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We develop a regression model for the analysis of competing risk events.
The joint distribution of the time to these events is characterized by a random
effect following a Dirichlet Process, explaining their variability. This entails
an additional layer of flexibility of this joint model, whose inference is robust
with respect to the misspecification of the distribution of the random effects.
The model is analysed in a fully Bayesian setting, yielding a flexible Dirichlet
Process Mixture model for the joint distribution of the time to events. An
efficient MCMC sampler is developed for inference. The modelling approach
is applied to the empirical analysis of the surrending risk in a US life insurance
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portfolio previously analysed by Milhaud & Dutang (2018). The approach
yields an improved predictive performance of the surrending rates.

Keywords: Competing Risks, Survival Analysis, Dirichlet Processes, Bayesian analysis,
Lapse risk, MCMC

1. Introduction

The analysis of competing risk events is commonplace in the statistical and the actuarial
fields. It concerns the probabilistic mechanism of the time to the events an individual is
simultaneously exposed. The most common example is the case of an individual who is
exposed to several causes of death, such as cancer, cardiovascular disease, and so on.

The interest lies in the joint probability distribution of the time to events for each of
the M causes of decrement, denoted as T1, T2, . . ., TM , whilst the researcher can only
observe T = min (T1, . . . , TM ), that is the time to the first occurring event The other
events are known to occur after T (at least theoretically), hence they can be considered
as right censored. However, this joint distribution is not identifiable given the data (see
Tsiatis (1975), Crowder (1996) and Crowder (1997) for a more detailed account of this
issue).

Therefore, further point identifying assumptions are needed, that is assumptions which
cannot be tested in practice. One common example is to assume that (T1, . . . , TM ) is a
vector of pairwise independently distributed lifetimes, which allow for the factorization
of their marginal distribution.

Models which focus on the time to specific events gathered a lot of attention in the
literature, especially under the assumption of independence. For example, Fine & Gray
(1999) focus on a Cox proportional hazard model (Cox 1972) for the cumulative incidence
function, while Lunn & McNeil (1995) use the same model on a properly augmented data
set to account for competing risks. The work of Dimitrova et al. (2013) includes several
references about the inferential aspects of the problem within the medical, biostatistical,
demographic and actuarial literature.

Several approaches have been proposed to account for dependence in the times to
competing risk events. One of these, consists of adjusting the distribution of a event
of interest to account for the potential occurrence of other events, such as the paper of
Jackson et al. (2014). They specify a Cox proportional hazard model including a step-
change component when the event of interest is subject to informative censoring (the
sole competing event), and assess the sensitivity of the resulting inference with respect
to the independence assumption.

Scharfstein & Robins (2002) and Rotnitzky et al. (2007), similarly focus on the infor-
mative censoring problem, which can be seen as a special case of competing risk events,
where M = 2. These papers enrich the distribution of the time to event of interest with
a hazard function for the censoring time, which depends on the time to event. Other
examples of joint models for the distribution of the times to competing events is the
bivariate Weibull model of Emoto & Matthews (1990), the bivariate Makeham model of
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Arnold & Brockett (1983), and models based on known copula functions, such as Zheng
& Klein (1995) and Escarela & Carrière (2003).

The approach proposed in this paper lies within the class of models which models
the joint distribution of the times to competing risk events as conditionally independent
given a random component which explains their dependence. Among these, we mention
the work of Yashin & Iachine (1995) who developed a correlated gamma frailty model,
and the work of Huang & Wolfe (2002) who considers the inclusion of covariates within
a semi-parametric Cox proportional hazard model alongside a normally distributed log-
frailty component. A paper similar to Huang & Wolfe (2002) is the work of Gorfine
& Hsu (2011), which considers other parametric functions for the distribution of the
individual frailty. We believe that these approaches, although promising due to their
flexibility, favoured by the conditional independence assumption, are restrictive since
the resulting inference on the model parameters (and thus the survival function) can
be affected by the misspecification of the distribution of the random component. For
this reason, Ungolo & van den Heuvel (2022) exploited the conditional independence
assumption in order to use a bivariate random effect with a discrete distribution with
unknown number of levels, thus weakening the distributional assumption over the frailty.
As further explained in Section 3, their approach scales poorly to the analysis of models
with a large number of parameters, which may be needed for the analysis of large data
sets, as can be available within the actuarial field, which can include several thousands
of observations.

In this paper we develop a Dirichlet Process Mixture model where the time to com-
peting risk events are independently distributed conditional to a multivariate random
effect which we denote as θ. In order to reduce the impact of the misspecification of the
distribution of θ over the probabilistic mechanism of T1, . . . , TM , we assume that θ is a
random draw from a Dirichlet Process. The resulting mixture model allows for various
shapes of the density, capturing several features of the data, such as multimodality and
overdispersion. Similar to the work of Ungolo & van den Heuvel (2022), the inferential
approach will be fully Bayesian, as we use the data to learn the number of levels of the
discrete random effect. In this way, we exploit the knowledge of the researcher in the
form of prior distribution when making inference on the parameters. The model can
easily account for individual covariates, and its inference can easily deal with the case of
censored observations. We apply the approach of this work to the empirical analysis of
the lapse risk in a portfolio of life insurance policies, with specific emphasis on the case
of surrending, and the prediction of the surrending rates. Indeed, an insurance policy
can be terminated due to surrending, death, maturity or default on paying the periodic
premium. The simultaneous exposure to different causes of termination of an insurance
policy suggests an analysis within the competing-risk framework (Milhaud & Dutang
2018).

This paper is structured as follows: in Section 2 we introduce the Dirichlet Process
and the Dirichlet Process Mixture, Section 3 describes the joint model for the time to
competing risk events, Section 4 describes the empirical data set and the model used for
the analysis, Section 5 describes the inferential procedure. Section 6 reports the results
of the empirical analysis and finally Section 7 concludes and outlines extensions of the
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model for future research.

2. A primer on Dirichlet Process Mixture models

A Dirichlet Process (DP, Ferguson (1973)) is a probability distribution over random
probability distributions, denoted by P . The DP is characterized by a base probability
measure P0, providing an initial guess for P , analogously to the prior specification for
a parameter in a Bayesian analysis, and a concentration parameter φ, which measures
the strength of the prior distribution with respect to P0. If P has a DP prior, then it is
denoted as P ∼ DP (φ, P0).

If the random variable θ ∼ P (·), then it follows that (Sethuraman (1994)):

P (·) =
∞∑
k=1

πkδθk (·) , (2.1)

where θ1, θ2, . . . are i.i.d. samples from P0 and δθk is the Dirac measure assigning unitary
mass if θ = θk and zero otherwise. The mixture weights π1, π2, . . . are calculated by
means of the so called stick breaking procedure (SBP):

πk (ψ1:k) = ψk

k−1∏
j=1

(1− ψj) , (2.2)

where ψ1:k = (ψ1, . . . , ψk) and ψk ∼ Beta (1, φ). As k becomes larger, then πk is ex-
tremely small. For simplicity, in the remainder of the paper we write πk (ψ1:k) = πk.

Therefore, P (θ) in equation (2.1) is a mixture distribution with an infinite number of
components, given by the Dirac functions in this case. Random draws from a Dirichlet
Process consist of discrete distributions over countably infinite atoms from the base
measure P0.

A DP is useful to characterize the prior distribution for the density of a random vari-
able Y , generically denoted by f , as a mixture with an unknown number of components,
yielding a Dirichlet Process Mixture model with respect to the indexing parameter θ
(DPM, see Lo (1984) and Escobar & West (1995)):

f (y;P ) =

∫
Ωθ

f (y; θ) dP (θ) =
∞∑
k=1

πkf (y; θk) . (2.3)

with Ωθ denoting the sample space of θ In this way, the density of Y can assume various
shapes which can account for example for multimodality and heavy tails.

From an additional perspective, the DP induces a dependence structure among the θ
parameters. Let θ1:n = (θ1, . . . , θn) denote a sample of n draws from P . Their joint dis-
tribution, marginalized with respect to the random probability measure P , p (θ1:n;φ, P0)
allows to derive the probability distribution of θn given θ1:n−1 = (θ1, . . . , θn−1) as a Polya
urn distribution (Blackwell & MacQueen (1973)):

p (θn | θ1:n−1;φ, P0) ∝ 1

φ+ n− 1

n−1∑
i=1

δθi (θn) +
φ

φ+ n− 1
P0 (θn) . (2.4)
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If we write θ∗1:n−1 = (θ∗1, . . . , θ
∗
J), J < n, as the set of unique values of θ1:n−1, then

equation (2.4) can be rewritten as follows:

p (θn | θ1:n−1;φ, P0) ∝ 1

φ+ n− 1

J∑
j=1

njδθ∗j (θn) +
φ

φ+ n− 1
P0 (θn) , (2.5)

where nj are such that
∑

j nj = n− 1, and denote the number of observations which are
equal to θ∗j .

Equations (2.4)-(2.5) show how the DP induces a sequential clustering process for θ.
As we sample more observations, the subsequent ones are likely either to take one of
the values already observed with probability which depends on their current frequency,
or a new value with probability which increases with φ. In other words, as the number
of observations grows these are more likely to be in a class which has been already
observed (the so called richer-by-richer effect). This sampling process is also known in
the literature as the Chinese restaurant process (see Aldous (1985), Heinz (2014) and
Orbanz (2014)). Despite the nonparametric nature of this approach, the parameter φ
allows for regularization by favouring the shrinkage of the distribution of θ towards the
base distribution, which can have a simple parametric form.

Under a DPM, a sample y1, . . . , yn is generated according to the following hierarchy:

P | φ, P0 ∼ DP (φ, P0) (2.6)

θi | P ∼ P, i = 1, . . . , n;

yi | θi ∼ f (yi; θi) i = 1, . . . , n

or equivalently using θ∗

πk | φ ∼ SBP (φ) , k = 1, 2, . . . ; (2.7)

θ∗k | P0 ∼ P0, k = 1, 2, . . . ;

si | π1, π2, . . . ∼ Mult (π1, π2, . . .) , i = 1, . . . , n;

yi | θ∗si ∼ f
(
yi; θ

∗
si

)
i = 1, . . . , n,

where the Multinomial distribution is extended to account for an infinite number of
classes. The Dirichlet Process mixture of equation (2.3) is then obtained following the
latency of the mixture allocation variables si.

3. Dirichlet Process Mixture Regression model for competing
risk events

Let T1, . . . , TM denote the vector of random times to M competing events. Their joint
distribution is non-identifiable given the data, since for each individual we can only
observe T = min (T1, . . . , TM ), that is we can observe only which cause of decrement C
occurred, and thus also TC = T . Therefore, the time to the other events are considered
to be right censored at time T .
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We propose to point-identify this joint distribution by assuming that the time to each
event are pairwise conditionally independent given a latent vector θ for the ith unit:

f (t1,i, . . . , tM,i) =

∫
Ωθi

M∏
c=1

fc (tc,i; θi) dP (θi) (3.1)

=

∫
Ωθi

[
M∏
c=1

fc (tc,i; θc,i)

]
dP (θ1,i, . . . , θM,i)

=
∞∑
k=1

πk

[
M∏
c=1

fc
(
tc,i; θ

∗
c,k

)]
,

hence, θ ∼ P and P is a draw from a Dirichlet Process, yielding the Dirichlet Process
Mixture in the last equality of equation (3.1).

The latent multivariate random vector θ = (θ1, . . . , θM ) has the role of inducing a
dependence relationship among T1, . . . , TM . Its aim is to capture those latent features
which are hidden, but affect the joint occurrence of the M risks. More precisely, these
unit-specific parameters allow for individual-level heterogeneity as not explained by other
variables in the model. The interpretation of θ can be analogous to the frailty in sur-
vival analysis (see Wienke (2014) for a review). Indeed, the conditional independence
assumption in equation (3.1) is not new: for example, Vaupel & Yashin (1985) assume
that each cause has its own independently distributed gamma random component, thus
deriving closed form formulas for the cause-specific hazard functions.

Hence, at high values of θ for one cause, there can be an associated high value
of the corresponding parameter for another cause, and so on. Furthermore, our ap-
proach is more general, because it allows for pairwise independence among T1, . . . , TM if
p (θ) = p (θ1) · · · p (θM ), as well as for independence among grouped competing causes of
decrement in analogous way. For example, when analysing competing causes of death,
there can be unobserved genetic factors or habits, such as smoking, which can increase
the likelihood of dying by certain cancers and cardiovascular diseases, making these two
causes positively associated.

In actuarial science this type of model can be useful for the analysis of the lifetimes
of couples, as these can be positively associated (Frees et al. 1996), since two (or more)
individuals can be exposed to similar risks. Or when analysing the lapse risk, an old
person in need of money to pay for medical expenses, may be more likely to surrender
her policy (Milhaud & Dutang 2018). In this case, time to death and time to surrending
may be positively associated, as it will result also in the empirical analysis (Section 6).

Alternative formulations for P (θ) can be specified: for example, the paper of Huang
& Wolfe (2002) assumes a normally distributed univariate parameter θ when analysing
survival data subject to informative censoring. However, the limitation of this approach
was to force either positive dependence or negative dependence. Our approach is more
general for a two-fold reason: first we do not constrain a positive or a negative dependence
for all units in the sample, and secondly, we avoid the misspecification of the random
effect distribution ensuring the robustness of the estimated joint model.
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The identifiability of the joint model of equation (3.1) follows as a straightforward
extension of the bivariate version in Ungolo & van den Heuvel (2022).

The work of Ungolo & van den Heuvel (2022), which considers only two dependent
competing risk events (time to event and informative censoring) assumes a bivariate
discrete distribution for θ with a number of levels chosen by means of appropriate model
selection criteria. Their work overcomes the limitation of the frailty model of Huang &
Wolfe (2002), but requires the estimation of several models, which may not be feasible
in practice for large data sets with a higher number of covariates and parameters.

Fundamental quantities of interest for actuaries can be readily obtained. For example,
the joint survivor function is given by:

S1,...,M (t1, . . . , tM ) = Pr (T1 > t1, . . . , TM > Tm) =
∞∑
k=1

πk

[
M∏
c=1

(
1− Fc

(
tc,i; θ

∗
c,k

))]
(3.2)

where Fc (tc; θc) = Pr (Tc < tc | θc) =
∫ tc

0 fc (s | θc) ds. The calculation of the over-
all survivor function S1,...,M (t, . . . , t) and of the marginal survivor function Sc (tc) =
S1,...,M (0, . . . , 0, tc, 0, . . . , 0) follows along the same lines. From Sc (tc) it can be possible
to obtain the net hazard function, equal to fc (tc) /Sc (tc). Finally, it is possible to obtain
also the crude survivor function, defined as:

S′c (t) = Pr (min (T1, . . . , TM ) > t,min (T1, . . . , TM ) = Tc) (3.3)

=
∞∑
k=1

πk

∫ ∞
t

fc
(
s | θ∗c,k

)∏
j 6=c

(
1− Fj

(
s; θ∗j,k

))
ds


and the corresponding crude hazard function.

This approach allows also for the inclusion of unit cause-specific covariates, denoted
by the pc-dimensional vector xc,i = (xc,1,i, . . . , xc,pc,i) with regression coefficient βc. For
simplicity, we assume that θ is independently distributed with respect to the covari-
ates, although the approach allows for this possibility. Therefore, the joint density of
(T1, . . . , TM ) is obtained:

f (t1,i, . . . , tM,i | x1,i, . . . , xM,i;β1, . . . , βM ) =

∞∑
k=1

πk

[
M∏
c=1

fc
(
tc,i | xc,i;βc, θ∗c,k

)]
(3.4)

This approach is general, as it can be applied with any parametric specification for the
distribution of Tc. Furthermore, the random time to event for each cause can be char-
acterized by different parametric laws, for example we can have T1,i ∼ Exp

(
eβ1x1,i+θ1,i

)
,

and Y2,i = log T2,i ∼ N
(
β1x2,i + θ2,i, σ

2
)
, and easily characterize a joint model for

(T1, Y2). Hence, for T1, we can assume a proportional effect of θ, while for Y2 this can
have a linear effect.

Furthermore, the scope of the joint model of this work goes beyond the analysis
of competing risks: Frees & Valdez (1998) is a fundamental reference for insurance
applications where models for the dependence of multiple random variables are needed.
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4. Data and model

We illustrate the modelling approach described in Section 3 through the analysis of the
policyholders’ surrending behavior. Milhaud & Dutang (2018) emphasize the need of
insurance companies to obtain good forecasts of the time to surrending, since this is
relevant to recover the initial expenses incurred when issuing the contract. This issue is
also relevant to annuity providers, as the occurrence of surrenders lower than predicted is
likely to cause an unexpected increase in the value of the liabilities. The policyholders’
behavior should be carefully monitored and modelled, since it can affect the pricing
of options and guarantees, the solvency capital requirements and the effectiveness of
the hedging strategies (Knoller et al. 2016). Escobar et al. (2016) emphasize how an
appropriate prediction of the surrending times can be extremely crucial in the light that
policyholder behavioral risk cannot be hedged, and it can entail serious liquidity issues.

The data set consists of a portfolio of Whole Life insurance policyholders sold from
an insurer operating in the US. This data set, available through the R package CASdata

sets (Dutang & Charpentier (2020)), contains several information about 29,317 records
of policies sold between January 1995 and December 2008. Milhaud & Dutang (2018)
extensively analysed this data set by means of a competing-risk approach using a Cox
propotional-hazard based approach relying on independence among the causes, as well
as using the subdistibution approach of Fine & Gray (1999).

We randomly split the data set into a training set, corresponding to the 75% of the
policyholders within the data set (21,988 units), and use the remaining 25% to test the
predictive ability of the model (7,329 units).

The three causes of decrement are surrending, death and other. Within the training
data set we observe these three events for 8,347 (38%), 968 (4.4%) and 1,846 (8.4%)
units respectively. The remaining units are Type I censored, since they reached the end
of the observational period without any of the events being occurred. As pointed out by
Milhaud & Dutang (2018) we should consider the statistical association between causes
of decrement, as mentioned in Section 3.

We consider the three causes simultaneously, and then focus merely on surrending.
The set of available covariates used for the three competing causes are as follows:

xsurr = (AP,DJ,ADR,G,PF,UWA)

xdeath = (G,UWA,LP,RS)

xother = (AP,PF,ADR) ,

where:

• AP is the standardized annual premium;

• DJ is the last observed quarterly variation of the Dow Jones index (standardized);

• ADR is a binary covariate equal to 1 if the policy has an accidental death rider
and 0 otherwise;
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• G indicates the gender (1 if female, 0 if male);

• PF is the payment frequency (0 if infrannual and 1 otherwise);

• UWA is a binary covariate equal to 1 if the policyholder is aged 54 or younger
when underwriting the policy, and 0 if older than 54;

• LP denotes the living place in US (LP=0 if the policyholder lives either in the East
or West coast, and LP=1 otherwise);

• RS denotes the smoking status (1 if smoker and 0 otherwise).

Compared to the work of Milhaud & Dutang (2018), we include a lower number of
covariates when analysing each cause. This is because it can be argued that smoking does
not (at least directly) affect the policyholder surrending behavior. On the other hand,
the approach does not exclude its statistical association with surrending. This is because
we may think of smoking as a mediator effect, which affects death, and in its turn may
affect surrending, throughout the statistical association between these two competing
causes. A generalization of the method to perform variable selection is discussed in
Section 7

To simply illustrate the method, we assume the following model for Yc = lnTc (c ∈
{surr,death, other}):

Yc = lnTc = βcxc,i + θc,i + εc,i εc,i ∼ N
(
0, σ2

c

)
, (4.1)

where θi ∼ P , as from the generating process of equation (2.7), representing the individ-
ual random intercept. Furthermore, we assume that P0 corresponds to the multivariate
normal distribution with mean mθ and covariance Σθ, denoted as MVN (θi | mθ,Σθ).
Hence, θi = (θ1,i, . . . , θM,i) ∼ P (φ,MVN (θi | mθ,Σθ)). This assumption allows for the
specification of conditionally conjugate priors for all model parameters, which speeds up
computations.

The model of equation (4.1) corresponds to the Accelerated Failure time model with
normal error terms (see for example Collett (2003) or Sha et al. (2006)), which we extend
by including a multivariate random component to induce dependence between times to
events.

The model for the time to death is far from perfect, because for example, we do not
have any information about the age of the policyholder, and the data set is subject to
a very large right-censoring for this risk. Indeed, we do not aim at proposing a specific
model or developing an alternative theory for the surrending-death-other risk. We re-
mark how this paper has the sole purpose to propose a joint modelling framework for
dependent random variables, where the dependence is explained by flexibly distributed
random effects, which point identify the joint distribution of mutually censored lifetimes.
Nevertheless, this specific model can be useful just to have an indication of the statisti-
cal association between the time to event and the covariates, or to have an idea of the
statistical association among the times to competing events.

As highlighted in Section 3, other parametric specifications are allowed under the
framework hereby proposed, such as the Cox proportional hazard model, or parametric
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models for the hazard function (see for example Richards (2008) and Richards et al.
(2013)). However, in many cases, for some parameters, the analytical formulation of
the conditional updates are not possible. Therefore, the inferential task may turn out
computationally intensive. A similar model was analyzed by Ungolo et al. (2020) who
focus on a Gompertz hazard function with a proportional random component in the
hazard function. Furthermore, the use of a log-Normal distribution allows for a clearer
analysis of the statistical association among Y by means of the (linear) correlation matrix
of the resulting θ.

5. Inference

First of all, we approximate the DPM model of equation (3.4) by setting an upper bound
K to the number of mixture components. In this way, we obtain the truncated SBP,
see Ishwaran & James (2001). Dunson (2010) suggests that an upper bound of K = 25
should be sufficient to represent a DPM. Other alternatives, which avoid setting K
upfront are the slice samplers of Walker (2007) and Kalli et al. (2011), or the retrospective
sampler of Papaspiliopoulos & Roberts (2008).

Within the fully Bayesian approach of this work, we also let the data to help learning
about φ, mθ and Σθ, by assuming these are random variables with their own prior
distributions.

5.1. Prior distributions

A Bayesian analysis which facilitates the computation of the posterior distribution is
possible for the model described in Section 4 by first assuming that all parameters are
a priori independently distributed, and then specifying (conditionally) conjugate prior
distributions. In order to reduce the extent of the researcher choice on the posterior
distribution, we specify non-informative and pairwise independent prior distributions
for the model parameters βc and σ2

c . Therefore, we assume that σ2
c ∼ Inv-Gamma (1, 1)

and βc,p ∼ N (0, 9) for c = 1, . . . ,M and p = 1, . . . , pc.
For the parameters of the Dirichlet Process, we assume φ ∼ Gamma (1, 1), which

yields conditional conjugacy (Escobar & West (1995)) of its posterior distribution. The
choice of hyperparameters is motivated by the results of a simulation study of Ungolo
& van den Heuvel (n.d.), which is also a common choice in applied statistics (Dunson
(2010)). Then, we assume that mθ ∼ MVN (0, 9IM ), Σθ ∼ Inv-Wishart (8, 0.001λ1),
where IM denotes the M -dimensional identity matrix and

λ1 =

 1 0.5 0.2

0.5 1 0.3

0.2 0.3 1

 (5.1)

In this way, we centered the distribution of the random effect around 0, and specified a
weakly informative distribution for Σθ in order to embed the available information about
the dependence among causes of decrement. For example, consistently with actuarial
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intuition, we assume a positive correlation between the random effects of the surrending
and the death decrements.

5.2. Likelihood

Let dc,i = 1[ci=c] denote the indicator variable which is equal to 1 if the cth cause occurs
for the ith individual and 0 otherwise. Furthermore, we assume that the time to events
for each individual are independently distributed, conditional on the covariates and the
multivariate random effect. Here, c = 1 corresponds to the surrending cause, c = 2 to
death and c = 3 to other.

We simplify the notation and write y = (y1, . . . , yn), where yi = log ti, x = (x1, . . . , xn),
c = (c1, . . . , cn), β = (β1, . . . , βM ), σ2 =

(
σ2

1, . . . , σ
2
M

)
, ψ = (ψ1, . . . , ψK−1) and θ∗ =(

θ∗1,1, . . . , θ
∗
M,K

)
The likelihood function of the parameters conditional on observable y, x and c for

each individual is given by:

L
(
β, σ2, ψ, θ∗ | y,x, c

)
(5.2)

=

n∏
i=1

{
K∑
k=1

πk

[
M∏
c=1

fc
(
yi | xc,i;βc, θ∗c,k, σ2

c

)dc,i (1− Fc (yi | xc,i;βc, θ∗c,k, σ2
c

))1−dc,i ]}

where we account for right-censored observations, and marginalize the resulting distri-
bution with respect to the latent variable θ∗.

For convenience, we rewrite this likelihood function by using the indicator variable
si,k, which takes value 1 if the ith individual belongs to the kth class and zero otherwise.
This formulation is useful when deriving the conditional MCMC updates (Section 5.3):

L
(
β, θ∗, σ2, ψ | t,x, c, s

)
(5.3)

∝
n∏
i=1

π
si,k
k

[
M∏
c=1

fc
(
yi | xc,i;βc, θ∗c,k, σ2

c

)dc,i (1− Fc (yi | xc,i;βc, θ∗c,k, σ2
c

))1−dc,i ]si,k
where s = (s1,1, . . . , sn,K).
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5.3. Posterior distribution and MCMC updates

The posterior distribution is thus obtained as the product of the likelihood and the prior
distribution:

p
(
β, θ∗, σ2,mθ,Σθ, φ, ψ

∣∣y,x, c, s) (5.4)

∝ L
(
β, θ∗, σ2, ψ | y,x, c, s

) [ K∏
k=1

MVN
(
θ∗·,k | mθ,Σθ

)] M∏
c=1

pc∏
p=1

N (βc,p | 0, 9)


×

[
M∏
c=1

Inv-Gamma
(
σ2
c | 1, 1

)]
MVN (mθ | 0, 9IM ) Inv-Wishart (Σθ | 8, λ1)

×

[
K−1∏
k=1

Beta (ψk | 1, φ)

]
Gamma (φ | 1, 1)

In order to efficiently learn the posterior distribution of equation (5.4), we combine the
steps of a blocked Gibbs sampler (Ishwaran & James (2001)), consisting of a sequential
draws of the parameters, together with two Data Augmentation steps (Tanner & Wong
(1987)), where we first draw a value for the censored log-time for the events which were
not observed, and then we draw the missing indicator si,k (i = 1, . . . , n, k = 1, . . . ,K).

Therefore, by using some simple algebra, the following updates can be obtained for
the two-Data Augmentation-Blocked Gibbs sampler (the superscript (`) denotes the
iteration).

Step 0: Set an initial value for the parameters
(
β(0), θ∗(0), σ2(0),m

(0)
θ ,Σ

(0)
θ , φ(0), ψ(0)

)
;

At the `th iteration:

Step 1: For each individual, sample the right-censored log-random time to event y∗c,i
for the unobserved causes (that is, for those causes c such that dc,i = 0) from a
truncated normal distribution with lower truncation level equal to the observed yi

1.
In this way, we obtain the completed vector of time to event for each individual

y∗i =
(
y∗1,i, . . . , y

∗
M,i

)
, where:

y
∗
c,i

(`) = yi = log ti if dc,i = 1

y∗c,i
(`) ∼ Trunc-N

(
y∗c,i

(`) | β(`−1)
c xc,i + θ∗

c,w
(`−1)
i

, σ2
c

(`−1)
, yi

)
if dc,i = 0

(5.5)

Step 2: Allocate each individual to one of the mixture components by sampling w
(`)
i

(W
(`)
i ∈ {1, . . . ,K}) from a discrete distribution with probabilities:

1In our implementation, we also set an upper bound of 6, in order to maintain the draws within
reasonable bounds and enhance the convergence of the MCMC sampler. Indeed, exp (6) corresponds
to 403 quarters (more than 100 years).
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Pr
(
W

(`)
i = k | yi, xi, ci

)
(5.6)

=

π
(`−1)
k

[
M∏
c=1

fc

(
y∗c,i

(`) | xc,i;β(`−1)
c , θ

∗(`−1)
c,k , σ2(`−1)

c

)]
K∑
j=1

π
(`−1)
j

[
M∏
c=1

fc

(
y∗c,i

(`) | xc,i;β(`−1)
c , θ

∗(`−1)
c,j , σ2(`−1)

c

)] ,

thus setting s
(`)
i,k = 1 if w

(`)
i = k and s

(`)
i,k = 0 otherwise;

Step 3: Sample stick-breaking weights ψ from a conditionally conjugate Beta distribu-
tion, and update the mixture weights π:

Step 3.1: Sample ψ
(`)
k (k = 1, . . . ,K − 1, with ψK = 1):

ψ
(`)
k ∼ Beta

(
ψk

∣∣∣1 +
n∑
i=1

1[
w

(`)
i =k

], φ(`−1) +
n∑
i=1

1[
w

(`)
i >k

]
)

(5.7)

Step 3.2: Update πk:

π
(`)
k = ψ

(`)
k

∏
j<k

(
1− ψ(`)

j

)
(5.8)

Step 4: Sample β
(`)
c,· from a conjugate multivariate pc-dimensional normal posterior dis-

tribution MVN (βc,· | B1,c, B2,c), where

B1,c = B2,c

(
xc,·/σ

2(`−1)
c

)′ (
y
∗(`)
c,· − θ∗(`−1)

c,w(`)

)
(5.9)

B2,c =
(
x′c,·xc,·/σ

2(`−1)
c + Σ−1

βc

)−1

where xc,· = (xc,1, . . . , xc,n)′ is a n× pc-dimensional matrix, y∗c,· =
(
y∗c,1, . . . , y

∗
c,n

)′
,

θ∗c,w =
(
θ∗c,w1

, . . . , θ∗c,wn
)′

(iteration omitted on w for ease of notation) and Σβc =
9Ipc denotes the covariance matrix of βc;
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Step 5: Draw θ∗k
(`) ∼ MVN (θ·,k | Θ1,k,Θ2,k), where

Θ1,k = Θ2,k

Σ(`)
y

−1

 ∑
i:s

(`)
i,k=1

y∗i
(`) − β(`)x·,i

+ Σ
(`−1)
θ

−1
mθ

(`−1)

 (5.10)

Θ2,k =

(
Σ

(`−1)
θ

−1
+ n

(`)
k Σ(`)

y

−1
)−1

n
(`)
k =

n∑
i=1

s
(`)
i,k

Σy = diag
(
σ

2(`−1)
1 , . . . , σ

2(`−1)
M

)

y∗i
(`) − β(`)x·,i =


y∗1,i

(`) − β(`)
1 x1,i

. . .

y∗M,i
(`) − β(`)

M xM,i


Step 6: Sample mθ ∼ MVN (mθ |M1,M2), where:

M1 = M2

(
Σ

(`−1)
θ

−1
K∑
k=1

θ
∗(`)
k 1[

n
(`)
k >0

]
)

(5.11)

M2 =

(
1

9
IM + Σ

(`−1)
θ

−1
K∑
k=1

1[
n
(`)
k >0

]
)−1

Step 7: Sample Σθ from the conjugate posterior which is the Inverse-Wishart distribu-
tion with degrees of freedom Λ2 and scale matrix Λ3:

Σ
(l+1)
θ ∼ Inv-Wishart (Σθ | Λ2,Λ3) (5.12)

where

Λ2 = 8 +

K∑
k=1

1[
n
(`)
k >0

] (5.13)

Λ3 = 8λ1 +
K∑
k=1

1[
n
(`)
k >0

] (θ∗(`)k −m(`)
θ

)(
θ
∗(`)
k −m(`)

θ

)′
Step 8: Sample σ

2(`)
c from the Inverse Gamma distribution with shape Γc,1 and rate

Γc,2:

Γc,1 = 1 + 0.5n (5.14)

Γc,2 = 1 + 0.5

n∑
i=1

(
y
∗(`)
c,i − xc,iβ

(`)
c − θ

∗(`−1)

c,w
(`)
i

)2
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Step 9: Sample φ. We follow Escobar & West (1995) who devised the following steps
for conditional conjugacy:

Step 9.1: Sample ζ ∼ Beta
(
ζ | φ(`−1) + 1, n

)
;

Step 9.2: Sample Z ∼ Bernoulli (Z | πζ), where

πζ =

K∑
k=1

1[
n
(`)
k >0

]

n (1− ln ζ) +
K∑
k=1

1[
n
(`)
k >0

]
(5.15)

Step 9.3: Sample φ:

φ(`) ∼1[Z=1]Gamma

(
φ
∣∣∣1 +

K∑
k=1

1[
n
(`)
k >0

], 1− ln ζ

)
(5.16)

+ 1[Z=0]Gamma

(
φ
∣∣∣ K∑
k=1

1[
n
(`)
k >0

], 1− ln ζ

)

In our analysis we implement the Two-Data Augmentation MCMC scheme, by running
Step 1-9 for 50,000 iterations. Then, we discard the first 40,000 draws (burn-in) to
ensure the sampler converged towards a stationary posterior distribution, and thin the
resulting sample by retaining only every 20th simulated draw in order to reduce both
the autocorrelation of the parameter draws.

The code ensuring the reproducibility of the results of this work is available on the
Github repository https://github.com/ungolof/AFT-DPM-R.

6. Results

6.1. Convergence

We run four chains of the two-Data Augmentation sampler outlined in Section 5 with
sparse starting values, in order to assess whether different chains convergence towards
the same distribution. We observe how the chains converge towards a stationary distri-
bution for all parameters, and these mix very well, except for θ∗ and π (ψ) (see Figures
A.1-A.4 in Appendix). This result is expected, due to the label switching problem which
characterizes mixture distributions (see Betancourt (2017), Ungolo et al. (2020) and
Ungolo & van den Heuvel (2022) and the references therein for further details). This
is a problem only in terms of interpretation of the groups from the results of one chain
compared to another. Nevertheless, this does not represent an issue when making predic-
tions, or when the purpose is to learn the parameters which are common to all mixture
components, such as the regression coefficients β. Furthermore, the marginal posterior
density of all parameters are unimodal2.

2Plots available upon request to the authors.
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As illustrated in Section 5, we learn the posterior distribution of the parameters by
setting an upper bound of K = 25. Throughout the sampling process, we observe that
all 25 mixture components had at least one observation. From a deeper inspection of the

output of each MCMC chain we note that by looking at the value of n
(`)
k , a minimum of

8 and a maximum of 10 components (average 8.8) had at least than 550 observations,
corresponding to 2.5% of the total number of observations in the training set (Figure
6.1). When using a prior distribution with a larger mean for the elements of Σθ, we
obtain a similar evidence (minimum of 7, maximum of 9, with an average of 8.5). These
results show that the data are informative about the parameters, since their posterior
distribution are not sensitive with respect to the prior specification, together with the
appropriateness of the choice of K.

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

Mixture component (k)

P
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00
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80
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Figure 6.1: Barplot of the posterior average of the mixture component occupancy (n
(`)
k ,

k = 1, . . . ,K) based on the retained posterior sample. The horizontal black
line indicates the level of 550 units.

6.2. Model analysis

Regression analysis of surrending risk

Table 6.1 shows the posterior mean and the 95% credible interval of the key parameters
for the surrending cause. The marginal posterior distribution of β excludes the value of
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zero from the 95% credible interval, despite their prior was centered on the null value.
This is an indication of the statistical significance of the covariate within the analysis.
The time to surrending is negatively associated with respect to the standardized annual
premium amount due to the negative coefficient of βsurr,AP. Similarly, a larger value
of the Dow Jones variation is associated with a higher propensity to surrender. As
noted in Milhaud & Dutang (2018), the policyholders of participating policies in the
data set, which do not benefit from the good financial market conditions, have a higher
propensity to surrender, as they can have the possibility to reinvest the cash value of
the policy in the market at higher returns. Conversely, policyholders with an accidental
death rider (ADR=1), females (G=1), and with an annual (or over-annual) premium
frequency are associated with a lower propensity to surrender (that is, a ”longer” time
to surrender their policy). Finally, people younger than 54 years old show a higher
propensity to surrender. This result is in line with respect to the theory, since younger
people may be more likely to pursue personal projects. All these results are consistent
with practitioners’ intuition and the numerical evidences in Milhaud & Dutang (2018).

The most relevant mixture component parameters θ∗surr,· and mixture weights π· show
a narrow 95% credible intervals. Their different value, denotes the presence of additional
sources of heterogeneity, which may not be explained by the variables included in the
linear regression function.

Table 6.1: Posterior summaries of βsurr, σ
2
surr, θsurr,k, πk for k = 1, 2, 3, 4, 15

Parameter Mean 95% CI

βsurr,AP −0.0411 (−0.0514; −0.0306)
βsurr,DJ −0.6450 (−0.6563; −0.6351)
βsurr,ADR 0.0534 (0.0233; 0.0883)
βsurr,G 0.0310 (0.0095; 0.0501)
βsurr,PF 0.0744 (0.0540; 0.0964)
βsurr,UWA −0.1036 (−0.1379; −0.0733)
σ2

surr 0.0669 (0.0621; 0.0722)
π1 0.1257 (0.1084; 0.1425)
π2 0.4170 (0.4018; 0.4321)
π3 0.0468 (0.0342; 0.0555)
π4 0.0780 (0.0715; 0.0850)
π15 0.0983 (0.0921; 0.1049)
θ∗surr,1 4.8801 (4.8176; 4.9473)

θ∗surr,2 4.1100 (4.0785; 4.1416)

θ∗surr,3 5.2727 (5.2145; 5.3312)

θ∗surr,4 2.5661 (2.5180; 2.6092)

θ∗surr,15 3.1892 (3.1440; 3.2334)
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Time to event dependence

In order to obtain an insight about the correlation among the time to events, we sam-
ple a large number of log-time to events Y , conditional on sampled mixture allocation
component S, using the posterior mean of the parameters. The correlation coefficients
are shown in Table 6.2. We note how the model was capable to capture the positive
correlation between all causes of decrement. In addition, these coefficients are relatively
different from the specification of λ1 in the prior distribution of the base distribution
of the random effect θ, meaning that the data are informative about the statistical
association among the time to the three events.

Table 6.2: Correlation matrix of YSurr, YDeath, YOther

Surrending Death Other

Surrending 1 0.325 0.297
Death 0.325 1 0.889
Other 0.297 0.889 1

Group analysis

A by-product of the DPM approach of this work is the possibility to investigate a posteri-
ori the resulting classes, by creating groups of units in order to obtain additional insights
about the similarities of the latter. We carry out this analysis by using the Bayes’ rule.
Under this method, for the ith individual we calculate her k-class probability, denoted
as qi,k, conditional on her observable data and the model parameters as follows:

qi,k = Pr (Si = k | yi, x1,i, . . . , xM,i; ) (6.1)

=

πk

M∏
c=1

fc
(
yi | xc,i; θ∗c,k

)dc,i (1− Fc (yi | xc,i; θ∗c,k))1−dc,i
K∑
j=1

[
πj

M∏
c=1

fc
(
yi | xc,i; θ∗c,j

)dc,i (1− Fc (yi | xc,i; θ∗c,j))1−dc,i
]

Hence, each unit i is hard-assigned to a specific class si by setting si = k if qi,k > qi,j
for j 6= k. The quantities in equation (6.1) are obtained using the posterior means of
the parameters. Table 6.3 illustrates the composition of the largest four classes obtained
using the Bayes’ rule, and the posterior mean of their corresponding random effect
θ∗·,k. These four classes cover almost 80% of the training sample, and do not always to
correspond to the five main groups identified in the analysis of the posterior distribution
of the parameters.
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Table 6.3: Features of the four largest classes resulting from the Bayes’ rule.

Group 2 Group 4 Group 11 Group 15 Train. sample

% Composition 57.7 8.2 4.3 8.3 −
Annual Prem. (mean in $) 536.83 648.02 641.64 650.68 560.88
Accidental D. Rider (Yes in %) 17.4 14.0 13.8 12.5 16.4
Pr. Freq. (Ann+Oth in %) 41.8 30.4 34.9 29.8 38.9
UW Age (0-54 in %) 80.4 84.5 84.1 84.8 81.4
Surrending ( in %) 14.7 100 100 92.5 38

θ∗Surr 4.11 2.57 1.76 3.19 −
θ∗Death 5.00 4.48 4.03 2.02 −
θ∗Other 4.90 4.39 3.78 3.91 −

The Bayes’ rule creates one group (Group 2) characterized by a lower amount of annual
premium, and a slightly lower percentage of people underwriting the policy at a younger
age. This group has indeed a significantly lower percentage of policyholders surrending
the policy, and a larger value of the random effect parameter θ·,2 for all three competing
events. On the other hand, Group 4, 11, and 15 include a pool of policyholders with
similar characteristics in terms of composition in terms of the covariates, and surrending
behavior. Their different value of the random effect θ may be indicative of the presence of
other factors, unobserved to the researcher which explain the heterogeneity among those
groups. For example, the policyholders hard-assigned to Group 4 may have a higher
propensity to surrender compared to those in Group 15 despite the similar composition
in terms of features because they may have a financial advisor who can affect the choices
of the policyholder, or else, they may be facing a period of financial distress.

Posterior predictive density of future observations

Figure 6.2 shows the posterior predictive density (PPD) for new observations t̃surr =
exp (ỹsurr) of the time to surrending for different configurations of the covariates x̃,
which is input exogeously. Let ∆ =

(
β, θ∗, σ2, π (ψ)

)
and data = {t,x, c}. The PPD is

defined as follows:

f
(
t̃surr | x̃; data

)
=

∫
f
(
t̃surr | x̃; ∆

)
p (∆ | data) d∆ (6.2)

This density is computed by sampling several values of ỹsurr from the density of equa-
tion (6.2):

1) Sample ∆ from the posterior distribution p (∆ | data) obtainable using the MCMC
sampler of Section 5;

3) Sample mixture index s from a discrete distribution with parameter vector π (ψ) ;
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3) Sample ỹsurr ∼ N
(
ỹsurr | βsurrx̃+ θ∗surr,s, σ

2
surr

)
, where all parameters are from Step

1) and the mixture index s is obtained in Step 2);

4) Get t̃surr = log ỹsurr.

In our analysis we repeat Step 1)-4) for 1,000,000 times.
The top panel of Figure 6.2 shows how for each configuration of x̃ in terms of accidental

death rider, payment frequency and underwriting age (with an average annual premium
amount and zero variation in the DJIA), the estimated model yields a bimodal mixture
density. In this way, it is clearly shown how this model can flexibly account for het-
erogeneity and dependence among the observations, since this model accommodates for
various shapes of the density function. Such flexibility is more evident when inspecting
the two modes of the resulting densities: differences due to the covariates values become
more evident when looking to the rightmost mode of the posterior density, which may
be the key cause of the shift in the mean value of the time to surrending.

The bottom panel of Figure 6.2 shows how the these difference can lead to a significant
difference in the posterior predictive expected time to surrending for different level of
the annual premium.
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Figure 6.2: Posterior predictive density of the time to surrending (top), and posterior
predictive expected time to surrending (bottom) underwritten until age 54
(left) and from age 55 onwards (right).

6.3. Predictive ability of the model

Competing models

We analyse the predictive ability of the DPM-Regression model by analysing the out-of-
sample performance of the model using the held-out data set of 7,321 observations. Such
results are compared with those obtainable under the Cox Proportional Hazard model
(Cox PH, Cox (1972)) and the subdistribution approach (SBD) of Fine & Gray (1999).

Both approaches assume that for each cause the distribution of the time to event is
characterized by a semi-parametric form for the hazard function µc (t):

µc (t) = µ0,c (t) exp (βcxc,i) (6.3)

where µ0,c is the nonparametric hazard function for cause c. The Cox PH and the SBD
approaches differ in the definition of the time to event: for the former, the occurrence
of any cause, censores the time to event for the others, while the SBD defines the time
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to event for the cause of interest as follows:

T sbdc = T1[C=c] +∞1[C 6=c] (6.4)

The choice of these two models is motivated by their widespread use, their easy un-
derstanding among practitioners, and by the availability of software for their estimation,
such as the R package survival (Therneau (2022)). At different extents, these two
models assume that the causes of decrement are independently distributed, while on the
other hand are greatly flexible due to their nonparametric specification of the baseline
hazard function µ0,c (t).

In our comparisons, we use the same set of covariates as for the DPM model of this
work.

Out-of-sample performance of the models

First, we compute the predicted surrending rate for each quarter [sq − sq+1) using the
following conditional probability:

r̂q =
1

nsq

∑
i∈Rsq

P̂r (sq < Tsurr,i ≤ sq+1, ci = 1 | Tsurr,i > sq, Tdeath,i > Tsurr,i, Tother,i > Tsurr,i, xi)

(6.5)

where nsq is the size of the at-risk population Rsq . The P̂r denotes that such probability
is computed under the estimated models. For the DPM model, we use the posterior
mean of the parameters as a point estimate. Its computation is detailed in Appendix C.

Figure 6.3 shows the value of rq, and the Rolling Root Mean Square Error (R-RMSE)
by quarter, calculated as:

R-RMSEQ =

√√√√ 1

Q

Q∑
q=1

(
r̂Model
q − rEmpirical

q

)2
(6.6)
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Figure 6.3: Predicted surrending rates by quarter r̂q (left) and R-RMSEQ (right).

We observe how the fitted rates using the DPM approach of this work closely resemble
those empirically observed, especially in the first 8 years (32 quarters), after which the
behavior of surrending rates becomes more erratic due to the lower number of observa-
tions. During this period, the corresponding 95% confidence interval of these rates, seem
to include those empirically observed, except at the 20th quarter. The subdistribution
approach seems instead to overestimate the surrending rates in the first year of the policy,
and then to slightly underestimate these rates afterwards. The Cox proportional hazard
model instead appears to underestimate the surrending rates throughout the quarters.
In general, we observe how the rates obtainable under the DPM approach can have a
changing shape throughout the quarter, while the rates under the SBP and the Cox
PH seem to have a smoother behavior. The Rolling RMSE shows how the DPM model
returns surrending rates closer to those empirically observed, compared to the other two
competing approaches. An appropriate prediction of the surrending rates, especially in
the first few years since policy issue is of fundamental importance for insurance firms,
in order to recover the initial expenses.

We closely inspect this result, by looking at the predicted rates by value of the acci-
dental death rider and the payment frequency (6.4).
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Figure 6.4: Predicted surrending rates by quarter r̂q (left) and R-RMSEQ (right) by
covariate Accidental death rider (top panel) and Payment frequency (bottom
panel).

Again, we observe how the DPM-based surrending rates shows a changing shape
throughout the quarters, while for the other models, the shape is more smooth.

When analysing the results by covariate value, we note once again how the DPM model
outperforms the Cox PH and the SBD approaches, especially in the first quarters since
policy inception. The performance deteriorates however, when looking at those policies
with an accidental death rider and to those with a lesser frequent premium payment.
Indeed, for these two cases we can observe how the DPM and the Cox PH models show
a comparable performance in terms of R-RMSE in the long run.

7. Discussion and future work

This paper outlines a flexible modelling approach using flexibly distributed multivariate
random effects, allowing to point-identify the joint distribution of the time to competing
risk events. This approach, based on Dirichlet Process Mixture model weakens the
sensitivity of the resulting inference with respect to the specification of a parametric
distribution for the random effect. The model could easily accommodate for individual-
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specific covariates. We analyse this approach from a fully Bayesian perspective and
outline an efficient MCMC scheme allowing for closed-form updates. The framework
hereby developed has been implemented to the empirical analysis of the surrending
rates of a US life insurer data set. The model showed an improved prediction of the
surrending rates, compared to standard approaches, especially in the first years since
policy inception, which are crucial for recovering the initial expenses.

As mentioned in Section 4, other parametric models with a non-parametric random
components can be specified. An alternative to the log-normal model of this work con-
sists of a log-t model (Sha et al. 2006), which allows for heavier tails compared to the
log-Normal model hereby analysed. This model similarly allows for a fully conditionally
conjugate posterior distribution, which gives the possibility to devise an MCMC sam-
pler with parameter updates similar to those described in Section 5.3. Furthermore, the
approach offers the possibility to explore the set of covariates which may turn out statis-
tically significant in the analysis of competing risk events. An extension in this direction,
consists of enriching the model with a stochastic search variable selection component,
in the spirit of George & McCulloch (1993), with a prior favouring sparseness in order
to obtain a more parsimonious model (see Lucas et al. (2006)). This additional layer of
analysis would sensibly increase the number of parameters we need to learn. Therefore, a
faster alternative approach to the MCMC sampler of this work is the use of Variational
Bayes methods (Blei et al. 2016), which can be easily applied to the fully conjugate
model of this work. Finally, the model can be further expanded by specifying a ran-
dom component, which depends on common covariates afftecting all competing risks,
explaining the dependence among the competing causes. For statistical models outside
the competing risk analysis domain, Barcella et al. (2017) reviews a set of approaches
which can be developed to obtain Dependent Dirichlet Processes (MacEachern 2000).
We leave these extensions for future work on the analysis of more complex data sets.
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A. Trace plots of some model parameters
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Figure A.1: Trace plots of βsurr.
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Figure A.2: Trace plots of σ2
c (c ∈ {surr,death, other}).
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Figure A.3: Trace plots of φ (top-left) and of mθ.
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Figure A.4: Trace plots of θ∗·,k and πk (k = 1, . . . , 4).

28



B. Posterior summaries

Table B.1: Posterior summaries of the model parameters.

Surrending Death Other
Parameter Mean 95% Cred. Int. Parameter Mean 95% Cred. Int. Parameter Mean 95% Cred. Int.

βsurr,AP −0.0411 (−0.0514; −0.0306) βdeath,G −0.0030 (−0.0389; 0.0310) βother,AP 0.0277 (0.0117; 0.0428)
βsurr,DJ −0.6450 (−0.6563; −0.6351) βdeath,UWA 0.0078 (−0.0347; 0.0514) βother,AP −0.0133 (−0.0468; 0.0166)
βsurr,ADR 0.0534 (0.0233; 0.0883) βdeath,LP 0.0089 (−0.0291; 0.0438) βother,AP −0.0261 (−0.0689; 0.0180)
βsurr,G 0.0310 (0.0095; 0.0501) βdeath,PF −0.0355 (−0.0738; 0.0010)
βsurr,PF 0.0744 (0.0540; 0.0964)
βsurr,UWA −0.1036 (−0.1379; −0.0733)
σ2

surr 0.0669 (0.0621; 0.0722) σ2
death 0.0881 (0.0770; 0.0999) σ2

other 0.0869 (0.0697; 0.1012)
θ∗surr,1 4.8801 (4.8176; 4.9473) θ∗death,1 4.9563 (4.8232; 5.1109) θ∗other,1 4.8192 (4.6623; 4.9739)

θ∗surr,2 4.1100 (4.0785; 4.1416) θ∗death,2 4.9964 (4.9192; 5.0656) θ∗other,2 4.8987 (4.8352; 4.9548)

θ∗surr,3 5.2727 (5.2145; 5.3312) θ∗death,3 4.1762 (4.0287; 4.3215) θ∗other,3 4.0139 (3.8554; 4.1621)

θ∗surr,4 2.5661 (2.5180; 2.6092) θ∗death,4 4.4835 (4.3683; 4.6043) θ∗other,4 4.3870 (4.2736; 4.5037)

θ∗surr,5 2.3551 (−1.2814; 5.9564) θ∗death,5 −2.6156 (−2.9122; −2.2655) θ∗other,5 −2.7766 (−3.0677; −2.4257)

θ∗surr,6 −6.4157 (−6.9300; −5.8661) θ∗death,6 2.4684 (−1.4455; 5.6519) θ∗other,6 2.5678 (−1.4029; 5.7305)

θ∗surr,7 3.4469 (3.1963; 3.7040) θ∗death,7 2.0855 (1.9180; 2.2254) θ∗other,4 1.9504 (1.8039; 2.0799)

θ∗surr,8 4.8966 (4.6735; 5.1694) θ∗death,8 3.5980 (3.3795; 3.8451) θ∗other,4 3.4284 (3.2040; 3.6744)

θ∗surr,9 2.8114 (2.5702; 3.0749) θ∗death,9 1.4097 (1.2651; 1.5459) θ∗other,4 1.3016 (1.1671; 1.4389)

θ∗surr,10 1.0860 (1.0197; 1.1521) θ∗death,10 4.8116 (4.5129; 5.0901) θ∗other,4 4.7591 (4.4514; 5.0781)

θ∗surr,11 1.7583 (1.6242; 1.8905) θ∗death,11 3.8516 (3.5459; 4.1328) θ∗other,4 3.7785 (3.4751; 4.0767)

θ∗surr,12 3.1405 (2.8579; 3.5585) θ∗death,12 2.8908 (2.7538; 3.0486) θ∗other,4 2.7641 (2.6380; 2.8984)

θ∗surr,13 −0.4326 (−0.5229; −0.2581) θ∗death,13 3.0429 (2.6615; 3.3488) θ∗other,4 3.0057 (2.6544; 3.3378)

θ∗surr,14 0.3320 (0.2711; 0.4026) θ∗death,14 4.7482 (4.0971; 5.1682) θ∗other,14 4.7140 (4.1261; 5.1490)

θ∗surr,15 3.1892 (3.1440; 3.2334) θ∗death,15 4.0283 (3.9599; 4.1021) θ∗other,15 3.9103 (3.8602; 3.9654)

θ∗surr,16 −2.9640 (−3.1656; −2.8376) θ∗death,16 3.0520 (0.9789; 5.0482) θ∗other,16 3.0759 (1.0224; 5.1092)

θ∗surr,17 2.2156 (2.0328; 2.4054) θ∗death,17 0.7638 (0.6334; 0.8908) θ∗other,17 0.6256 (0.5141; 0.7298)

θ∗surr,18 2.0652 (0.1821; 4.8315) θ∗death,18 −1.1368 (−1.2760; −0.9965) θ∗other,18 −1.2589 (−1.3906; −1.1082)

θ∗surr,19 −1.1603 (−1.3027; −0.8878) θ∗death,19 3.4972 (1.9551; 5.0119) θ∗other,19 3.4841 (1.8878; 5.0204)

θ∗surr,20 2.4622 (1.4899; 3.9776) θ∗death,20 −0.1684 (−0.2812; −0.0455) θ∗other,20 −0.3051 (−0.4088; −0.1999)

θ∗surr,21 4.5588 (4.2010; 4.9242) θ∗death,21 3.1420 (2.6683; 4.1928) θ∗other,21 2.9856 (2.5406; 4.0499)

θ∗surr,22 −3.9615 (−4.0983; −3.8109) θ∗death,22 2.9278 (0.1497; 5.1619) θ∗other,22 2.9750 (0.1293; 5.1946)

θ∗surr,23 3.1712 (−1.8390; 4.5894) θ∗death,23 2.7227 (2.3262; 3.8224) θ∗other,23 2.6129 (2.2003; 3.9229)

θ∗surr,24 -2.0423 (−2.4403; −1.8631) θ∗death,24 3.0610 (1.6868; 4.9038) θ∗other,24 3.0668 (1.6004; 4.8771)

θ∗surr,25 1.9557 (1.6375; 2.0821) θ∗death,25 3.3197 (3.0466; 3.9524) θ∗other,25 3.2369 (2.9331; 3.8969)

φ 2.6748 (1.6955; 4.0501) π1 0.1257 (0.1084; 0.1425) π2 0.417 (0.4018; 0.4321)
π3 0.0468 (0.0342 0.0555) π4 0.0780 (0.0715; 0.0850) π5 0.0002 (0.0001; 0.0004)
π6 0.0001 (0.0000; 0.0003) π7 0.0151 (0.0103; 0.0193) π8 0.0343 (0.0262; 0.0405)
π9 0.0076 (0.0059; 0.0094) π10 0.0307 (0.0269; 0.0346) π11 0.0373 (0.0246; 0.0497)
π12 0.0127 (0.0072; 0.0174) π13 0.0070 (0.0056; 0.0084) π14 0.0159 (0.0137; 0.0180)
π15 0.0983 (0.0921; 0.1049) π16 0.0020 (0.0013; 0.0028) π17 0.0050 (0.0037; 0.0063)
π18 0.0011 (0.0007; 0.0015) π19 0.0040 (0.0029; 0.0054) π20 0.0026 (0.0020; 0.0034)
π21 0.0193 (0.0017; 0.0319) π22 0.0010 (0.0006; 0.0015) π23 0.0114 (0.0006; 0.0182)
π24 0.0034 (0.0014; 0.0047) π25 0.0235 (0.0069; 0.0403)

C. Computation of the conditional surrending probability

The probability distribution of the time to surrender can be obtained as follows:

P̂r (sq < Tsurr,i ≤ sq+1, ci = 1 | Tsurr,i > sq, Tdeath,i > Tsurr,i, Tother,i > Tsurr,i, xi) =
F̂ (sq+1)− F̂ (sq)

1− F̂ (sq)
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where, by simplifying the notation we obtain

F̂ (s) = P̂r (Tsurr,i ≤ s, Tdeath,i > Tsurr,i, Tother,i > Tsurr,i | xi)

=

∫ s

0
f̂surr (s | xsurr,i)

(
1− F̂death (s | xdeath,i)

)(
1− F̂other (s | xother,i)

)
ds. (C.1)

f̂c (s | xc,i) and F̂c (s | xc,i) denote respectively the density and the cumulative distribu-
tion function of the cth cause under the estimated models.

For the Cox PH model and the SBD approach we have:

f̂c (s | xc,i) = exp

(
−
∫ s

0
µ̂0,c (u) exp

(
β̂cxc,i

)
du

)
µ̂0,c (s) exp

(
β̂cxc,i

)
F̂c (s | xc,i) = exp

(
−
∫ s

0
µ̂0,c (u) exp

(
β̂cxc,i

)
du

)
(C.2)

which we approximate by assuming a piecewise constant baseline hazard function µ0,c.

When using the subdistribution approach we have for the cause of interest c F̂ (s) =
F̂c (s | xc,i).
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