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Abstract

Continuous-time affine mortality models are useful in the analysis of age-cohort mortality
rates as they yield a closed-form expression for survival curves which are consistent with the
dynamics of latent factors driving mortality and are well-suited for finance and insurance
applications. We extend and improve these mortality models by introducing age dependence
of mortality rates and correlation between cohorts. We propose and compare two classes
of age-dependent mortality models, namely the age-dependent coefficient model and the
age-dependent factor model. Specifically, we assess both Gaussian and CIR-type models for
each category of age-dependent models. Both categories of age-dependent models involve
age and calendar time, which in turn specifies the cohort. Thus, our models admit an
analytical form for the instantaneous correlation between mortality rates of different cohorts.
Moreover, we propose two improvements to the parameter estimation process. First, to
improve the estimation of cohort correlations, we regularise the parameter estimation by
adding a penalty term which penalises larger differences between empirical and estimated
correlations. Second, we develop and assess a method to include incomplete cohorts into the
Kalman filtering algorithm for parameter estimation. We calibrate the mortality models to
data from multiple countries which include Australia, Denmark, UK, and USA to assess and
compare in-sample fit and forecasting performance. By incorporating age dependence and
using incomplete cohort mortality data, we improve the goodness of fit and produce more
reasonable out-of-sample forecasts of survival probabilities. We also show that regularisation
produces more realistic correlations between cohorts for varying age differences. Our results
show that, under most circumstances, the correlation between cohorts decreases as the age
difference increases.

Keywords: Mortality model, Age-dependent, Multi-cohort, Cohort correlation, Incomplete
cohort, Affine, Regularisation

JEL Classifications: G22, C13, C22, C52, C53, J11

∗School of Risk & Actuarial Studies, Australian Research Council Centre of Excellence in Population Ageing
Research (CEPAR), UNSW Sydney, email: yuxin.zhou@unsw.edu.au

†CEPAR, UNSW Sydney and School of Mathematical and Physical Sciences, University of Technology
Sydney, email: LenPatrickDominic.Garces@uts.edu.au

‡School of Risk & Actuarial Studies, CEPAR, UNSW Sydney, email: y.shen@unsw.edu.au
§School of Risk & Actuarial Studies, CEPAR, UNSW Sydney, email: m.sherris@unsw.edu.au
¶School of Risk & Actuarial Studies, CEPAR, UNSW Sydney, email: j.ziveyi@unsw.edu.au

1



1 Introduction

Mortality modelling is essential in the pricing and risk management of mortality-linked products.
The literature of continuous-time affine mortality models has been growing since the early work
of Dahl (2004), Biffis (2005) and Luciano and Vigna (2008) who use the one-factor affine pro-
cesses to model the mortality rates of a fixed cohort of individuals. The continuous-time models
have the advantage of being able to model the trend and volatility in the mortality rates by
representing the evolution of mortality rates through a stochastic differential equation (SDE).
Moreover, survival probabilities under the affine framework have a closed-form expression. Fur-
ther developments allow the continuous-time mortality models to model the entire mortality
surface of multiple cohorts, thereby capturing mortality improvements. Schrager (2006) pro-
poses a general framework of multi-factor affine mortality models, which captures the dynamics
of the mortality surface using age-period data. This is supported by the principal component
analysis (PCA) in Njenga and Sherris (2011) who find that multiple factors are needed to fully
explain the evolution of mortality rates. Following Schrager (2006) and Njenga and Sherris
(2011), Blackburn and Sherris (2013) develop a three-factor model for survival probabilities
defined under the risk-neutral measure.

However, there are still issues that remain to be addressed, the first being high mean squared
error (MSE) at old ages. Blackburn and Sherris (2013) compare the two-factor and three-factor
mortality models and find that adding a third factor better captures mortality trends at older
ages. Another possible reason for the high MSE at old ages is that the volatility structure in
the mortality rates has not been modelled carefully. Age-dependent trend and volatility in the
mortality data have been observed in the literature, which motivates this research. Both Piggott
et al. (2005) and Chang and Sherris (2018) find that the volatility of mortality rates increases
with age. However, very few models in the literature consider age dependence. Therefore, we
include age dependence in the model and find improvements in the goodness of fit, as evidenced
by the analysis in this paper.

Another issue is that previous work on continuous-time affine mortality models, for example
Blackburn and Sherris (2013) and Huang et al. (2022), assume that the factors equally affect
all ages or, equivalently, all cohorts at a given time. This results in a perfect instantaneous
correlation in the mortality rates of different cohorts, which does not hold in view of historical
data. To address the perfect cohort correlation issue, scholars have proposed models that
use age-cohort data or models where each cohort has its own cohort-specific factor to allow
imperfect cohort correlation. On one hand, Huang et al. (2022) and Ungolo et al. (2023) use
age-cohort data to calibrate the mortality models as age-cohort mortality models are more
suitable for pricing insurance products which are typically issued to individuals belonging to
different cohorts. On the other hand, Jevtić et al. (2013) first introduce cohort-specific factors
and calibrate a two-factor model. This has been extended in Xu et al. (2020) whose model has
two-common factors and one cohort-specific factor. Under these assumptions, the correlations
of the instantaneous mortality rates between different cohorts are available in analytical form.
However, this type of model has one limitation, that is, the cohort-specific factors are estimated
as free parameters separately from the estimation of the common factors. This implies that
cohort-specific factors for out-of-sample cohorts that are not included in the estimation cannot
be determined using data on preceding cohorts. Therefore, the models using cohort-specific
factors have a limited ability to forecast future survival probabilities.

To address this issue, we propose age-dependent affine mortality models, which are naturally
specific to certain cohorts. Age-dependent models can capture the imperfect instantaneous
cohort correlation while maintaining the ability to consistently predict mortality outcomes of
further cohorts. Wills and Sherris (2008) and Chang and Sherris (2018) make initial attempts to
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include age dependence in affine mortality models. Chang and Sherris (2018) find that including
age dependence improves the goodness of fit at old ages compared to Jevtić et al. (2013) who use
constant drift and volatility terms. However, Wills and Sherris (2008) and Chang and Sherris
(2018) only use one and two factors respectively with Chang and Sherris (2018) having the
issue of using cohort-specific factors discussed above, which limits their forecasting ability. Our
improved models avoid this issue by introducing dependence on both age and calendar time at
the same time.

We also improve the estimation of cohort correlation by including regularisation in Kalman
filtering. The difference between the empirical cohort correlation and the estimated cohort
correlation is included in the objective function as a penalty term. We test different scales of
the penalty parameter to decide the most suitable one that can balance the goodness of fit to
the empirical mortality data and empirical cohort correlation matrix.

Moreover, most of the existing models in the literature that use age-cohort data only use
complete-cohort data to calibrate the model. A complete cohort refers to a cohort for which
we have a full observation of the age range we are modelling (that is, 50 to 109). Therefore,
individuals in these complete cohorts are over age 109, which means most of them have already
passed away. Meanwhile, for younger cohorts still alive, we have only incomplete observations.
Continuous-time mortality models in the literature often disregard these cohorts in the estim-
ation procedure. However, these incomplete-cohort data contain more recent information on
mortality evolution. Thus, utilising incomplete cohort data leads to more accurate out-of-sample
forecasts. To address this issue, we improve the Kalman filtering algorithm to incorporate in-
complete cohort data in the calibration process. This allows us to start our forecast from more
recent cohorts as well as provide better forecasting results.

This paper is structured as follows. Section 2 presents the framework of the proposed age-
dependent affine mortality models. Section 3 summarises the construction of incomplete age-
cohort mortality data. Section 4 explains the estimation technique, including how we incorpor-
ate incomplete cohort data and add regularisation. Section 5 discusses the goodness of fit and
forecasting performance of the proposed mortality models. Section 6 analyses the estimated
cohort correlation after incorporating regularisation. Section 7 concludes the paper.

2 Age-Dependent Affine Mortality Models

We propose two categories of age-dependent affine mortality models. The first category of
models makes the coefficients of factors age-dependent, namely the age-dependent coefficient
(ADC) model. Meanwhile, the other category of models makes the factors themselves age-
dependent through allowing age-dependent drift and volatility terms in the stochastic differential
equation (SDE), thus called age-dependent factor (ADF) model. Define a probability space (Ω,
F , Ft, Q) in an arbitrage-free market, where Ω is the sample space, F is the σ-algebra, Ft is the
σ-algebra generated by the information up to time t and satisfies the usual conditions in Williams
(1991), and the risk-neutral measure Q is the measure such that the survival probability for the
cohort born in year c and aged x = t− c at time t to survive to time T is represented as:

Sx(t, T ) =EQ
[
e−
∫ T

t
µs−c(s)ds | Ft

]
= eB1(t,T )Z1(t)+B2(t,T )Z2(t)+B3(t,T )Z3(t)+A(t,T ).

(1)

The general frameworks of the two categories of models are described as follows:

Definition 1. For age-dependent coefficient (ADC) models, the force of mortality for cohort
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born in year c and aged x = t− c at time t is defined as µx(t) = µt−c(t):

µx(t) =
3∑

i=1
gi(t− c)Zi(t), (2)

where the coefficient gi(t − c) is dependent on the age x = t − c that is increasing with time t
for a given cohort born in year c.

Definition 2. For age-dependent factor (ADF) models, the force of mortality of cohort aged x
at time t is µx(t) defined as:

µx(t) =
3∑

i=1
Zi(t, x), (3)

where the factors Zi(t, x) are dependent on the age x through the age-dependent drift and
volatility terms in the SDE. Unlike ADC models, we separate the data into different age groups,
and the age x remains constant within one age group, which we will explain in detail in the
following sections.

2.1 ADC Models

The force of mortality µx(t) of cohort born in year c and aged x = t− c at time t is decomposed
as shown in Equation (2). The construction of the coefficient functions gi(t − c) follows one
example in Schrager (2006) as: 

g1(t− c) = e−a1(t−c),

g2(t− c) = e−a2(t−c−b2)2
,

g3(t− c) = ea3(t−c),

where a1, a2, a3, and b2 are positive constants, so that each factor affects different ages differ-
ently. Therefore, the coefficient g1(t− c) affects more of the younger ages within the age range,
g2(t − c) affects more of the middle ages, and g3(t − c) affects more of the older ages. For the
factors Zi(t), we allow them to be either a Gaussian process or a CIR process.

2.1.1 ADC Gaussian Model

The ADC Gaussian model is when we assume the factors Zi(t) follow a Gaussian process. We
let Z(t) be 3 × 1 vector of the three factors Zi(t), and a general form of the SDE is first defined
under the risk-neutral measure Q:

dZ(t) =KQ(ΘQ − Z(t))dt+ ΣdWQ
t

=

 kQ
1 0 0
0 kQ

2 0
0 0 kQ

3



 θQ

1
θQ

2
θQ

3

−

 Z1(t)
Z2(t)
Z3(t)


dt+

 σ1 0 0
0 σ2 0
0 0 σ3


 dWQ

1 (t)
dWQ

2 (t)
dWQ

3 (t)

 ,

where for i = 1, 2, 3, kQ
i are the transition parameters, θQ

i are the mean-reverting parameters, σi

are the volatility parameters, and WQ
i (t) are standard Brownian motions under the risk-neutral

measure Q.

Using the Feynman-Kac formula on Equation (1) with S as the short-hand notation for St−c(t, T )
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yields:

∂S

∂t
+

3∑
i=1

∂S

∂Zi
(kQ

i (θQ
i − Zi)) + 1

2

3∑
i=1

σ2
i

∂2S

∂Z2
i

− µt−c(t)S = 0. (4)

Meanwhile, from Equation (1) we also have:

∂S

∂t
=

∂A
∂t

+
3∑

i=1

∂Bi

∂t
Zi

S,
∂S

∂Zi
=BiS,

∂2S

∂Z2
i

=B2
i S.

Substituting into Equation (4) yields:

∂A

∂t
+

3∑
i=1

Bik
Q
i θ

Q
i + 1

2

3∑
i=1

σ2
iB

2
i +

3∑
i=1

[
∂Bi

∂t
−Bik

Q
i − gi(t− c)

]
Zi = 0. (5)

We want the coefficients of Zi and the constant term to be 0 for Equation (5) to hold. Therefore,
we derive the linear system of ODEs to solve for A(t, T ) and B(t, T ):

∂A

∂t
= −

3∑
i=1

Bik
Q
i θ

Q
i − 1

2

3∑
i=1

σ2
iB

2
i ,

∂Bi

∂t
=Bik

Q
i + gi(t− c) (for i = 1, 2, 3).

(6)

The terminal conditions are A(T, T ) = 0 and Bi(T, T ) = 0 for all models in this paper as
in Christensen et al. (2011) and Blackburn and Sherris (2013). Due to the existence of the
B2

i term and the g2(t − c) term, in general, an analytical solution to the above ODEs is not
available. Therefore, we solve the system of ODEs numerically using inbuilt ODE solvers which
comes with a variety of software applications, from which we select the ‘ode45()’ function in
MATLAB(R2021a) that enables us to obtain numerical solutions within a second.

2.1.2 ADC CIR Model

The SDE of Z(t) is:

dZ(t) =

 kQ
1 0 0
0 kQ

2 0
0 0 kQ

3



 θQ

1
θQ

2
θQ

3

−

 Z1(t)
Z2(t)
Z3(t)


dt

+

 σ1 0 0
0 σ2 0
0 0 σ3



√
Z1(t) 0 0
0

√
Z2(t) 0

0 0
√
Z3(t)


 dWQ

1 (t)
dWQ

2 (t)
dWQ

3 (t)


=KQ

[
ΘQ − Z(t)

]
dt+ ΣD

(
Z(t), t

)
dWQ

t ,

where D
(
Z(t), t

)
is a 3 × 3 diagonal matrix with

√
Zi(t) on the ith column and row.

Similar to the derivation in Subsection 2.1.1, using the Feynman-Kac formula on Equation (1),
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we obtain the following Riccati system of ODEs to solve for A(t, T ) and B(t, T ):

∂A

∂t
= −

3∑
i=1

Bik
Q
i θ

Q
i ,

∂Bi

∂t
= − 1

2σ
2
iB

2
i +Bik

Q
i + gi(t− c) (for i=1, 2, 3).

(7)

For the same reason, an analytical solution is not available due to the existence of the B2
i term

and the g2(t− c) term. Therefore, we also solve the system of ODEs numerically.

2.2 ADF Models

The force of mortality µx(t) of cohort aged x at time t is decomposed into the sum of age-
dependent factors Zi(t, x) as shown in Equation (3). We let Z(t, x) be a 3 × 1 vector of the
age-dependent factors Zi(t, x). The SDE of vector Z(t, x) under the Q measure is:

dZ(t, x) = ΛQ (t, x,Z(t, x)
)

dt+ Σ
(
t, x,Z(t, x)

)
dWQ

t ,

where the drift ΛQ(·) ∈ R3×1 and the volatility Σ(·) ∈ R3×3 are functions that depend on age
x, and WQ

t is a 3 × 1 standard Brownian motion. We also allow the factors Zi(t, x) to follow a
Gaussian process or a CIR process.

2.2.1 ADF Gaussian Model

We extend the structure by allowing the drift and volatility terms to be age-dependent on the
age index hx. For ADF models, we separate the data into two age groups, and the age index
hx remains constant within one age group and is equal to the starting age of this age group.
For example, if we split the data into two age groups [50, 79] and [80, 109], then hx = 50 when
x ∈ [50, 79], and hx = 80 when x ∈ [80, 109]. The drift ΛQ(·) has a linear relationship with
the age index hx, and the volatility changes exponentially with the age index hx and remains
positive with the exponential function:

ΛQ (t, x,Z(t, x)
)

=

 aQ
1 + bQ

1 hx 0 0
0 aQ

2 + bQ
2 hx 0

0 0 aQ
3 + bQ

3 hx



 θQ

1
θQ

2
θQ

3

−

 Z1(t, x)
Z2(t, x)
Z3(t, x)


 ,

Σ
(
t, x,Z(t, x)

)
=

 ec1+d1hx 0 0
0 ec2+d2hx 0
0 0 ec3+d3hx

 .
For simplicity, we set: aQ

1 + bQ
1 hx 0 0

0 aQ
2 + bQ

2 hx 0
0 0 aQ

3 + bQ
3 hx

 =

 kQ
1,x 0 0
0 kQ

2,x 0
0 0 kQ

3,x

 = KQ
x ,

where kQ
i,x, i = 1, 2, 3 represent the transition parameters. Since we keep the age within one age

group to be a constant hx, we can use the results for the factor loadings in Blackburn and Sherris
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(2013) and replace the constant parameters KQ and σ with our age-dependent parameters:

Bi(t, T, x) =1 − e−kQ
i,x(T −t)

−kQ
i,x

,

A(t, T, x) =1
2

3∑
i=1

(eci+dihx)2

(kQ
i,x)3

[
1
2

(
1 − e−2kQ

i,x(T −t)
)

− 2
(

1 − e−kQ
i,x(T −t)

)
+ kQ

i,x(T − t)
]
,

where kQ
i,x = aQ

i + bQ
i hx for i = 1, 2, 3.

2.2.2 ADF CIR Model

In the case of ADF CIR model, the drift and volatility terms are:

ΛQ (t, x,Z(t, x)
)

=

 aQ
1 + bQ

1 hx 0 0
0 aQ

2 + bQ
2 hx 0

0 0 aQ
3 + bQ

3 hx



 Z1(t, x)
Z2(t, x)
Z3(t, x)

−

 θQ
1
θQ

2
θQ

3


 ,

Σ
(
t, x,Z(t, x)

)
=

 ec1+d1hx 0 0
0 ec2+d2hx 0
0 0 ec3+d3hx



√
Z1(t, x) 0 0

0
√
Z2(t, x) 0

0 0
√
Z3(t, x)

 .
Within each age group with the same age index hx, we can also replace the constant parameters
in Geyer and Pichler (1999), Chen and Scott (2003) and Huang et al. (2022) with our age-
dependent parameters, which yields the factor loadings below:

Bi(t, T, x) = −
2
(
eγi,x(T −t) − 1

)
(
kQ

i,x + γi,x

) (
eγi,x(T −t) − 1

)
+ 2γi,x

,

A(t, T, x) =
3∑

i=1

2kQ
i,xθ

Q
i

(eci+dihx)2 ln



2γi,x exp


(

kQ
i,x+γi,x

)
(T −t)

2


(
kQ

i,x + γi,x

) (
eγi,x(T −t) − 1

)
+ 2γi,x


,

where γi,x =
√

(kQ
i,x)2 + 2(eci+dihx)2 for i = 1, 2, 3.

2.3 Change of Measure

We apply Girsanov’s theorem to change from the risk-neutral measure Q to the real-world
measure P , thereby accommodating historical mortality data over time. We have the following
relationship between the risk-neutral measure Q and the real-world measure P :

dWQ
t = dWP

t + Λtdt,

where WP
t is a 3 × 1 vector of three standard Brownian motions under the real-world measure

P , and Λt is the market price of risk. Following Blackburn and Sherris (2013) and Huang et al.
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(2022), we define the mortality risk premium to be:

Λt =
{
λ0 + λ1Z(t) for Gaussian models,
D
(
Z(t), t

)
λ0 for CIR models,

where Λt ∈ R3×1, λ0 ∈ R3×1 and λ1 ∈ R3×3.

Proposition 1. For ADC Gaussian model, after change of measure, the SDE of the factor Z(t)
can be represented as:

dZ(t) = KP
[
ΘP − Z(t)

]
dt+ ΣdWP

t ,

and for ADC CIR model, the SDE after change of measure can be represented as:

dZ(t) = KP
[
ΘP − Z(t)

]
dt+ ΣD

(
Z(t), t

)
dWP

t .

where KP is a 3 × 3 diagonal matrix, ΘP is a 3 × 1 vector, and WP
t is a 3 × 1 vector of three

standard Brownian motions under the real-world measure P . The detailed definitions of KP

and ΘP can be found in Appendix 1.

We assume both ΘQ and ΘP are zero vectors so that the Gaussian factor processes are mean-
reverting to zero, not mean-reverting, or random walks (Blackburn and Sherris, 2013), and the
CIR factor processes are mean-reverting to zero.

Proof. See Appendix 1. □

Proposition 2. For ADF models, we have more than one age group, and for cohorts in the
same age group that start with age x. For ADF Gaussian model, the SDE of the factor Z(t, x)
after change of measure can be represented as:

dZ(t, x) = KP
x

[
ΘP − Z(t, x)

]
dt+ ΣxdWP

t ,

and for ADC CIR model, the SDE after change of measure is represented as:

dZ(t, x) = KP
x

[
ΘP − Z(t, x)

]
dt+ ΣxD

(
Z(t, x), t

)
dWP

t .

For the same reason as in ADC models, we assume both ΘQ and ΘP are zero vectors. Since we
only have two age groups, we are able to represent the KP in terms of aP

i and bP
i :

KP
x =

 aP
1 + bP

1 hx 0 0
0 aP

2 + bP
2 hx 0

0 0 aP
3 + bP

3 hx

 .

Proof. See Appendix 1. □

2.4 Cohort Correlation

Cohort correlation can be easily modelled under the age dependence framework. We calculate
the correlation between the infinitesimal change dµx(t) of different cohorts to obtain the cohort
correlation between the change in the mortality rates at time t.
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2.4.1 ADC Gaussian Model

For ADC models, we need to first use Ito’s formula to obtain the SDE for the mortality intensities
dµx(t).

Lemma 1. For ADC Gaussian model, the SDE of the mortality intensity is represented as:

dµx(t) =
3∑

i=1
gi(t− c)

−
(
kP

i − g′
i(t− c)
gi(t− c)

)
Zi(t)dt+ σidWP

i (t)

 ,
and we can set λ̃i(t− c) =

(
kP

i − g′
i(t−c)

gi(t−c)

)
for notational convenience.

Proof. See Appendix 2. □

Proposition 3. For ADC Gaussian model, the instantaneous cohort correlation between cohort
m and n conditional on the information up to time t is:

ρ
(
dµm(t),dµn(t) | Ft

)
= σ2

1g1(m)g1(n) + σ2
2g2(m)g2(n) + σ2

3g3(m)g3(n)√
σ2

1g1(m)2 + σ2
2g2(m)2 + σ2

3g3(m)2
√
σ2

1g1(n)2 + σ2
2g2(n)2 + σ2

3g3(n)2
.

The cohort correlation is the same under the risk-neutral measure Q, since the change of measure
does not affect the correlation, and this applies to all four models.

Proof. From Lemma 1, the SDEs for the mortality intensities of two cohorts aged m and n at
the same time t are:

dµm(t) =
3∑

i=1
gi(m)[−λ̃i(t− c)Zi(t)dt+ σidWP

i (t)],

dµn(t) =
3∑

i=1
gi(n)[−λ̃i(t− c)Zi(t)dt+ σidWP

i (t)],

from which we obtain the cohort correlation by calculating the correlation between the two
SDEs. □

2.4.2 ADC CIR Model

Lemma 2. For ADC CIR model, the SDEs for the mortality intensities of two cohorts aged m
and n at the same time t are shown below:

dµm(t) =
3∑

i=1
gi(m)[−λ̃i(t− c)Zi(t)dt+ σi

√
Zi(t)dWP

i (t)],

dµn(t) =
3∑

i=1
gi(n)[−λ̃i(t− c)Zi(t)dt+ σi

√
Zi(t)dWP

i (t)].

Proof. See Appendix 2. □

Proposition 4. For ADC CIR model, the cohort correlation between cohorts aged m and n
conditional on the information up to time t is:

ρ
(
dµm(t),dµn(t) | Ft

)
= J(t,m, n)
K(t,m, n) ,

9



where

J(t,m, n) =σ2
1g1(m)g1(n)Z1(t) + σ2

2g2(m)g2(n)Z2(t) + σ2
3g3(m)g3(n)Z3(t),

K(t,m, n) =
√
σ2

1g1(m)2Z1(t) + σ2
2g2(m)2Z2(t) + σ2

3g3(m)2Z3(t)

×
√
σ2

1g1(n)2Z1(t) + σ2
2g2(n)2Z2(t) + σ2

3g3(n)2Z3(t).

Proof. Calculate the correlation between the SDEs in Lemma 2. □

Compared with the Gaussian model, the CIR model has the advantage that the correlations
are truly specific to cohorts as the term Zi(t) enters into the correlation equation and brings
in the dimension of time t. Therefore, for CIR models, we have specified both ages m,n and
the time t, making the cohort correlation expression time-inhomogeneous and specific to the
cohorts. Meanwhile, for the Gaussian model, the cohort correlation is time-homogeneous and
thus age-difference correlation.

2.4.3 ADF Gaussian Model

Lemma 3. For ADF Gaussian model, the SDEs for the mortality intensities of cohort aged m
and n at time t that belong to age groups with age indexes hm and hn are:

dµm(t) =
3∑

i=1
−(aP

i + bP
i hm)Zi(t, hm)dt+ eci+dihmdWP

i (t),

dµn(t) =
3∑

i=1
−(aP

i + bP
i hn)Zi(t, hn)dt+ eci+dihndWP

i (t).

Proof. Use Ito’s Lemma on Equation (3). □

Proposition 5. For ADF Gaussian model, the correlation between cohorts aged m and n con-
ditional on the information up to time t is:

ρ
(
dµm(t), dµn(t) | Ft

)
= e2c1+d1(m+n) + e2c2+d2(m+n) + e2c3+d3(m+n)√

e2(c1+d1m) + e2(c2+d2m) + e2(c3+d3m)
√
e2(c1+d1n) + e2(c2+d2n) + e2(c3+d3n)

.

Proof. Calculate the correlation between the SDEs in Lemma 3. We replace the age index hx

with the actual age x to smooth the inter-group cohort correlation. □

2.4.4 ADF CIR Model

Lemma 4. For ADF CIR model, the SDEs for the mortality intensities of cohorts aged m and
n at time t that belong to age groups with age indexes hm and hn are:

dµm(t) =
3∑

i=1
−(aP

i + bP
i hm)Zi(t, hm)dt+ eci+dihm

√
Zi(t, hm)dWP

i (t),

dµn(t) =
3∑

i=1
−(aP

i + bP
i hn)Zi(t, hn)dt+ eci+dihn

√
Zi(t, hn)dWP

i (t).

Proof. Use Ito’s Lemma on Equation (3). □

10



Proposition 6. For ADF CIR model, the correlation between cohorts aged m and n conditional
on the information up to time t is:

ρ
(
dµm(t),dµn(t) | Ft

)
= J(t,m, n)
K(t,m, n) ,

where

J(t,m, n) =e2c1+d1(m+n)
√
Z1(t,m)Z1(t, n) + e2c2+d2(m+n)

√
Z2(t,m)Z2(t, n)

+ e2c3+d3(m+n)
√
Z3(t,m)Z3(t, n),

K(t,m, n) =
√
e2(c1+d1m)Z1(t,m) + e2(c2+d2m)Z2(t,m) + e2(c3+d3m)Z3(t,m)

×
√
e2(c1+d1n)Z1(t, n) + e2(c2+d2n)Z2(t, n) + e2(c3+d3n)Z3(t, n).

Proof. Same as the proof in Proposition 5. □

The previous argument on the time-inhomogeneous cohort correlation of the CIR model holds
under the setting of ADF models.

3 Data: Construction of Incomplete Age-cohort Data

Mortality data for males from four countries: Australia, Denmark, UK, and USA obtained from
the Human Mortality Database (2022) (HMD), will be used in this research. The age range is
50-109, and the ranges of calendar years are 1921-2020 for Australia, 1920-2021 for Denmark,
1933-2020 for UK, and 1922-2020 for USA based on data availability.

We first obtain the age-period-based mortality data from the HMD, but age-cohort data is
required since we aim to model the survival probability for each cohort. Since the age of a
cohort i increases by 1 as the time moves forward by 1, we need to take along the diagonal of
the mortality table to obtain the age-cohort data. The survival probability Sx(t, T ) for a cohort
aged x at time t to survive to time T is:

Sx(t, T ) =
T −t∏
s=1

[1 − q(x+ s− 1, t+ s− 1)],

µ̄x(t, T ) = − 1
T − t

log[Sx(t, T )],

where q(x, t) is the probability of dying within one year for a cohort aged x at time t, and
µ̄x(t, T ) is the average force of mortality of the cohort from time t to T .
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Figure 1: Australian cohort average force of mortality for males born between 1871 and 1970,
from age 50 to 109.

We denote the range of the year of birth of cohorts as [c0, cmax], the range of age as [x0, xmax],
and thus the range of calendar years as [t0, tmax], where t0 = c0 + x0, tmax = cmax + xmax for
complete cohort data only, and tmax = cmax +x0 including the incomplete cohort data. We also
denote Nt = tmax − t0 + 1 the length of the time range, Nx = xmax − x0 + 1 the length of the
age range, and Nc = cmax − c0 + 1 the length of the cohort range.

Figure 1 is an example of the Australian cohort average force of mortality for males. As we can
see, the cohort axis represents the year of birth of the cohorts. From how we construct cohort
data, we know that the recent cohorts, for example, the cohort born in 1951 and aged 69 in 2020,
only have incomplete observation because they have not experienced the age 70-109. Therefore,
in Figure 1, there are triangle-shaped incomplete cohort data after the complete cohorts.

Figure 2: Australian cohort survival probabilities for males born between 1871 and 1970, from
age 50 to 109.

Figure 2 shows the full cohort data of survival probabilities that includes the triangle incomplete
cohort data. From the figure, we observe that the mortality has improved significantly for
cohorts born after 1911, especially around age 60-80. However, for these cohorts, we only have
incomplete observations. So if we only use complete cohort data to calibrate the model, we
will miss some important features in the recent mortality data and thus reduce the power of
forecasting. This leads us to use incomplete cohort data to calibrate the model, and the detailed
algorithm will be introduced in Section 4.
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4 Estimation Technique

We use the Kalman filter (Kalman, 1960) to estimate the parameters of the proposed models.
Kalman filtering can be used to estimate the parameters in the model by sequentially updating
the parameters and maximising the log-likelihood function, and this technique has been applied
in Christensen et al. (2011), Blackburn and Sherris (2013), Xu et al. (2020) and Huang et al.
(2022) to estimate the parameters under the affine framework. We propose an extension of this
technique which can accommodate incomplete cohort data to improve the model’s forecasting
ability. We also add regularisation to improve the goodness of fit to empirical cohort correlation.
Moreover, for ADF models, we separate two age groups and sum their log-likelihood, and we
include another regularisation term to improve the smoothness of survival curves at the joint
of the two age groups. The procedure is described below.

4.1 General Framework

Transforming Equation (1) into vector representation, the average force of mortality for all
proposed models can be represented as:

µ̄x(t, T ) = − 1
T − t

log
[
Sx(t, T )

]
= B′Zt + A, (8)

where B = − 1
T −t [B1(t, T ), B2(t, T ), B3(t, T )]′, A = − 1

T −tA(t, T ), and Zt = [Z1(t), Z2(t), Z3(t)]′.

We introduce measurement error εt into Equation (8) as in Blackburn and Sherris (2013) to
obtain the measurement equation, represented as:

µ̄x(t, T ) = B′Zt + A + εt.

Meanwhile, we discretise SDEs of Zt in Propositions 1 and 2 and introduce transition error ηt.
Since we have ΘP = 0, the state transition equation is represented as:

Zt = ΦZt−1 + ηt,

where Φ = e−KP . The error structure is represented as:(
ηt

εt

)
∼ N

( 0
0

)
,

(
Q 0
0 R

) ,
where Q and R are the covariance matrices of the transition error and the measurement error
respectively.

According to Christensen et al. (2011), the transition error matrix Q has the following repres-
entation for Gaussian models:

Q =
∫ ∆t

0
e−KP sΣΣ′e−(KP )′

sds,

where we set ∆t = 1 representing one year.

Meanwhile, for CIR models, the transition error matrix Q is a 3 × 3 time-dependent diagonal
matrix Q(t), and we set the ith element on the diagonal Qi,i(t) to be:

Qi,i(t) = Zi(t− 1) σ
2
i

kP
i

(
e−kP

i ∆t − e−2kP
i ∆t

)
,
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where we also set ∆t = 1. The above representation for CIR models is an approximation
because the distribution of Zi(t) conditional on Zi(t− 1) is a χ2 distribution (Cox et al., 1985).
The approach we are utilising approximates the exact distribution with a Gaussian distribution
that matches the first and second moments (Geyer and Pichler, 1999; Chen and Scott, 2003;
Huang et al., 2022).

For the measurement error matrix R, we use three parameters r1, r2, and rc to construct the
equation below to represent the increasing measurement error with age

R(t, T ) = 1
T − t

T −t∑
i=1

[
rc + r1e

r2i
]
,

where r1, r2 and rc only take positive values.

4.2 Kalman Filtering with Incomplete Cohort Data

Let Yt denote the information up to time t, yt the vector of the average force of mortality for the
cohort aged x at time t for all integer values of T − t, N the number of observations, and ψ the
set of parameters. The best-estimated state-factors and volatility matrix at time t conditional
on the information at time t− 1 are:

Zt|t−1 = E
[
Zt | Yt−1

]
= Φ(ψ)Zt−1,

Σt|t−1 = Φ(ψ)Σt−1Φ(ψ)′ +Q(ψ).

Then, use the information at time t to update the forecast:

Zt = E
[
Zt | Yt

]
= Zt|t−1 + Σt|t−1B(ψ)′F−1

t vt,

Σt = Σt|t−1 − Σt|t−1B(ψ)′F−1
t B(ψ)Σt|t−1,

where

vt = yt − E
[
yt | Yt−1

]
= yt − A(ψ) − B(ψ)Zt|t−1,

Ft = cov (vt) = B(ψ)Σt|t−1B(ψ)′ +R(ψ),

Φ(ψ) = e−KP , B(ψ) and A(ψ) are the factor loadings with the set of parameters ψ, Q(ψ) and
R(ψ) are the transition error and measurement error matrices with the set of parameters ψ.

If at some time t, we only have incomplete observation of yt of length m, then we shrink the
size of A(ψ), B(ψ), vt , Ft to m×1, m×3, m×1, m×m respectively by dropping the elements
in the last rows or columns and take the above updating step.

The updating procedure gives the log-likelihood function:

log l (y1, . . . , yT ;ψ) =
T∑

t=1

(
−N

2 log(2π) − 1
2 log (Ft) − 1

2v
′
tF

−1
t vt

)
,

and the optimal parameter set is the one that maximises the log-likelihood function. The
built-in MATLAB optimisation toolbox will be used to maximise the objective function.

4.3 Separate Age Groups for ADF Models

For ADF models, the factors ai + bihx and eci+dihx are constant if we do not separate the age
groups. We can set the age to be t − c for the ADC models to have the age increasing as we
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integrate, but this implies that we need to recalculate the survival probability for each 1-year
horizon with a different initial age, which will make the number of factors unreasonably high.

To this end, we consider ADF models where the factor dynamics depend on age groups, rather
than individual ages. The idea of age grouping is to form the ages with a similar level of error
into an age group to be estimated, and thus reduce the error and at the same time estimate
the age dependence relationship. Meanwhile, the number of age groups need to be sufficient to
reflect the age dependence, but also not too large to avoid introducing too many factors.

We decide to choose two age groups: age [50−79], and age [80−109] because the mean absolute
percentage error (MAPE) starts exploding from age 80 in our experiments. Within each age
group, the age index hx is assumed to remain constant as the starting age of this age group. For
example, a cohort aged x = 65 at time t belongs to the age group [50 − 79] and thus h65 = 50.
With two age groups, we have three factors for each age group so a total of six factors, which
is a reasonable number.

Then, Kalman filtering can be used to estimate the parameters for each age group. If we
implement the Kalman filter for each age group separately, it will result in different values of
ai, bi, ci, di across the age groups. Since our goal is to estimate the same values of ai, bi, ci, di

for both age groups, we propose the following approach.

We can set the objective function to be the sum of the likelihood functions for all age groups
and run the optimisation. The objective function is represented as:

∑
g∈G

log l (y1, . . . , yT ;ψ) =
∑
g∈G

T∑
t=1

wg

(
−N

2 log(2π) − 1
2 log (Ft) − 1

2v
′
tF

−1
t vt

)
,

where g ∈ G = {1, 2} is the notation for the two age groups, and wg represents the weight of
the log-likelihood for age group g. In this work, we set equal weight w1 = w2 = 1. The next
step involves running the Kalman filtering to maximise the aggregate likelihood function which
yields a set of constant ai, bi, ci, di for all age groups.

One constraint imposed in Kalman filtering is 0 < aP
i + bP

i hx < 1 for hx = 50 and 80 for ADF
models, i = 1, 2, 3, and 0 < kP < 1 for ADC models, so that the processes of Z(t, x) are finite
almost surely over the horizon considered.

4.3.1 Kalman Filtering with Regularisation

Regularisation of Cohort Correlation
The objective function is represented as:

obj = log l (y1, . . . , yT ;ψ) − λ

√√√√∑
i,j

(f̂(i, j) − f(i, j))2,

where f̂(i, j) is the estimated cohort correlation, f(i, j) is the empirical cohort correlation, and
λ is the regularisation parameter controlling the weight of the penalty.

For each combination of cohort and age, we only have one point observation of the instantaneous
force of mortality. Therefore, we first use the one-year probability of death qx at time t to
approximate the force of mortality µi

x(t) of cohort i aged x at time t. Then we take the difference
to approximate the dynamics, and the change in the force of mortality is ∆µi

x(t) = µi
x+1(t+1)−

µi
x(t). Finally, we use an 18-year horizon and approximate the empirical instantaneous cohort

correlation as the figure below illustrates. The cohorts selected to build the empirical correlation
matrix are those aged 50, 60, 70, 80 and 90 in the calendar year 2000, and the selected cohorts
along with their horizons are represented as the red lines in Figure 3.
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Figure 3: Illustration of calculating empirical cohort correlation: Red lines represent the
selected differenced mortality rates for calculating the correlation.

Regularisation of Survival Curve Smoothness for ADF Models
For ADF models, we are interested in improving the smoothness of the survival curves at
the joint point of the two age groups. Following the idea of Whittaker-Henderson smoothing
originated in Bohlmann (1899), Whittaker (1922) and Henderson (1924), we add an additional
penalty term to the objective function of ADF models as the following:

obj = log l (y1, . . . , yT ;ψ) − λ

√√√√∑
i,j

(f̂(i, j) − f(i, j))2 − ζ
t0+Nc−1∑

t=t0

t+Nx∑
T =t+3

∣∣∣∇2Ŝx0(t, T )
∣∣∣2 ,

where ζ controls the weight for the smoothness regularisation penalty, ∇ represents the backward
differencing operator ∇Ŝx(t, T ) = Ŝx(t, T )−Ŝx(t, T−1) and ∇2Ŝx(t, T ) = ∇Ŝx(t, T )−∇Ŝx(t, T−
1), where Ŝx(t, T ) is the estimated survival probability with the parameter set. We select
ζ = 100, 000 because the smoothness term is around the scale of 10−2.

5 Estimation Results

5.1 Model Estimation with Complete-Cohort Data

Firstly, we calibrate the proposed models only with the complete cohort data to compare with
the existing models in the literature. We use mean absolute percentage error (MAPE) to
evaluate the goodness of fit of the model. In Blackburn and Sherris (2013), Huang et al. (2022)
and Xu et al. (2020), the independent Gaussian affine mortality models that do not consider age
dependence usually have MAPE of around 20% − 40% at age 100, which we aim to reduce by
incorporating age dependence. The MAPEs for the survival probabilities of the four calibrated
models using Australian male data are shown below:
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Figure 4: MAPE for Australian male survival probabilities: Models estimated with complete
cohort data.

We can see that the MAPE at age 100 is around 3% for the ADC Gaussian, ADC CIR, and ADF
CIR models, and around 12% for the ADF Gaussian model. We compare our MAPEs at age 100
to the models in the literature whose maximum age is 100 and do not consider age dependence,
and we find that the MAPEs in our age-dependent models are much lower. The ADC CIR
model performs the best in the MAPE at age 109, which yields MAPE at around 8%, followed
by ADC Gaussian and ADF CIR models at around 35%, and by ADF Gaussian at around 80%.
The MAPEs at age 109 are higher than at age 100 because the survival probabilities to age
109 are almost equal to zero (that is 10−5), making a tiny absolute difference in the estimated
survival probability causing a large relative error. From these results, we illustrate that adding
age dependence to the mortality model can improve the goodness of fit at very old ages.

5.1.1 Forecast Out-of-Sample Survival Probabilities from Complete Cohort Data

We perform the out-of-sample test by simulating via the transition equation. This test is
performed for all models calibrated to Australian data. For each test, we perform the 1, 5, 10,
and 20 years ahead forecast, and compare the forecast with the incomplete empirical data. The
results are shown in Figure 5. The blue lines are the forecasted survival probabilities, and the
red lines are the empirical ones. As we move forward, we enter into the incomplete cohort part
of the data, so the red lines have missing values.
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(a) ADC Gaussian
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Figure 5: Forecasted vs empirical Australian male survival probabilities of out-of-sample
cohorts: Models estimated with complete cohort data.

From the above comparisons, we note that the models have good out-of-sample performance in
a short period horizon (that is 5 years ahead). However, all models underestimate the survival
probability to some extent, especially around age 60-80 in the 20-year ahead forecast. The
reason for the underestimation is that the youngest cohort that has complete observation was
born 109 years ago, while mortality has improved significantly in the last 109 years, especially
around age 60-80, as illustrated in Figure 2. This leads us to use incomplete cohort data to
calibrate the model, as we also discussed in Section 3.

5.2 Model Estimation with Manually Made Incomplete-Cohort Data

Before we use all the available incomplete cohort data to fit the model, we are interested in
testing the performance of the proposed method that shrinks the vector length in Kalman
filtering to incorporate incomplete cohort data. To achieve this, we intentionally make the
complete cohort data incomplete and perform the calibration, then compare the estimation
results with the empirical data to see how well the missing data can be replicated.

We perform this test with Australian data and intentionally remove a 20 × 20 triangle in the
complete data, as shown in Figure 6.
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Figure 6: Leaving out a 20 by 20 triangle from complete cohort data to perform out-of-sample
test.
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Figure 7: Estimated vs empirical Australian male survival probabilities: Models estimated
with manually made incomplete cohort data.
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Figure 7 shows the comparison between the estimation results from the model calibrated with
the intentionally-made incomplete data and the empirical complete data. From Figure 7, we
can see that our proposed approach yields a very good estimate of the missing values. The four
sub-figures are the cases when we have 1, 5, 10, and 20 intentionally made missing values. Even
in the case when we have 20 missing values, our approach still replicates the missing data well.
Therefore, our approach provides a good way to fill up the missing values in the triangle of the
incomplete cohort data.

5.3 Model Estimation with All Available Incomplete-Cohort Data

Having illustrated the effectiveness of our approach to include incomplete cohorts, we now use
all available incomplete cohort data to calibrate the model. The MAPEs of the four models
when we set λ = 1, 000 and ζ = 100, 000 and calibrated with Australian male mortality data
are shown in Figure 8.
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Figure 8: MAPE for Australian male survival probabilities: Incomplete cohort.

We can see that all models have very low MAPEs before age 90. At age 100, the ADC Gaussian,
ADF Gaussian, and ADF CIR models have very low MAPEs of around 8%. The ADC CIR
model has MAPE of around 30% at age 100, as opposed to being the best-performing model
using all the complete cohort data, but still indicates a good fit. At age 109, the ADC Gaussian
and ADF Gaussian models perform the best, while the ADC CIR and ADF CIR models have
higher MAPEs. But since the survival probabilities to age 109 are almost equal to zero (at
the level of 10−5) for our in-sample data, a slightly higher percentage error at age 109 does
not mean much deviation from the estimation. Generally speaking, the MAPEs at old ages
using incomplete cohort data are higher than those using complete cohort data because we
are including the more recent incomplete cohorts that have missing data at old ages. But the
MAPEs for all four models are still at a low level, indicating nice goodness of fit.

5.3.1 Forecast Out-of-Sample Survival Probabilities from All Available Incomplete
Cohort Data

Having illustrated the goodness of fit of the models calibrated to all available incomplete cohort
data, we then use the estimated parameters to forecast the future survival probabilities from
the youngest cohort we have. The idea is illustrated in Figure 9:
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Figure 9: Incomplete cohort data and illustration of out-of-sample forecast.

The forecasting results are shown in Figure 10 which presents 1, 5, 10, and 20 years ahead out-of-
sample forecasts. For all four models, we observe the mortality improvement since the survival
probabilities are increasing over time. It is observed that the Gaussian models predict higher
survival probabilities at the middle ages around 80 to 90, while the CIR models have a slightly
higher tail at age 109. Note that for a 20 year ahead of forecast, the corresponding cohorts are
people aged 30 now.
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(b) ADC CIR
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(c) ADF Gaussian
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Figure 10: Out-of-sample forecast of Australian male survival probabilities: Models estimated
with all available incomplete cohort data.
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6 Analysis on Cohort Correlation

With our estimated parameters and using the equations in Section 2.4, we can calculate the
estimated correlation between cohorts.

For the ADC Gaussian model, the cohort correlations for the cohorts aged 50, 60, 70, 80, and
90 in 2020 without regularisation are displayed in Table 1

Table 1: Estimated Australian male cohort correlations between ages 50 and 90 from ADC
Gaussian model, λ = 0.

50 60 70 80 90

50 1 0.995924 0.924646 0.692869 0.529981
60 0.995924 1 0.955199 0.754992 0.604218
70 0.924646 0.955199 1 0.915237 0.812978
80 0.692869 0.754992 0.915237 1 0.978672
90 0.529981 0.604218 0.812978 0.978672 1

norm 1.9730

Next we wish to add regularisation and make the estimated correlation matrix move toward the
empirical one. Table 2 shows the results in different countries when we increase the regularisation
parameter λ. We measure the goodness of fit to the empirical cohort correlation matrix by
Frobenius norm, which is the square root of the sum of squared absolute errors of all elements.

Table 2: Frobenius norm between empirical and estimated cohort correlations for different λ
in Australia, Denmark, UK, and USA.

ADC Gaussian 0 100 1,000

Australia 1.9730 1.5357 1.5021
Denmark 3.0147 2.8969 2.7325
UK 1.5770 1.5525 1.2703
USA 1.4447 1.3655 1.2740

ADC CIR 0 100 1,000

Australia 2.7650 2.7126 2.5312
Denmark 3.2246 3.1914 2.5928
UK 2.5116 2.1969 1.5992
USA 2.5840 2.5744 1.4328

ADF Gaussian 0 100 1,000

Australia 2.2861 2.2835 2.2573
Denmark 2.6526 2.5515 2.4479
UK 2.4338 2.3418 1.4221
USA 2.2764 2.1555 2.1300

ADF CIR 0 100 1,000

Australia 1.9761 1.9704 1.7233
Denmark 3.0622 3.0081 2.9776
UK 1.9470 1.9318 1.8995
USA 1.9583 1.9106 1.5886
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For all four countries, the scale of the likelihood is around 20, 000, and the scale of the Frobenius
norm is between 1 and 3. Therefore, we find that λ under 100 is too small to force the estimated
correlation matrix to move towards the empirical one. Meanwhile, λ = 10, 000 is too high and
will worsen the goodness of fit to the mortality data very much. Therefore, we conclude that λ
at the scale of 1, 000 is the most suitable and does help with reducing the Frobenius norm. We
also find that the ADC Gaussian model produces the lowest Frobenius norm for three of the
four countries except Denmark. We also note that the model that gives the highest Frobenius
norm differs for different countries.

Table 3-6 show the cohort correlation matrices of the four models in calendar year 2000 using
Australian male data when we set λ = 1, 000.

Table 3: Estimated Australian male cohort correlations between age 50 and 90 from ADC
Gaussian Model, λ = 1, 000.

50 60 70 80 90

50 1 0.999301 0.939419 0.448329 0.162052
60 0.999301 1 0.951232 0.480029 0.19714
70 0.939419 0.951232 1 0.727035 0.48961
80 0.448329 0.480029 0.727035 1 0.954633
90 0.162052 0.19714 0.48961 0.954633 1

norm 1.5021

Table 4: Estimated Australian male cohort correlations between age 50 and 90 from ADC CIR
Model, λ = 1, 000.

50 60 70 80 90

50 1 0.992099 0.962156 0.906185 0.830281
60 0.992099 1 0.988714 0.952054 0.893644
70 0.962156 0.988714 1 0.987122 0.950626
80 0.906185 0.952054 0.987122 1 0.987979
90 0.830281 0.893644 0.950626 0.987979 1

norm 2.5312

Table 5: Estimated Australian male cohort correlations between age 50 and 90 from ADF
Gaussian Model, λ = 1, 000.

50 60 70 80 90

50 1 0.983868 0.917261 0.79657 0.660012
60 0.983868 1 0.973715 0.891865 0.783748
70 0.917261 0.973715 1 0.971443 0.904608
80 0.79657 0.891865 0.971443 1 0.979911
90 0.660012 0.783748 0.904608 0.979911 1

norm 2.2573

The results of all four models support that the cohort correlation reduces as age difference
increases. The smallest correlation for a 40-year age difference is given by the ADC Gaussian
model at 0.1621, while the largest is given by the ADC CIR model at 0.8303.
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Table 6: Estimated Australian male cohort correlations between age 50 and 90 from ADF CIR
Model, λ = 1, 000.

50 60 70 80 90

50 1 0.975172 0.795162 0.52568 0.301748
60 0.975172 1 0.909699 0.700172 0.505138
70 0.795162 0.909699 1 0.932021 0.817651
80 0.52568 0.700172 0.932021 1 0.968788
90 0.301748 0.505138 0.817651 0.968788 1

norm 1.7233

7 Conclusions

This paper improves the affine mortality models by introducing age dependence into the model,
with both Gaussian and CIR settings. We propose two categories of models, namely age-
dependent coefficient (ADC) and age-dependent factor (ADF) models that incorporate age
dependence from the factor coefficients or the drift and volatility in the SDEs of the factors
respectively. We derive the SDEs of the factor loadings for the ADC models, and we obtain
the analytical solutions to the factor loadings for the ADF models. Our models are calibrated
to Australian, Denmark, UK, and USA mortality data from age 50 to age 109, and our results
show that adding age dependence into the model improves the goodness of fit of the models,
especially at old ages.

Age-cohort mortality models are useful in actuarial applications since insurance products are
issued to certain cohorts and are calculated on a cohort basis. However, existing papers utilising
age-cohort data to calibrate the model only use cohorts that have complete observation over the
age horizon, making a great amount of data from the most recent cohorts unused. Our research
extends the Kalman filtering algorithm to incorporate the more recent incomplete cohort data in
our model calibration, and we show that the out-of-sample forecasts improve compared to only
using the complete cohort data. In particular, it reduces the underestimation of the survival
probabilities around ages 70-80 compared with when only complete age-cohort data is used.
Furthermore, our estimated parameters for the ADF models also provide evidence that the
drift and volatilities increase with age.

Moreover, our age-dependent models allow us to derive closed-form solutions to the instant-
aneous cohort correlation for all four models because both the age and the calendar times are
specified. Also, the CIR models have the advantage of being time-inhomogeneous and thus are
truly cohort-specific. To better capture empirical cohort correlation, we regularise the parameter
estimation method by penalising the difference between the estimated and empirical cohort cor-
relations. We find that adding regularisation into parameter estimation produces more realistic
estimated cohort correlations. Furthermore, the multi-country analysis shows that in general,
the cohort correlation reduces as age difference increases. The results of this study can be used
for mutual mortality-sharing products that have multiple cohorts in the risk pool. This should
be presented in our future work.
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Appendix 1. Change of Measure

ADC Gaussian Model
Following Blackburn and Sherris (2013), we define the market price of risk Λt to be:

Λt = λ0 + λ1Z(t),

where Λt ∈ R3×1, λ0 ∈ R3×1 and λ1 ∈ R3×3. Therefore, by Girsanov’s theorem, we have the
following relationship between the risk-neutral measure Q and the real-world measure P :

dWQ
t = dWP

t + Λtdt,

where WP
t is a 3 × 1 vector of three standard Brownian motions under the real-world measure

P .

Then, the SDE of the factor Z(t) can be represented as:

dZ(t) =
[
KQΘQ −KQZ(t)

]
dt+ Σ

[
λ0 + λ1Z(t)

]
dt+ ΣdWP

t

=
[
KQΘQ + Σλ0

]
dt−

[
KQ − Σλ1

]
Z(t)dt+ ΣdWP

t

= (KQ − Σλ1)
[
(KQ − Σλ1)−1(KQΘQ + Σλ0) − Z(t)

]
dt+ ΣdWP

t

= KP
[
ΘP − Z(t)

]
dt+ ΣdWP

t ,

where KP = (KQ − Σλ1), and ΘP = (KQ − Σλ1)−1(KQΘQ + Σλ0). The above structure allows
us to assume both ΘQ and ΘP are equal to zero when we set λ0 to be a zero vector.

ADC CIR Model
Following Huang et al. (2022), the market price of risk Λt for the CIR model is:

Λt =D
(
Z(t), t

)
λ0,

dWQ
t =dWP

t + Λtdt,

where λ0 =

 λ0
1
λ0

2
λ0

3

 ∈ R3×1.

dZ(t) = KQ
[
ΘQ − Z(t)

]
dt+ ΣD

(
Z(t), t

) [
dWP

t + Λtdt
]

= KQ
[
ΘQ − Z(t)

]
dt+ ΣD

(
Z(t), t

) [
D
(
Z(t), t

)
λ0dt+ dWP

t

]
=
[
KQΘQ −KQZ(t) + ΣD2 (Z(t), t

)
λ0
]

dt+ ΣD
(
Z(t), t

)
dWP

t

=
[
KQΘQ −

(
KQ − ΣΛ0

)
Z(t)

]
dt+ ΣD

(
Z(t), t

)
dWP

t

=
(
KQ − ΣΛ0

) [
(KQ − ΣΛ0)−1KQΘQ − Z(t)

]
dt+ ΣD

(
Z(t), t

)
dWP

t

= KP
[
ΘP − Z(t)

]
dt+ ΣD

(
Z(t), t

)
dWP

t ,
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where

KP = KQ − ΣΛ0, ΘP = (KQ − ΣΛ0)−1KQΘQ = (KP )−1KQΘQ, Λ0 =

 λ0
1 0 0

0 λ0
2 0

0 0 λ0
3


ADF Gaussian Model
For cohorts in the same age group that start with age x, using the results in the ADC Gaussian
model, the SDE of the factor Z(t, x) can be represented as:

dZ(t, x) =
[
KQ

x ΘQ −KQ
x Z(t, x)

]
dt+ Σx

[
λ0 + λ1Z(t, x)

]
dt+ ΣxdWP

t

= (KQ
x − Σxλ

1)
[
(KQ

x − Σxλ
1)−1(KQ

x ΘQ + Σxλ
0) − Z(t, x)

]
dt+ ΣxdWP

t

= KP
x

[
ΘP − Z(t, x)

]
dt+ ΣxdWP

t .

where ΘP = (KQ
x − Σxλ

1)−1(KQ
x ΘQ + Σxλ

0). The above structure allows us to assume both
ΘQ and ΘP are equal to zero when we set λ0 = 0.

ADF CIR Model
Similar to the ADC CIR model, we set

Λt =D
(
Z(t, x), t

)
λ0

x,

dWQ
t =dWP

t + Λtdt,

where λ0
x =

 λ0
1,x

λ0
2,x

λ0
3,x

 ∈ R3×1, and it’s chosen to make Λt indifferent between the two age

groups.

Then, for cohorts in the same age group that start with age x,

dZ(t, x) = KQ
x

[
ΘQ − Z(t, x)

]
dt+ ΣxD

(
Z(t, x), t

) [
dWP

t + Λtdt
]

=
(
KQ

x − ΣxΛ0
x

) [
(KQ

x − ΣxΛ0
x)−1KQ

x ΘQ − Z(t, x)
]

dt+ ΣxD
(
Z(t, x), t

)
dWP

t

= KP
x

[
ΘP − Z(t, x)

]
dt+ ΣxD

(
Z(t, x), t

)
dWP

t ,

where

KP
x = KQ

x − ΣxΛ0
x, ΘP = (KP

x )−1KQ
x ΘQ, Λ0

x =

 λ0
1,x 0 0
0 λ0

2,x 0
0 0 λ0

3,x

 .
For the same reason as in the previous models, we assume both ΘQ and ΘP are equal to zero.
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Appendix 2. Derive SDEs of the Force of Mortality for ADC models

ADC Gaussian Model

For ADC Gaussian model, using Ito’s formula, the SDE for the mortality intensities of cohort
aged t− c at time t is:

dµt−c(t) = ∂µ

∂t
dt+

3∑
i=1

[
∂µ

∂Zi
dZi(t) + 1

2
∂2µ

∂Z2
i

(dZi(t))2
]
,

where

∂µ

∂t
=

3∑
i=1

∂gi(t− c)
∂t

Zi(t) (later we use g′
i(t− c) to represent ∂gi(t− c)

∂t
),

∂µ

∂Zi
=gi(t− c),

∂2µ

∂Z2
i

=0.

Therefore, the SDE of dµt−c(t) becomes:

dµt−c(t) =
3∑

i=1

∂gi(t− c)
∂t

Zi(t)dt+
3∑

i=1
gi(t− c)dZi(t)

=
3∑

i=1
g′

i(t− c)Zi(t)dt+ gi(t− c)[kP
i (θP

i − Zi(t))]dt+ gi(t− c)σidWP
i (t)

=
3∑

i=1
gi(t− c)

[g′
i(t− c)
gi(t− c)Zi(t) + [kP

i (θP
i − Zi(t))]

]
dt+ σidWP

i (t)



=
3∑

i=1
gi(t− c)


(
kP

i − g′
i(t− c)
gi(t− c)

) kP
i θ

P
i(

kP
i − g′

i(t−c)
gi(t−c)

) − Zi(t)

dt+ σidWP
i (t)


=

3∑
i=1

gi(t− c)

−
(
kP

i − g′
i(t− c)
gi(t− c)

)
Zi(t)dt+ σidWP

i (t)

 ,
where we can think kP

i θP
i(

kP
i −

g′
i
(t−c)

gi(t−c)

) as a mean reversion parameter, and it is 0 because we set

θP
i = 0, and we can set λ̃i(t− c) =

(
kP

i − g′
i(t−c)

gi(t−c)

)
to simplify the equations.

Therefore, the SDE is simplified to be:

dµx(t) =
3∑

i=1
gi(x)[−λ̃i(t− c)Zi(t)dt+ σidWP

i (t)].
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ADC CIR Model

Similarly, for the CIR model, the SDE becomes

dµt−c(t) =
3∑

i=1

∂gi(t− c)
∂t

Zi(t)dt+
3∑

i=1
gi(t− c)dZi(t)

=
3∑

i=1
g′

i(t− c)Zi(t)dt+ gi(t− c)[kP
i (θP

i − Zi(t))]dt+ gi(t− c)σi

√
Zi(t)dWP

i (t)

=
3∑

i=1
gi(t− c)

[g′
i(t− c)
gi(t− c)Zi(t) + [kP

i (θP
i − Zi(t))]

]
dt+ σi

√
Zi(t)dWP

i (t)



=
3∑

i=1
gi(t− c)


(
kP

i − g′
i(t− c)
gi(t− c)

) kP
i θ

P
i(

kP
i − g′

i(t−c)
gi(t−c)

) − Zi(t)

dt+ σi

√
Zi(t)dWP

i (t)


=

3∑
i=1

gi(t− c)

−
(
kP

i − g′
i(t− c)
gi(t− c)

)
Zi(t)dt+ σi

√
Zi(t)dWP

i (t)

 ,
where we can think kP

i θP
i(

kP
i −

g′
i
(t−c)

gi(t−c)

) as a mean reversion parameter, and it is 0 because we set

θP
i = 0. We can also set λ̃i(t− c) =

(
kP

i − g′
i(t−c)

gi(t−c)

)
to simplify the equations.

Therefore, the SDE is simplified to be:

dµx(t) =
3∑

i=1
gi(x)[−λ̃i(t− c)Zi(t)dt+ σi

√
Zi(t)dWP

i (t)].
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Appendix 3. Estimated Parameters with All Available Australian Incomplete-
Cohort Data

The estimated parameters of the four models with all incomplete Australian male mortality
data, λ = 1, 000, and ζ = 100, 000 for ADF models are in the table below.

Table 7: Estimated Parameters with Australian Data

AUS ADC Gaussian ADC CIR ADF Gaussian ADF CIR

a1 0.0730 5.10E-06 aP
1 -3.66E-05 5.57E-03

a2 0.0029 0.0014 aP
2 1.88E-02 9.24E-05

a3 1.36E-05 0.0318 aP
3 1.77E-03 3.14E-03

b2 91.8980 50.0911 bP
1 2.93E-04 1.05E-04

kP
1 1.07E-05 1.13E-03 bP

2 2.17E-06 7.75E-06
kP

2 2.88E-05 6.58E-04 bP
3 1.33E-04 -2.58E-05

kP
3 1.15E-02 5.53E-03 c1 -9.5987 -10.6575
kQ

1 -0.1989 -0.0157 c2 -6.1007 -3.4776
kQ

2 -0.0249 -0.1309 c3 -7.7135 -5.1581
kQ

3 -0.0835 -0.0648 d1 0.0512 0.1128
σ1 1.51E-03 0.0040 d2 0.0022 0.0151
σ2 1.33E-05 0.0030 d3 0.0045 0.0170
σ3 4.52E-07 0.0007 r1 4.44E-09 2.28E-09
r1 8.09E-17 1.86E-17 r2 0.2253 0.2368
r2 0.5105 0.6184 rc 4.37E-08 4.71E-08
rc 3.29E-07 2.43E-07 aQ

1 -2.98E-05 -1.99E-02
aQ

2 4.16E-02 3.44E-02
aQ

3 1.69E-03 3.53E-02
bQ

1 -7.83E-04 1.20E-03
bQ

2 1.82E-03 -3.41E-03
bQ

3 -1.62E-03 -3.05E-03

For ADC Gaussian model, b2 is between 50 and 109, indicating that the second factor affects
more of the middle age. While for ADC CIR model, b2 is very close to 50, indicating that the
second factor affects more of the younger age. For both ADF models, all the di are positive
values, indicating that the volatility increases with age. We also have five out of six bi positive,
while a positive bi means that the drift increases as age increases. The probabilities of negative
mortality rates from 106 simulations of the Australian male cohort born in 1971 are 0 and 0.0027
for ADC Gaussian and ADF Gaussian models respectively.
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