z).

Note that the mapping between our discrete-continuous optimization problem as
stated above and the three applications we tackle is as follows:

Application 1, Section 2.1. Fix t and consider workers making a decision to continue
work in time t + 1. Each d, with d ∈ D, corresponds to a future path of feasible
discrete choices made from t + 1 to T. Formally, we can write D = {0, 1}T−t. The
choice-specific payoff Gd(x, z) corresponds to u((1+ r)x + y− z) +Vd

t+1(z), where
x is the liquid asset, z is the choice of next period assets, and Vd

t+1 is the value
function for those who work in t + 1 conditional on the future path of discrete
choices made from t + 1 to T.

Application 2, Section 2.2. Fix t, recall our discussion at Section 2.2.3 and consider
those making a decision to adjust their housing stock at time t. Each d, with d ∈
D, corresponds to a future history-dependent path of housing stock adjustment
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choices from t + 1 to T. The choice-specific payoff Gd corresponds to:

Gd(x, z) = u(x− ψ̂d
t (x, z)− (1 + τ)z, z) + EytV

d
t+1(ψ̂

d
t (x, z), z, y′)

where x is the total cash-on-hand, z represents the t + 1 housing choice, and Vd
t+1

is the t + 1 choice-specific value function. For a fixed discrete choice, the function
ψ̂d

t maps the wealth and housing choice to the optimal value of next period liquid
assets defined by the Euler equation (18).

Application 3, Section 2.3. Fix t and consider those making a decision to adjust their
housing stock at time t. Each d, with d ∈ D, corresponds to an infinite history-
dependent path of future housing choices. The choice specific payoff Gd corre-
sponds to the continuation payoff:

Gd(x, z) = u((1 + r)x + yt + (1− δ)H − z− (1 + τ)H′, H′) + Ey′V′,d(z, y′) (37)

where z represents the next period liquid assets choice, Vd,′ the next period choice-
specific value function, and H and H′ are the fixed beginning- and end-of-period
housing assets.

Since we have stated the above examples as reduced form dynamic programming
problems, we have x′ = f (x, z) = z.

3.1.1 The EGM and formal FUES pseudo-code

Let X̂′ be the exogenous grid of values x′, with |X̂′| = N, where N is the exogenous
grid size. We assume grids are sequences, that is X̂′ = {x̂′0, x̂′1 . . . x̂′i . . . }. Recall that
a necessary FOC for an interior solution to the problem is that:

GI(x,z)
2 (x, z) = 0 (38)

where the subscript ‘2’ denotes the partial derivative with respect to the second
argument of Gd. Recall that if a continuous choice satisfies the FOC, it will be
optimal conditional on the discrete choice (although, the discrete choice may not
optimal). Formally:
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Remark 1 For x ∈ S, consider z̃ that satisfies GI(x,z̃)
2 (x, z̃) = 0. If d = I(x, z̃) is fixed,

then z̃ will satisfy:
z̃ = arg max

z
Gd(x, z) (39)

We now define the unrefined endogenous grid of values x̂ as:

X̂ : =
{

x̂ ∈ S
∣∣ x̂′ = f (x̂, z), GI(x̂,z)

2 (x̂, z) = 0, x̂′ ∈ X′, z ∈ Z
}

(40)

and we can also calculate unrefined grids containing candidate policies and values
as:

Ẑ : =
{

ẑ ∈ Z
∣∣ x̂′ = f (x, ẑ), GI(x,ẑ)

2 (x, ẑ) = 0, x̂′ ∈ X′, x ∈ S
}

(41)

V̂ : = GI(X̂,Ẑ)(X̂′) (42)

Note the definition of the endogenous grid values above does not necessarily im-
ply the values of X̂ can be calculated analytically. Rather, we leave open the possi-
bility that the endogenous grid is a general grid (computed analytically or numer-
ically) of points that satisfy the necessary FOCs of a discrete-continuous optimiza-
tion problem.

The endogenous grid will be initially ordered in ascending order according to the
order of X̂′. We now order the grids by the values in X̂ and, through a slight abuse
of notation, continue to denote the reordered grids as X̂′, Ẑ, V̂ and X̂. For each of
these grids, the FUES method will generate a subsequence of refined grids X′, Z,
V and X indexed by ik, for instance, X =

{
x̂0, x̂1, . . . , x̂ik , . . .

}
.

In the Algorithm below, we let N = |X̂|. Moreover, let M̄ be chosen by the re-
searcher. The constant M̄ represents the threshold at which FUES registers a jump
between policy functions. Finally, Cl+1 denotes a Boolean value that is true if point
a xl+1 is optimal and Dl denotes a Boolean value that is true if xk is not optimal
and should be deleted. With this notation, we are ready to formally state the FUES
method.
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Algorithm 1: Fast upper envelope scan

Data: N > 0, M̄ > 0, X̂′, Ẑ,V̂,X̂
Result: X′, Z, X and V

1 k← 1, l ← 1;
2 x̂′iq ← x̂′q, v̂iq ← v̂q, x̂iq ← x̂q q ≤ 1 ; /* Init. first two points. */

3 while l < N do

4 gv
k ←

v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

, gv
l+1 ←

v̂l+1−v̂ik
x̂l+1−x̂ik

, gx
l+1 ←

x̂′l+1−x̂′ik
x̂l+1−x̂ik

;

5 if If gv
l+1 ≤ gv

k and |gx
l+1| > M̄ ; /* Right turn, jump */

6 then
7 Cl+1 ← False;
8 Cl+1 ← Forward scan ; /* Optional fwd. scan (Fig. 5) */

9 else if gv
l+1 > gv

k ; /* Left turn */

10 then
11 Cl+1 ← True ;
12 Dl ← Backward scan ; /* Optional bwd. scan (Fig. 5) */

13 else
14 Cl+1 ← True ; /* Right turn, no jump */

15 end
16 if Dl then
17 x̂′ik ← x̂′l+1, v̂ik ← v̂l+1;
18 x̂ik ← x̂l+1, ẑik ← ẑl+1 ; /* Replace ik sub-opt. point. */

19 else if Cl+1 then
20 x̂′ik+1

← x̂′l+1, v̂ik+1 ← v̂l+1;
21 x̂ik+1 ← x̂l+1, ẑik+1 ← ẑl+1; /* Add point; keep ik opt. point. */

22 k = k + 1
23 else
24 Pass
25 end
26 l ← l + 1;
27 end

3.2 Proof FUES recovers optimal points

Under certain conditions, FUES can be guaranteed to recover the optimal points
on the endogenous grid. To prove this result, let us start with some definitions and
also state the required assumptions on the problem structure and on the endoge-
nous grid.
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3.2.1 Preliminaries and assumptions

The optimal subset of points, X?, of the endogenous grid can be defined as:

X? : =
{

x̂i ∈ X̂
∣∣ v̂i = V(x̂i)

}
(43)

The following formalises the definition of the points on the space S where choice-
specific value functions intersect.

Definition 1 Let TP ⊂ S be the set of ‘crossing points’ between the choice specific value
functions. That is, the set of x ∈ S such that for some m, q ∈ D, Qm(x) = Qq(x) and for
some ε with ε > 0, V(x + ε) = Qq(x + ε) > Qm(x + ε) and V(x− ε) = Qm(x− ε) >

Qq(x− ε).

Turning now to the required assumptions, we first assume that the distance be-
tween choice-specific policy functions is bounded below.

Assumption 1 The term | f (x, σd(x))− f (x, σs(x))| is bounded below by a constant D
for all d, s ∈ D, d 6= s and x ∈ S.

Second, we assume that the rate of change of the next period states mapped by
the transition and policy functions is uniformly bounded above by a common con-
stant.

Assumption 2 The family of functions x 7→ f (x, σd(x)) for d ∈ D have a common
Lipshitz constant M.

Third and fourth, we also assume the distance between the endogenous grid points
is small enough and the jump detection threshold is chosen such that FUES is able
to use the previous assumptions to differentiate between a jump and a movement
along a choice-specific policy function.

Assumption 3 There exists δ > 0 such that for all x?j+1, x?j ∈ X? we have |x?j+1− x?j | ≤
δ and D

δ > 2M.

Assumption 4 The jump detection threshold satisfies M̄ = D
δ −M.

Finally, we place some assumptions on the grid points around crossing points. The
assumption below uses the notation from Definition 1 and says that the crossing
points are included in the endogenous grid, and that the next period policy associ-
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ated with a crossing point is associated with the choice specific value function that
‘crosses’ the optimal value function from below.

Assumption 5 We have TP ⊂ X? and for each x̂i ∈ X? such that x̂i ∈ TP, x̂′i =

f (x̂i, σm(x̂i)).

Next, we place conditions on the crossing points between choice-specific value
functions. Item 1. states that the first point after a crossing is an optimal point
and item 2. states that an optimal point after a crossing is sufficiently close to the
previous grid point to make a large enough left turn in the value function.

Assumption 6 Fix x̃ ∈ TP and let x?k be the largest element in X? such that x?k ≤ x̃ and
x?k+1 be the smallest element in X? such that x?k+1 > x̃. The following hold:

1. We have v̂k+1 = Qq(x̂k+1) where Qq is identified by Definition 1 as the value func-
tion crossing at point x̃ from below.

2. We have:

Qq(x?k+1)−Qq(x?k )
δ

>
Qm(x?k+1)−Qq(x?k )

x?k+1 − x?k
+

Qm(x?k )−Qm(x?k−1)

x?k − x?k−1
(44)

3.2.2 Main result

Proposition 1 Let Assumptions 1-6 hold and let (X, X′, Z, V) be the tuple of outputs of
Algorithm 1 without the forward and backward scans. If v̂i = V(x̂i) for i = 1, 2, then
X = X?.

Proof. We can prove the proposition above by proving the following claim holds:

x̂i ∈ X⇐⇒ x̂i ∈ X?, i ≤ l, x̂i ∈ X (45)

for l = |X|. We will show that if the claim holds for all i with i ≤ l for some l, then
it will hold for all i with i ≤ l + 1. Thus, by the principle of induction, the claim
will hold for all i with i ≤ l for any l. In particular, the claim will hold for l = |X|.
As such, begin the proof by making the inductive assumption that the claim at (45)
holds for all i with i ≤ l for some l ≤ |X|. Moreover, let {x̂i0 , . . . , x̂ij , . . . , x̂ik} denote
the first k points of the sub-sequence X such that ik satisfies ik ≤ l.
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Part 1: Proof that x̂i ∈ X =⇒ x̂i ∈ X? holds for all i with i ≤ l + 1.

If ik+1 > l + 1, then the proof of this part is complete since x̂i ∈ X =⇒ x̂i ∈ X?

continues to hold for all i < l + 1 by the inductive assumption. On the other
hand, suppose ik+1 = l + 1 and the point x̂ik+1 satisfies x̂ik+1 ∈ X. There are two
cases. The first case arises if a right turn is made on the value correspondence,
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
≤

v̂ik
−v̂ik−1

xik
−x̂ik−1

. The second case arises if a left turn is made on the value

correspondence,
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
>

v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

.

[Part 1, Case I: Right turn]

Let
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
≤

v̂ik
−v̂ik−1

xik
−x̂ik−1

and let x̃ be the smallest value in Tp such that x̃ > x̂ik .

Note that by Claim 2 in the Appendix, we will have x̂ik 6∈ TP. There will be two
sub-cases. First, that x̂ik+1 ≤ x̃ and second, that x̂ik+1 > x̃.

[Part 1, Case I.A: Right turn and candidate weakly less than next T.P.]

Consider the sub-case where x̂ik+1 ≤ x̃. We will show that V(x̂ik+1) = U(x̂ik+1 , ẑik+1).
Assume by contradiction V(x̂ik+1) 6= U(x̂ik+1 , ẑik+1) and let m ∈ D be such that
V(x̂ik+1) = Gm(x̂ik+1 , σm(x̂ik+1)). Since x̃ ≥ x̂ik+1 , we have:

V(x̂ik) = Gm(x̂ik , ẑik)

x̂′ik+1
= f (x̂ik+1 , σq(x̂ik+1))

for some q such that m 6= q. Now, by Assumption 1, Assumption 2 and using the
reverse triangle inequality, we have:

|x̂′ik+1
− x̂′ik | ≥

∣∣∣|x̂′ik+1
− f (σm(x̂ik+1), x̂ik+1)| − |x̂

′
ik − f (σm(x̂ik+1), x̂ik+1)|

∣∣∣
≥ |D−M(x̂ik+1 − x̂ik)|

Dividing through, and noting Assumption 3, we get:

|x̂′ik+1
− x̂′ik |

x̂ik+1 − x̂ik
≥ | D

x̂ik+1 − x̂ik
−M| > D

δ
−M

However, this yields a contradiction to x̂ik+1 ∈ X by line 14 of Algorithm 1, imply-
ing U(x̂ik+1 , ẑik+1) = V(x̂ik+1) .
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[Part 1, Case I.B: Right turn and candidate strictly greater than next T.P.]

Now consider the sub-case where x̂ik+1 > x̃. If x̂ik+1 is the first point in X̂ such
that x̂ik+1 > x̃, then x̂ik+1 will be optimal and x̂ik+1 ∈ X? by Assumption 6- item 1.
On the other hand, suppose there exists xs such that x̂ik+1 > xs > x̃ and xs is the
smallest point in X̂ strictly greater than x̃. By Assumption 6 - item 1., x̂s > x̃ is
optimal. Moreover, by Assumption 6 - item 2., we have:

v̂s − v̂ik
x̂s − x̂ik

≥
Qq(xs)−Qm(x̂ik)

δ
=

v̂s − v̂ik
δ

>
v̂xik
− v̂xik−1

x̂ik − x̂ik−1

(46)

where the first equality follows from Assumption 3. However, the above inequality
implies that xs ∈ X, which is a contradiction to the assumption of this case that
x̂ik+1 > x̃.

[Part 1, Case II: Left turn]

Let
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
>

v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

. Then by Claim 1 in the Appendix, we must have that

U(x̂ik+1 , ẑik+1) = V(x̂ik+1), which implies x̂ik+1 ∈ X?.

Part 2: Proof that x̂i ∈ X⇐= x̂i ∈ X? holds for i with i ≤ l + 1.

Now we show that if a candidate point x̂l+1, with x̂l+1 ∈ X? and V(x̂l+1) =

Q(x̂l+1, ẑl+1), then x̂l+1 ∈ X. Consider the first case of a right turn.

[Part 2, Case I: Right turn]

Let
v̂l+1−v̂ik
x̂l+1−x̂ik

≤
v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

. By Claim 3 in the Appendix, we must have that x̂ik 6∈ TP.

Suppose we have:
V(x̂ik) = Gm(x̂ik , ẑik)

x̂′l+1 = f (x̂l+1, σq(x̂l+1))

V(x̂l+1) = Gq(x̂l+1, σm(x̂l+1))

and m = q. By Assumption 2 and Assumption 3, we have:

|x̂′l+1 − x̂′ik |
|x̂l+1 − x̂ik |

≤ M <
D
δ
−M

Thus, by Algorithm 1, Line 14, we must have x̂l+1 ∈ X.

36



Alternatively, suppose m 6= q, then there exists x̃ such that x̂l+1 > x̃ > x̂ik . By
Assumption 6 - item 2., Equation (46) will hold. However, this contradicts the

assumption of this case that
v̂l+1−v̂ik
x̂l+1−x̂ik

≤
v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

.

[Part 2, Case II: Left turn]

Let
v̂l+1−v̂ik
x̂l+1−x̂ik

>
v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

. By line 16 of Algorithm 1, we immediately have x̂l+1 ∈ X.

To conclude the proof, we have shown that if the claim given by (45) holds for all
i with i ≤ l, then it will hold for all i with i ≤ l + 1. Finally, note that by the
assumption stated by the Proposition, V(x̂i) = Q(x̂i, ẑi) for i = 1, 2 and x̂i ∈ X for
i ∈ {0, 1}, thus the claim is true for l = 2. By the principle of induction, the claim
given by (45) holds for all l, completing the proof

3.2.3 Discussion of assumptions

While the proof above guarantees recovery of the optimal points using FUES, some
of the required assumptions may be rather abstract to verify in practice. Assump-
tions 1 - 2 are straightforward to satisfy if there are finitely many periods and the
problem is smooth – as is the case in the first two applications we have consid-
ered. Assumption 3 implies that grid sizes play an important role in allowing
one to identify discontinuities (as is the case with any discrete-continuous EGM
method), and large grid points may be required to pick up the correct location of
discontinuities. Assumptions 5 - 6 are more abstract, although the forward and
backward scans (see Figure 5 and subsequent discussion) implemented by FUES
and the inclusion of approximate crossing points serve as good approximations of
these assumptions as demonstrated in Section 2.1. In particular, the forward scan
addresses the violation of Assumption 6 - item 2., while the backward scan ad-
dresses the violation of Assumption 6 - item 1. Finally, note that Assumption, item
2. will be satisfied for a fine enough grid size.16

16For x?k+1 and x?k close enough,
Qm(x?k+1)−Qq(x?k )

x?k+1−x?k
< 0. Taking the limit δ → 0 will yield the in-

equality in Equation (44), since Qm,′(x?k ) < Qq,′(x?k ).
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4 Conclusion

This paper provides a fast upper envelope scan (FUES) method to compute the op-
timal value function for a dynamic optimization problems with discrete and con-
tinuous choices. FUES uses the fact that the upper envelope of the value correspon-
dence generated by EGM is only convex in regions where concave choice-specific
value functions intersect. Accordingly, it removes all points that cause a jump in
the policy function and do not form a convex region of the value correspondence.

FUES is a general, easy-to-code method that can be applied efficiently to dynamic
programming problems without assuming policy function monotonicity - a key
assumption in previous discrete continuous EGM methods (Fella, 2014; Iskhakov
et al., 2017). We prove this method can accurately recover the optimal policy if
the grid size is large enough relative to the smallest jump size between choice-
specific value functions. This assumption is straightforward to satisfy in finite
horizon models with finitely many choices. The infinite horizon models and the
models with infinitely many choices due to tastes shocks we considered here also
displayed finitely many jumps in the policy functions. Nonetheless, the formal
conditions under which an infinite state space produces only finitely many dis-
continuities remain an area for further work.

Finally, we also identify a few other directions of future work. First, up to our
best knowledge, the formal error bounds for EGM are not known, also limiting
any formal error analysis for FUES. Moreover, without an analytical example as
worked out by Iskhakov et al. (2017) and computed in Application 1 in this pa-
per, it is difficult to verify whether or not FUES - or any EGM method - applied
to a discrete-continuous problem recovers the optimal solution. And Euler equa-
tion errors are not suitable to evaluate accuracy since Euler equations are only a
necessary condition along smooth sections of a value function (Görtz and Mirza,
2018). Additionally, similar to Iskhakov et al. (2017), we also detail FUES in a one-
dimensional context. FUES can be, however, applied to multiple dimensions by
deconstructing the problem into one-dimensional EGM steps and/or combining
them with some root-finding on a reduced state space. Beyond this, there remains
scope for a formal multidimensional FUES method that takes into account the ge-
ometric structure of the value correspondence, and uses the appropriate multi-
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dimensional interpolation method. Progress on such a multidimensional FUES
method requires, however, further advances in the general understanding of EGM
when the conditions set by Iskhakov (2015) fail. This is a very interesting area of
research that we plan to tackle next.
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Online Appendix

A Intermediate proofs

The first intermediate result says that if a point makes a left turn from an optimal
point, then it is also optimal.

Claim 1 Fix the triple x̂i, x̂i+1, x̂i+2 for some i and assume x̂i, x̂i+1 ∈ X?. If we have:

v̂i+1 − v̂i

x̂i+1 − x̂i
<

v̂i+2 − v̂i+1

x̂i+2 − x̂i+1
(47)

then x̂i+2 ∈ X?.

Proof. Fix l, with l ∈ D and such that V(x̂i+1) = Gl(x̂i+1, σl(x̂i+1)). Suppose
by contradiction that x̂i+2 6∈ X?. Suppose first that V(x̂i) = Gl(x̂i, σl(x̂i)). Since
x̂i+2 6∈ X?, we must have v̂i+2 = Gm(x̂i+2, σm(x̂i+2)) and m 6= l. By concavity and
Equation (47), we must have Gm(x̂i+2, σm(x̂i+2)) > Gl(x̂i+2, σl(x̂i+2)). This implies
that V(x̂i+2) = Gp(x̂i+2, σp(x̂i+2)) for p 6= l and p 6= m. Moreover, the functions Gp

and Gl must cross at some point x̃i ∈ Tp with x̃i ∈ [x̂i+1, x̂i+2). However, we have
now violated Assumption 6 - item 1., since x̂i+2 is the first point after a crossing
point and must be optimal.

Now suppose V(x̂i) = Gb(x̂i, σb(x̂i)) for some b 6= l. This implies a crossing point
x̃ satisfies x̃ ∈ (x̂i, x̂i+1). However, x̃ ∈ (x̂i, x̂i+1) also yields a contradiction since
by Assumption 5, we must have x̃ ∈ X?.

Claim 2 Consider the setting of Part 1 of the proof of Proposition 1. Let x̃ be the smallest

value in Tp such that x̃ > x̂ik . If
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
≤

v̂ik
−v̂ik−1

xik
−x̂ik−1

, then x̂ik 6∈ TP.

Proof.

Suppose by contradiction that x̂ik ∈ TP, by Assumption 6, item 2., we must have
that x̂ik+1 ∈ X?. Moreover, by Assumption 6, Item 2, we must have:

v̂ik+1 − v̂ik
x̂ik+1 − x̂ik

≥
Qq(xik+1)−Qm(xik)

δ
=

v̂ik+1 − v̂ik
δ

>
v̂xik
− v̂xik−1

xik − xik−1

(48)
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where q and m are elements of D that satisfy the notation from Definition 1 with
x̂ik as the turning point. To complete the proof, note that since the above equation
implies ik + 1 makes a left turn from the point ik and ik−1 on the value correspon-
dence, by Line 9 of Algorithm 1, x̂ik+1 ∈ X and x̂ik+1 ∈ X? and that ik+1 = ik,
however, this is a contradiction to the Assumption of the claim that xik makes a
right turn on the value correspondence. Thus, x̂ik 6∈ TP.

The proof for the following claim is analogous to the previous claim, replacing
ik + 1 with l + 1.

Claim 3 Consider the setting of Part 1 of the proof of Proposition 1. Let x̂l+1, with x̂l+1 ∈
X? and V(x̂l+1) = G(x̂l+1, ẑl+1). If x̃ is the smallest value in Tp such that x̃ > x̂ik , then

x̂ik 6∈ TP. If
v̂l+1−v̂ik
xl+1−x̂ik

≤
v̂ik
−v̂ik−1

xik
−x̂ik−1

, then x̂il+1 6∈ TP.
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B Additional figures

Figure 8: Value correspondence and optimal points for
t = 17. Parameters from Iskhakov et al. (2017), Figure 4
with smoothing parameter σ = 0.5.

Figure 9: Optimal consumption functions with smooth-
ing for workers.
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Figure 10: DC-EGM and FUES value correspondence
and optimal points for t = 17 and 200 grid points.
Parameters from Iskhakov et al. (2017).

Figure 11: DC-EGM and FUES value correspondence and op-
timal points for t = 17 and 300 grid points. Parameters from
Iskhakov et al. (2017).
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Figure 12: DC-EGM and FUES value correspondence and op-
timal points for t = 17 and 1000 grid points. Parameters from
Iskhakov et al. (2017).

Figure 13: DC-EGM and FUES value correspondence and op-
timal points for t = 17 and 2,000 grid points. Parameters from
Iskhakov et al. (2017).

46



Figure 14: Housing policy function for age 59 in the housing
investment friction model (Application 2) using FUES com-
pared to VFI. The plot uses the lowest income shock and three
housing capital stock levels at the start of period t.
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Figure 15: Liquid asset policy function in the infinite horizon
housing choice model (Application 3) using FUES compared
to VFI. The plot uses the lowest income shock and three hous-
ing capital stock levels at the start of period t.
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