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The analysis of insurance and annuity products issued on multiple lives
requires the use of statistical models which account for lifetime dependence.
This work presents a Dirichlet Process Mixture-based approach which allows
to model dependent lifetimes within a group, such as married couples, ac-
counting for individual as well as group-specific covariates. The model is
analysed in a fully Bayesian setting, and illustrated to jointly model the life-
time of male-female couples in a portfolio of joint and last survivor annuities
of a Canadian life insurer. The inferential approach allows to account for
right censoring and left truncation, which are common features of data in
survival analysis. The model shows improved in-sample and out-of-sample
performance compared to traditional approaches assuming independent life-
times, and o↵ers additional insights into the determinants of the dependence
between lifetimes and their impact on joint and last survivor annuity prices.

Keywords: Dependent lifetimes, Survival Analysis, Dirichlet Process, Bayesian analy-
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1. Introduction

The pricing of insurance products issued on multiple lives, such as couple members,
requires the use of statistical models which can best predict their future lifetimes. The
assumption of independent lifetimes can sensibly reduce the model complexity and ease
the implementation of computational routines for pricing. However, this assumption is
not tenable in practice. For example, partners are likely to share the same socioeconomic
characteristics, which a↵ect their living standards and their exposure to similar risks
(Denuit and Cornet, 1999; Denuit et al., 2001).
Furthermore, the use of the simplistic independence assumption can have a material

impact on actuarial valuations. Denuit and Cornet (1999) use a Markov model where
the force of mortality depends on marital status, and show how the premium of a widow
pension annuity is 10 per cent lower compared to the case where lifetime independence
between husband and wife is assumed. Frees et al. (1996) employ a one-parameter copula
model, demonstrating the presence of a positive dependence between husband and wife
lifetimes, and show that the annuity value is 5 per cent lower compared to the case of
independent lifetimes.
A wealth of approaches have been proposed for the analysis of dependent lifetimes,

especially in the biostatistical and in the actuarial field, with copula models being among
the most employed ones. The aforementioned paper of Frees et al. (1996) analyses a
one-parameter Frank copula with Gompertz marginals for the lifetimes of the male and
the female within a couple. Carriere (2000) extends this analysis by considering other
marginal distributions for the future lifetime, as well as other types of copulas, and
Deresa et al. (2022) focus on the statistical properties of copula models in the presence
of left-truncation and dependent censoring. Youn and Shemyakin (1999) were the first
to account for covariates when modelling dependence. More precisely, they employ a
Gumbel copula with Weibull marginals, with dependence parameter which accounts for
the age-di↵erence between the spouses. They find that this feature is found to influence
the statistical association between husband and wife lifetimes. Dufresne et al. (2018)
use Gompertz marginals for the time to death of the male and of the female within a
couple, and observe how the gender of the eldest partner has also an influence on the
lifetime dependence.
An alternative to copulas is given by models using random e↵ects (or frailty compo-

nents, see Vaupel et al., 1979) to capture the dependence between lifetimes. This means
that conditional on a latent variable, then lifetimes are independently distributed. For
example, Yashin and Iachine (1995) develop a correlated gamma frailty model for the
analysis of the joint lifetime of Danish twins. In the field of biostatistics, a closely related
problem is given by modelling dependent time to event and time to censoring. Huang
and Wolfe (2002) address this problem by assuming a Cox proportional hazard model
for the hazard function of two random variables, whose linear term includes a normally
distributed log-frailty component. Gorfine and Hsu (2011) consider other parametric
functions for the distribution of the individual frailty.
The common limitation of the aforementioned copula and random e↵ect models is the

need of assuming a specific parametric form for the copula, or of the distribution of the
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random e↵ects. With reference to the latter approach, Ungolo and van den Heuvel (2022,
2024) overcome this potential misspecification issue by using a multivariate random
e↵ect with a discrete distribution and unknown number of levels. However, none of
these approaches account for covariates in the distribution of the random e↵ects used to
explain the dependence among time to events.
This paper contributes to the literature by proposing the Augmented Variable Dirichlet

Process Mixture (AVDPM) model, which briefly consists of a joint probability distribu-
tion of the time to events and of the group-specific covariates, where all these variables
are independently distributed, conditional on a multivariate latent variable, whose dis-
crete probability distribution is drawn from a Dirichlet Process. In this way, we can
flexibly account for the lifetime dependence among units within a group, and at the
same time we can account for those common covariates which capture the dependence
between lifetimes. The model parameters are estimated by means of a fully Bayesian
analysis, which may include the information available to the researcher. In addition, we
show how this approach can easily account for right censoring and left truncation.
This paper is organized as follows: Section 2 briefly introduces the Dirichlet Process

and the Dirichlet Process Mixture model, and Section 3 presents the AVDPM model
for the analysis of dependent lifetimes. Section 4 describes the empirical dataset used
for illustrating the model and the additional parametric features for the joint lifetime
of male-female couples and for the couple-specific covariates. Section 5 describes the
Bayesian inferential framework for the analysis of the AVDPM model. Section 6 presents
the results of the empirical analysis, and Section 7 shows how the model can be used
when pricing joint life and last survivor annuities, and how it compares with approaches
assuming independent lifetimes. Section 8 extends the AVDPM to the analysis of more
general groups of dependent lifetimes, and Section 9 concludes.

2. Dirichlet Processes and Dirichlet Process Mixtures

The Dirichlet Process (DP) was first introduced by Ferguson (1973) to specify a prob-
ability model for the random masses of a discrete distribution G. We thus say that G

follows a Dirichlet Process on the measurable space (�,G) if for any measurable partition
(W1, . . . ,Wq) of �, then

(G (W1) , . . . , G (Wq)) ⇠ Dirichlet (�G0 (W1) , . . . ,�G0 (Wq))

which we write G ⇠ DP (G0,�). Hence, a random draw from the DP yields an almost
sure discrete probability distribution over a countably infinite number of points drawn
independently from a base distribution denoted as G0, which specifies the DP together
with the concentration parameter � (see Gelman et al., 2013, Chapter 23 and De Iorio
et al., 2004). The � parameter captures the degree of shrinkage of G towards G0, or
in other words, the strength of the prior assumption G0 over G, analogous to the prior
assumption about the parameters of a probability distribution in Bayesian statistics.
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Sethuraman (1994) outlines a construction of G as a mixture distribution with a
countably infinite number of components, indexed by k:

G =
1X

k=1

⇡k��k , (2.1)

where �k
i.i.d.⇠ G0 for k = 1, 2, . . ., and ��k denotes the Dirac measure which assigns

unitary mass if � = �k and zero otherwise. The mixture weights ⇡k are randomly
generated using the so called stick breaking procedure (SBP), which rescales a set of i.i.d.

random variables  k

i.i.d.⇠ Beta (1,�) as follows:

⇡k ⌘ ⇡k ( 1:k) =  k

k�1Y

j=1

(1�  j) . (2.2)

where  1:k = ( 1, . . . , k). The “stick breaking” definition refers to the decreasing size
of the mixture weights as the index k increases. From this characterization we can
observe how a random draw from a Dirichlet Process yields a discrete distribution over
a countably infinite number of atoms from G0.
In this paper, we are interested in a flexible model for the probability distribution of

a random variable Ti, eventually multivariate, for the ith unit, whose density f (·;�, �i)
is indexed by a global parameter vector �, common to all units, and by a unit-specific
parameter vector �i. Unit-specific parameters, commonly referred as random e↵ects in
biostatistics, are introduced in a probability model to characterize the heterogeneity
among the units due to unobservable variables.
To achieve this goal, we assume that �i are drawn from a discrete distribution G which

follows a Dirichlet Process. Therefore, convolving the density of Ti with G ⇠ DP (G0,�),
yields a Dirichlet Process Mixture (DPM) model (Lo, 1984):

f (t | �, G) =

Z

⌦�

f (t | �, �) dG (�) =
1X

k=1

⇡kf (t | �, �k) (2.3)

where ⌦� denotes the sample space of �.
The DPM model hereby defined, allows for a more flexible distribution of Ti, which

can capture complex features in the data, such as fat tails and multimodality, as opposed
to the case where we specify a parametric model for �i, such as the Normal distribution.
This DP construction is flexible since despite its apparent nonparametric nature, it

regularizes the distribution of G towards a simple parametric form G0 through the
concentration parameter �.
From another perspective, a discrete distribution for �i ⇠ G is akin to the creation of

ties among the units, which can configure clusters of observations with the same values
of �. Let si = k to indicate that the ith unit belongs to the kth cluster characterized by
the parameter �⇤

k
. We use the superscript ⇤ to denote the common values of �i across the

n units in the sample. The clustering procedure, tuned by the parameter �, allows to
sequentially group the observations through a sampling process known in the literature
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as the Chinese restaurant process (see Heinz, 2014 for an illustration). In words, as
we observe the units in a sequence, these are more likely to be in a certain class with
a probability which depends on the number of units already therein, or to belong to a
newly created class with a probability which depends on � (see Blackwell and MacQueen,
1973 for a characterization in terms of the Pólya urn distribution).
The use of Dirichlet Processes can also be seen as a method to infer the number of

components of a mixture distribution, as opposed to strategies based on appropriate
model selection criteria (see Ungolo and van den Heuvel, 2022 for a discussion). Their
advantage is to avoid the specification and the estimation of several models with di↵erent
numbers of mixture components, which can be time consuming.
Summing up, the DPM model assumes the following data generating process for a

sample t1, . . . , tn:

⇡k | � ⇠ SBP (�) , k = 1, 2, . . . ; (2.4)

�
⇤
k
| G0

i.i.d.⇠ G0, k = 1, 2, . . . ;

si | ⇡1,⇡2, . . .
i.i.d.⇠ Discrete (⇡1,⇡2, . . .) , i = 1, . . . , n;

ti | �, �⇤si
i.i.d.⇠ f

�
ti | �, �⇤si

�
i = 1, . . . , n.

3. The Augmented Variable DPM model

This section introduces the Augmented Variable Dirichlet Process Mixture (AVDPM)
model for the analysis of non-exchangeable joint dependent lifetimes within a group,
where individual as well as group-specific covariates are available. For example, hus-
band and wife lifetimes are likely to be positively associated (Denuit et al., 2001), since
they share the same living conditions (e.g. diet, socioeconomic factors), are exposed to
similar risks (e.g. during a catastrophic event they are likely to be in the same place), or
eventually subject to the broken-heart syndrome (Parkes et al., 1969). Other examples
include the joint lifetimes of the primary and secondary head of an insurance policy,
families with husband, wife and one child, and so on. We describe the framework in the
context of a model for the joint lifetime of male-female couples. In Section 8 we discuss
how to extend the framework to more general cases of groups with di↵erent numbers of
exchangeable lifetimes.

Let Ti = (Ti,1, Ti,2), where Ti,1 and Ti,2 denote the random future lifetime of husband
and wife respectively for the ith couple, with individual-specific vector of characteristics
xi,1 and xi,2 (such as age, medical status, and so on) fixed and observable, and couple-
specific covariates vector Zi, which can include for example household income and geo-
demographic profile (an indicator of the socioeconomic status, see Ungolo et al., 2019),
which we treat as a random variable. Therefore, Zi includes any features which can
explain the statistical association between the lifetimes of the husband and of the wife.
For example, the household income can explain the heterogeneity in the longevity profile
of each couple member, since a wealthy couple can access better healthcare services all
else being equal, compared to a deprived one. Similarly, the geo-demographic profile,
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capturing the e↵ect of the area where the couple lives (e.g. urban or rural), can also be
a proxy for the socioeconomic characteristics of a couple.
For the ith couple we assume that conditional on a couple-specific bivariate random

e↵ect �i = (�i,1, �i,2), then Ti,1 and Ti,2 are independently distributed. This is for
example the approach followed in Ungolo and van den Heuvel (2022) when analyzing a
joint model for the time to event and the time to censoring, and by Ungolo and van den
Heuvel (2024) where they develop a joint model for the time to competing risk events.
The AVDPM model “augments” the joint probability distribution of (Ti,1, Ti,2) by

specifying a joint probability model for (Ti,1, Ti,2, Zi):

f (ti,1, ti,2, zi | xi,1, xi,2;�1,�2, G) (3.1)

=

Z

⌦�,⇣

2

4
2Y

j=1

f (ti,j | xi,j ;�j , �i,j)

3

5 f (zi | ⇣i) dG (�i,1, �i,2, ⇣i)

where �j is the parameter specific to the future lifetime density of the husband (j = 1) or
of the wife (j = 2), ⇣i is the couple-specific parameter vector indexing the distribution of
Zi (which can also include global parameters, i.e. not couple-specific) and ⌦�,⇣ denotes
the sample space of (�1, �2, ⇣). We generically denote by f the probability density
function of continuous variables, and the mass function of the discrete ones. Hence, we
model the multivariate distribution G as a random draw from a Dirichlet Process, and
write G ⇠ DP (G0,�).
For simplicity, we assume G0 = G0,� ⇥ G0,⇣ , that is � and ⇣ are independently dis-

tributed in the base distribution. This specification still induces a dependence between �
and ⇣ through the concentration parameter �. A further simplification can be to specify
G0,� = G0,�1 ⇥G0,�2 , leaving the distribution of (�i,1, �i,2, ⇣i) fully tuned by �. However,
the former approach allows to account for the prior information from the researcher about
the joint distribution of the parameters, including the statistical association between �1
and �2, as more reasonable for the analysis of male-female couples.
The joint distribution of equation (3.1) allows to capture the dependence between Ti,1

and Ti,2 and between (Ti,1, Ti,2) and Zi through the joint distribution of (�i,1, �i,2, ⇣i).
In this way, we distinguish between the covariates which directly a↵ect the individual
lifetimes x from those features which are couple-specific. For example, in the analysis
of couple member lifetimes, Deresa et al. (2022) include the couple specific covariates,
such as the age di↵erence, within the set of individual covariates. In this paper we do
not model the randomness of the individual covariates, since we are rather interested in
the e↵ect of the common covariates on the lifetime dependence.
An additional feature of this factorization, which enhances the flexibility of this joint

model is that we can specify di↵erent parametric models for Ti,1 and Ti,2.
As in equation (2.3), we can rewrite the density in (3.1) as a mixture distribution with
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an infinite number of components, obtaining the Augmented Variable DPM model:

f (ti,1, ti,2, zi | xi,1, xi,2;�1,�2, G) (3.2)

=
1X

k=1

⇡k

2

4
2Y

j=1

f
�
ti,j | xi,j ;�j , �⇤k,j

�
3

5 f (zi | ⇣⇤k)

where ⇡k (k = 1, 2, . . .) is the mixture weight characterized by the stick-breaking proce-
dure described in Section 2, and the superscript ⇤ denotes the unique values of �i,j and
⇣i.
The flexibility of this factorization allows to understand the impact of Zi on the

distribution of Ti,j (or of (Ti,1, Ti,2)) by using standard probability calculus:

f
�
ti,j | xi,j , zi;�j , �⇤·,j , ⇣⇤·

�
=

1X

k=1

⇡kf
�
ti,j | xi,j ;�j , �⇤k,j

�
f (zi | ⇣⇤k)

1X

k=1

⇡kf (zi | ⇣⇤k)
. (3.3)

where �⇤·,j =
⇣
�
⇤
1,j

, �
⇤
2,j

, . . .

⌘
and ⇣⇤· = (⇣⇤

1
, ⇣

⇤
2
, . . .).

In a similar fashion, we can derive the probability distribution of the time to death
of the last survivor T

1,2
= max (T1, T2). We omit the subscript i for notational conve-

nience. The corresponding survivor function, simplistically denoted as Sx1,x2 (t | z) is
useful especially in actuarial calculations, as we illustrate in Section 7:

Sx1,x2 (t | z) := P
⇣
T
1,2

> t | x1, x2, z
⌘
= 1� P (T1 < t, T2 < t | x1, x2, z) , (3.4)

where

P (T1 < t, T2 < t | x1, x2, z) =

1X

k=1

⇡kf (z | ⇣⇤
k
)

2

4
2Y

j=1

Z
t

0

f
�
u | xj ;�j , �⇤k,j

�
du

3

5

1X

k=1

⇡kf (z | ⇣⇤
k
)

Analogous formula can be used for the joint life survival probability, denoted as Sx1,x2 (t | z),
characterizing the random variable T1,2 = min (T1, T2).
The DPM naturally clusters each couple into di↵erent classes. If we say that W is the

random class allocation for a couple, we can calculate the probability of belonging to a
certain class k conditional on the value of Z:

P (W = k | Z = z) =
⇡kf (z; ⇣⇤

k
)

1X

h=1

⇡hf (z; ⇣⇤
h
)

. (3.5)
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In this way, we can understand how the various couples belonging to the kth class can
share the same mortality profile and husband-wife mortality dependence relationships.
Compared to earlier literature in the field, the AVDPM model extends the mixture

model analysed by Ungolo and van den Heuvel (2022), since the authors consider a
discrete random component (independent of Z) with unknown number of levels, chosen
by means of a model selection procedure. The limitation of this approach is the need of
estimating several models, which can be particularly time consuming for larger datasets
as mentioned in Section 2. Ungolo and van den Heuvel (2024) overcome this issue by
assuming that the random component is drawn from a discrete distribution following a
Dirichlet Process as in this paper. However, their joint lifetime model does not account
for the statistical association among competing risks due to common factors.
To the best of our knowledge, the aforementioned papers (Section 1) of Youn and

Shemyakin (1999) and Dufresne et al. (2018) are the sole contributions accounting for
the common variable Z (the absolute value of the age di↵erence between the spouses
and gender of the oldest partner) within the copula dependence parameter.
The factorization implied by the AVDPM model can also find application for the

analysis of the time to competing causes of death, where Z accounts for those genetic
factors a↵ecting the dependence between the causes. Alternatively, the AVDPM model
can be used to jointly model dependent frequency and/or severity of claims in non-life
and health insurance by type of event or line of business, without necessarily specifying a
strong parametric assumption on the dependence, as can be the case with copula models.

4. Data and parametric model

We showcase the approach outlined in Section 3 to the analysis of the Canadian life
insurance dataset initially studied by Frees et al. (1996), and then by Deresa et al. (2022)
and Dufresne et al. (2018) among others. After some data processing operations, briefly
described in Section 1 of the Supplementary Material, we have information about 13,482
joint and last-survivor annuity contracts in force between 29/12/1988 and 31/12/1993
(the observation period).
Specifically, we focus on a joint model for the lifetime distribution of individual mem-

bers of male-female couples, for which we observe the starting date of the contract, the
date of birth (thus their age at the start of the contract) and the date of death if any
couple member dies within the observation period. This dataset contains a large number
of censored units: indeed, we only observe 1,424 deaths among males and 500 deaths
among females, while the remaining units are all right censored. In addition, most cou-
ples’ lifetime data are subject to left truncation. This means that we are able to observe
the annuity contract only if both couple members are alive at the start of the observa-
tional period. Right censoring and left truncation must then be taken into account when
deriving the likelihood function of the observations, as we show in Section 5.
In this dataset, the age at the start of the contract is the only individual-specific

covariate (average of 65.54 for males and 62.64 for females), which we denote as xi,j for
the jth member of the ith couple. As in Dufresne et al. (2018) and Youn and Shemyakin
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(1999), we consider also the age-di↵erence (mean of 2.91 years) through the random
variable Z

A

i
= ln (|Xi,1 �Xi,2|) and the indicator variable Z

M

i
, which is equal to 1 if

the male is older than the female and 0 otherwise (the male is the oldest policyholder
in 76.9% of the couples in the dataset). According to their analysis, a model including
these two variables captures some additional features of the association between the
lifetime of the husband and of the wife. More precisely, they claim that the larger the
age di↵erence, the lower the lifetime dependence. In addition, Dufresne et al. (2018)
observe how the ZM

i
covariate has an influence in the relationship between husband and

wife, consequently a↵ecting their lifetime dependence. Therefore, we will consider Z
A

i

and Z
M

i
as the two elements of the couple-specific covariates, Zi =

�
Z

A

i
, Z

M

i

�
.

We randomly split the dataset into a training set, corresponding to 75% of the policy-
holders within the dataset (10,112 units), and use the remaining 25% to assess the out
of sample performance of the model (3,370 units).
Following Frees et al. (1996) and Carriere (2000) we specify a Gompertz-type hazard

function to characterize the probability distribution of the male (j = 1) and the female
(j = 2) lifetime within the ith policy:

µ (t | xi,j ;↵j ,�j , �i,j) = exp (↵j + �j (xi,j � x+ t) + �i,j) , (4.1)

where x = 70 is set in order to decrease the posterior correlation between ↵j and �j ,
which improves the convergence of the MCMC sampler. The choice of x is based on
an indicative average value of x as calculated across males and females. For example,
Ungolo et al. (2020) set x = 77.5 since they analysed a pension scheme dataset with
older scheme members.
We consider the male-female lifetime dependence by assuming a couple-specific frailty

term exp (�i,j), and a joint model for (�i,1, �i,2). The parameter ↵j denotes the log-
baseline hazard function and �j measures the log-linear increase in the hazard function
due to the individual age. The probability density function of Ti,j can be written as:

f (t | xi,j ;↵j ,�j , �i,j) = exp


�
Z

t

0

µ (s | xi,j ;↵j ,�j , �i,j) ds

�
µ (t | xi,j ;↵j ,�j , �i,j) . (4.2)

For the couple-specific covariates, we assume that Z
A

i
⇠ N

�
⇣
A

i
,�

2

A

�
and Z

M

i
⇠

Bernoulli
�
⇣
M

i

�
. The density of Ti,j as a function of xi,j and zi follows from equation

(3.3). In this way, we can easily observe how the resulting joint model for (Ti,1, Ti,2, Zi)
has an additional layer of flexibility, since the e↵ect of Zi on the hazard function (through
dependent �i,j , ⇣Ai and ⇣M

i
) is not necessarily proportional nor monotone.

The ith couple-specific parameters are drawn from a multivariate random discrete
distribution G,

�
�i,1, �i,2, ⇣

A

i
, ⇣

M

i

�
⇠ G, where G is a draw from a Dirichlet Process with

concentration parameter � and base measure G0:

G0 = g (�i,1, �i,2 | 0,⌃�)| {z }
MVN(0, ⌃�)

g
�
⇣
A

i | mA, s
2

A

�
| {z }

N(mA, s
2
A)

g
�
⇣
M

i | 13.31, 4.44
�

| {z }
Beta(13.31, 4.44)

. (4.3)

This model for the base distribution is motivated by the need to carry out a com-
putationally e�cient Bayesian inference by exploiting the conditional conjugacy of the
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parameters where possible, whilst keeping the model simple and flexible enough to cap-
ture the complex features of the data.
The parameters of the Beta distribution for ⇣M

i
follows from an elicitation process

where we specify a weakly informative distribution. Indeed, we expect that for most
contracts the male couple member is the oldest in the couple, therefore we set ⇣M

i
to

have mean 0.75 and standard deviation equal to 0.1 in the base distribution. In our
analysis we have also tried a prior distribution with a standard deviation of 0.05, which
did not significantly impact the final results in terms of the convergence of the chain
towards a stationary distribution, posterior distribution of the other parameters, and
cluster allocation of the couples.
For all the other parameters of the base distribution, we assume these are random to

enhance the robustness of the inference, as from the prior elicitation process and the
sensitivity analysis described in Section 5.1.

5. Inference

First of all, we approximate the mixture distribution of equation (3.2) by setting an
upper bound K = 25 to the number of mixture components as in Ungolo and van
den Heuvel (2024), which results in the truncated SBP of Ishwaran and James (2001).
This simplifies the implementation of the Markov Chain Monte Carlo (MCMC) sampler
compared to the use of the bound-free slice samplers of Walker (2007) and Kalli et al.
(2011), or the retrospective sampler of Papaspiliopoulos and Roberts (2008).

5.1. Prior elicitation, specification and sensitivity

In this paper we carefully consider the specification of the prior distribution of the
parameters. This is motivated by the number of layers of the hierarchical model hereby
proposed, and the large number of coarsened observations in this dataset, which can
hinder the convergence of any MCMC scheme, and cause poor mixing whenever di↵erent
starting values are used.
As already observed by Dunson (2010) and Beraha et al. (2023), specifying base dis-

tributions with large variances, implies that all couples will tend to be allocated in the
same mixture component, which does not capture the heterogeneity in the data.
Therefore, we specify at least weakly informative prior distributions, especially for the

lowest levels of the model. Where possible, we assume that the parameters (or groups
of parameters) are pairwise independently distributed, and use conditionally conjugate
prior distributions in order to facilitate the computation of the posterior distribution.
Previous analyses of mixtures involving proportional hazard models (see for example

Ungolo et al., 2020 and Ungolo and van den Heuvel, 2022) show how three components
can be useful to explain the data. Given the sample size of this dataset and the di-
mensionality of G, we specify a conjugate Gamma(6, 12) prior for � (Escobar and West,
1995), which yields a right-skewed prior probability distribution for the number of oc-
cupied components (the number of classes with at least one observation) with mean 5.5
and mode equal to 4. Conversely, a lesser informative Gamma(1, 1) prior increases the
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number of occupied components a priori and a posteriori, without any impact on the
posterior inference for the other parameters.
The parameter ⌃� follows a conjugate Inverse-Wishart distribution with positive-

definite scale matrix � ⇥
"
1 0.6

0.6 1

#
and 5 degrees of freedom. We set the scalar � = 2

in order to strengthen the prior assumption towards a covariance matrix which induces
a positive correlation between �i,1 and �i,2. In our prior-posterior sensitivity analysis,
we notice how the posterior distribution of ⌃� turns out to be sensitive with respect to
�, hence the specification of an informative prior distribution plays an important role in
the inference for this parameter. The posterior distribution for all other parameters is
robust with respect to this assumption.
The location parameter of ⇣A

i
, mA is drawn from a conjugate Normal distribution

with mean 3 and variance 0.5, while the scale s
2

A
is assumed to follow an Inverse-

Gamma(3, 0.5) distribution, ensuring that mean and variance of s2
A

are defined. Our
sensitivity analysis, which used a less informative prior on these two parameters, showed
how the posterior distribution of mA is robust with respect to the specification of a
weaker prior distribution with a larger variance, while the opposite holds for s2

A
. In the

latter case, we observe a shift in the posterior distribution for mA towards larger values,
and the posterior density of of s2

A
is very flat and centered towards very large values.

This evidence suggests the necessity to carefully specify the prior distribution for s2
A
.

We complete the full specification of the prior distribution by assuming that exp (↵j) ⇠
Gamma (1, 1) (which ensures conditional prior-posterior conjugacy) and �j (j = 1, 2)
follows a priori a truncated normal distribution with mean 0.1, variance 0.25, bounded
below at zero to ensure biologically reasonable mortality rates, which should increase
with age. The location parameter was chosen on the basis of previous analyses of similar
models, which estimated a value of � around 0.10 (see for example Ungolo et al., 2020
and Richards, 2008). Finally, we assume that �2

A
⇠ Inv-Gamma (2, 1).

Our sensitivity analysis shows how the posterior inference for � and �
2

A
is robust

with respect to the specification of weaker prior distributions, and that the posterior
distribution of the other model parameters are una↵ected by this. On the other hand,
the posterior distribution for ↵ can be a↵ected by its posterior correlation with the
parameters �⇤

k,1
and �⇤

k,2
, as we discuss in Section 6.

5.2. Likelihood

Let di,j denote an indicator variable which is equal to 1 if the male (j = 1) or the female
couple member (j = 2) is observed to die throughout the observational study and 0
otherwise (hence, the lifetime variable is right censored). We assume that the censoring
mechanism can be ignored, since the censoring event for a couple member is caused by
the end of the observation period (Type I censoring). Furthermore, we assume that
the individual times to event for each couple member are independently distributed,
conditional on the covariates and the multivariate random e↵ect.
As discussed in Section 4, data are subject to left truncation, since each contract is

observable upon survival of both members at the start of the study. The level of left

11



truncation for each couple is denoted by the variable ai, denoting the time (in years)
from the start of the contract to the start of the observational study. This means that
we need to work with the lifetime density function conditional on both couple members
being alive at the beginning of the observation period. Note that ai is equal to zero if
the contract starts during the observation period.
Let t = (t1,1, t1,2, . . . , tn,1, tn,2), x = (xi,1, xi,2, . . . , xn,1, xn,2), d = (d1,1, d1,2, . . . , dn,1, dn,2),

zA =
�
z
A

1
, . . . , z

A
n

�
, zM =

�
z
M

1
, . . . , z

M
n

�
, a = (a1, . . . , an), ↵ = (↵1,↵2), � = (�1,�2),

 = ( 1, . . . , K�1), �⇤ =
⇣
�
⇤
1,1

, �
⇤
1,2

, . . . , �
⇤
K,2

⌘
, ⇣A⇤ =

�
⇣
A⇤
1

, . . . , ⇣
A⇤
K

�
and ⇣

M⇤ =
�
⇣
M⇤
1

, . . . , ⇣
M⇤
K

�
. We introduce the latent indicator variable si,k, which is equal to 1

if the ith couple belongs to the kth class, and zero otherwise. This facilitates an e�cient
computation of the posterior distribution (Müller et al., 1996).
The likelihood function of the parameters conditional on t, x, a, d, zA, zM and the

latent allocation variable s = (s1,1, . . . , sn,K) is given by:

L
�
↵,�, �

⇤
, ⇣

A⇤
, ⇣

M⇤
,�

2

A, | t,x,d,a, zA, zM, s
�

(5.1)
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⇡
si,k

k

(2

4
2Y

j=1

f
�
ti,j | xi,j , di,j , ai;↵j ,�j , �

⇤
k,j

�
3

5 f
�
z
A

i | ⇣A⇤
k

,�
2

A

� �
⇣
M⇤
k

�zMi �1� ⇣
M⇤
k

�1�z
M
i

)
si,k

where f
�
· | ⇣A⇤

k
,�

2

A

�
denotes the probability density function of the normal distribution

with mean ⇣
A⇤
k

and variance �2
A
, and

�
⇣
M⇤
k

�zMi �1� ⇣
M⇤
k

�1�z
M
i is the probability mass

function of the Bernoulli-distributed random variable Z
M

i
with parameter ⇣M⇤

k
. The

jth couple member likelihood contribution f

⇣
ti,j | xi,j , di,j , ai;↵j ,�j , �

⇤
k,j

⌘
is derived to

account for right censoring and left truncation by simple algebra as follows:

f
�
ti,j | xi,j , di,j , ai;↵j ,�j , �

⇤
k,j

�

=
exp

h
�
R
ti,j+ai

0
µ

⇣
s | xi,j ;↵j ,�j , �

⇤
k,j

⌘
ds
i
µ

⇣
ti,j + ai | xi,j ;↵j ,�j , �

⇤
k,j

⌘
di,j

exp
h
�
R
ai

0
µ

⇣
q | xi,j ;↵j ,�j , �

⇤
k,j

⌘
dq
i (5.2)

where the numerator is the likelihood contribution for a non-informative right-censored
observation, which is divided by the probability of being alive between policy inception
(time 0) until the start of the observation period. Given the specification of the hazard
function in equation (4.1), the logarithm of the likelihood contribution is given by:

ln f
�
ti,j | xi,j , di,j , ai;↵j ,�j , �

⇤
k,j

�

= �exp [�j (ti,j + ai)]� exp (�jai)

�j
exp

�
↵j + �j (xi,j � x̄) + �

⇤
k,j

�

+ di,j

�
↵j + �j (xi,j � x̄+ ti,j + ai) + �

⇤
k,j

�
. (5.3)
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5.3. Posterior distribution

The (unnormalized) posterior distribution follows as the product of the likelihood and
the prior distribution. In this latter, we assume that all parameters are pairwise inde-
pendently distributed, with densities generically denoted by p:

p
�
↵,�, �

⇤
, ⇣

A⇤
, ⇣

M⇤
,�

2

A,⌃� ,mA, s
2

A,�, | t,x,d,a, zA, zM, s
�

(5.4)
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In order to e�ciently learn the posterior distribution of equation (5.4), we propose to
first Data-Augment the dataset of the missing value of the latent class si,k, and then use
a blocked Gibbs sampler scheme (Ishwaran and James, 2001), consisting of a sequential
draws of the parameters (exploiting their conditional conjugacy where possible). The
steps of this Data Augmentation-Blocked Markov Chain Monte Carlo (MCMC) sampler
are detailed in Appendix A. We implement this sampler in R (R Core Team, 2013) in
order to have a full control over the MCMC sampling process. The code implementing
the sampler is available at the GitHub repository https://github.com/ungolof/AVDPM.

6. Results

6.1. Convergence

The steps of the MCMC sampler devised for the analysis of the posterior distribution
outlined in Section 5.3 are iterated 100,000 times. We discard the first 80,000 iterations
(burn-in) and we thin the chain every 20 draws to reduce the degree of autocorrelation
between iterations, resulting in a final posterior sample of 1,000 draws. We run the
sampler four times, based on sparse starting values, in order to assess the mixing of the
chains and the convergence of the MCMC sampler towards a stationary distribution.
The trace plots of the parameters show that the chains converge towards a stationary

distribution for all parameters, except for �⇤
k,1

, �⇤
k,2

, ⇣A⇤
k

, ⇣M⇤
k

and ⇡k for those mixture
components where few units are allocated at each iteration of the MCMC sampler.
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Furthermore, the overlap of the four trace plots for each parameter show a good
mixing for all of those, and the marginal densities are all unimodal with similar location.
The chains for the parameter ↵j converge towards a stationary distribution, although
they do not mix with one another. Nevertheless, the marginal posterior densities for
this parameter from all the chains do not di↵er significantly. This result is likely to be
connected with the correlation in the posterior distribution between ↵j and �k,j . We

do not analyze these two aspects for
⇣
�
⇤
k,1

, �
⇤
k,2

, ⇣
A⇤
k

, ⇣
M⇤
k

⌘
due to the label switching

problem which characterizes mixture distributions as discussed in Betancourt (2017),
Ungolo et al. (2020) and Ungolo and van den Heuvel (2022). This issue a↵ects solely the
interpretation of the groups from the results of one chain compared to another. Indeed,
when looking at the occupancy of the classes across iterations, we note a tendency of
the sampler to have a similar number of units. Nevertheless, this does not represent an
issue when making predictions, or when the purpose is to learn the global parameters,
such as �j .
The overall convergence of the MCMC sampler is further analysed through the trace

plot of the clustering entropy shown in Figure 6.1 for two chains, as used for the analysis
of mixture models (Beraha et al., 2023). The entropy is calculated at the `th iteration
as follows:

Entropy (`) =
KX

k=1

n
(`)

k
· lnn(`)

k
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Figure 6.1: Trace plot of the Entropy across all iterations of the MCMC sampler for two
di↵erent runs.

We note that all chains converge towards the same value. This is also observed when
these chains are compared to those obtainable under the di↵erent prior distributions
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discussed in Section 5.1. This is an indication of the stability of the allocation of each
couple to the groups characterized by the mixture components.

6.2. Model analysis

Model results

The analysis of the histogram of the number of occupied classes across all iterations
shows that a minimum of 8 and a maximum of 24 mixture components have at least
one observation (Figure 2.1 in the Supplementary material). The posterior mean of the
number of couples allocated in each mixture component show that only six of these
contain at least 2.5% (253 couples) of the total number of observations, and the sum of
these six components totals 9,458 observations (93.5% of the total). These two results
show that a truncation level of K = 25 on the number of mixtures is su�cient to
approximate the joint distribution of

�
Ti,1, Ti,2, Z

A

i
, Z

M

i

�
.

Table 6.1 shows the summary statistics of the posterior distribution of the most rele-
vant parameters for the AVDPM approach of this paper. The log-baseline mortality (↵)
for females is lower than for males, as we can see also from the value of the 95% credible
interval extremes which do not overlap. On the other hand, the female members of the
couple are characterized by a larger sensitivity of the hazard function with respect to
the age as measured by the parameter � compared to males.
The six classes which cover more than 95% of the total observations are character-

ized by di↵erent values of the class-specific parameters
⇣
�
⇤
k,1

, �
⇤
k,2

, ⇣
A⇤
k

, ⇣
M⇤
k

⌘
for k =

1, 2, 3, 4, 6, 9. These parameters, which capture the level of heterogeneity among the ob-
servations, allow to obtain hazard functions which can take a flexible shape, and where
the e↵ect of the other covariates is not necessarily proportional, nor monotone as we can
see for the age di↵erence in Figure 6.2. For example, at younger ages, when the female is
years older than the male couple member, the hazard function for the females is higher
compared to the case of an age di↵erence of two years, while this relationship reverts
around age 75.
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Table 6.1: Posterior summaries of ↵, �, �⇤
k
, ⇣A⇤

k
, ⇣M⇤

k
, ⇡k for k = 1, 2, 3, 4, 6, 9 and �.

Parameter Mean 95% Cred. Int. Parameter Mean 95% Cred. Int.
↵1 �3.45 (�3.71, �3.27) ↵2 �4.53 (�4.90, �4.12)
�1 0.1064 (0.0963; 0.1160) �2 0.1440 (0.1274; 0.1614)
�
⇤
1,1

�1.00 (�1.75; �0.53) �
⇤
2,1

�2.14 (�3.74; �0.93)
�
⇤
1,2

�0.72 (�0.94; �0.49) �
⇤
2,2

�0.39 (�0.86; 0.16)
�
⇤
1,3

0.39 (0.15; 0.68) �
⇤
2,3

�1.21 (�1.67; �0.81)
�
⇤
1,4

�0.51 (�0.89; �0.26) �
⇤
2,4

�0.39 (�0.87; 0.02)
�
⇤
1,6

�0.19 (�0.44; 0.17) �
⇤
2,6

�0.32 (�0.97; 0.14)
�
⇤
1,9

�1.19 (�1.48; �0.84) �
⇤
2,9

�1.19 (�1.32; �0.97)
⇣
A⇤
1

1.13 (0.99; 1.28) ⇣
M⇤
1

0.66 (0.52; 0.75)
⇣
A⇤
2

1.71 (1.63; 1.81) ⇣
M⇤
2

0.95 (0.93; 0.98)
⇣
A⇤
3

0.50 (�4.15 2.46) ⇣
M⇤
3

0.73 (0.53; 0.90)
⇣
A⇤
4

�0.36 (�1.49; 0.68) ⇣
M⇤
4

0.58 (0.47; 0.77)
⇣
A⇤
6

0.24 (�1.70; 1.90) ⇣
M⇤
6

0.68 (0.53; 0.88)
⇣
A⇤
9

�1.73 (�2.90; �1.02) ⇣
M⇤
9

0.54 (0.42; 0.68)
⇡1 0.2291 (0.1321; 0.3167) ⇡2 0.4078 (0.3240; 0.4834)
⇡3 0.0328 (0.0005; 0.1334) ⇡4 0.1205 (0.0272; 0.2311)
⇡6 0.1064 (0.0020; 0.2329) ⇡9 0.0387 (0.0112; 0.0639)
� 0.97 (0.55; 1.54)

Analysis of the e↵ect of couple-specific covariates

We plot the value of the log-hazard function of males and females for di↵erent values of
Z

A and Z
M (Figure 6.2). This hazard function is calculated as follows:
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(6.1)

where F denotes the cumulative distribution function of the random time to event T ,
hence 1�F denotes the survival function. Both numerator and denominator are averaged
over the parameter draws.

As observed, this model allows for a nonmonotone e↵ect of the covariates on the hazard
function compared to a typical proportional hazard model approach as used in Deresa
et al. (2022), and later analysed to compare the models.
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Figure 6.2: Hazard function for males (black) and females (gray) aged 60-100 for di↵erent
values of the covariates male older and age di↵erence (exp(ZA)).

First of all, we notice that in the case where the male is the older couple member
(ZM=1), there is a slight shift upwards of the hazard function at each age and for all
all values of ZA. The only exception occurs when a male is aged between 60 and 68 and
Z

A = 10. A similar finding can be observed when analyzing the fitted hazard function
for the females.
These results demonstrate how the model is capable to flexibly capture the e↵ect of

interactions between X, ZA and Z
M without an explicit modelling assumption about

these. We remark how these three variables do not have any linear relationship among
them following the definition of ZA in Section 4.

Dependent lifetime events

We analyze the statistical association between T1 and T2 by calculating the Spearman
⇢ and the Kendall ⌧ rank correlation coe�cients over 20,000 random samples of (T1, T2)
generated for each value of the age di↵erence between 1 and 20 and of ZM (Figure 6.3).
For each sample, we first draw the male age from a Uniform(40, 80), with the female
age following from the value of ZA and Z

M .
We note how the model captures the presence of a positive statistical association

between males and females lifetime. However, we note how this statistical association is
unchanged with the values of ZA and Z

M . As additional experiment, we then narrow
the endpoints of the Uniform distribution of the male individual age and repeat the same
experiment. First, we note how both ⇢ and ⌧ are much smaller than the previous case,
while T1 and T2 are still positively associated. For an age di↵erence of one year, ⇢ and
⌧ are relatively larger, and then have a constant value for every value of ZA, especially
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for the case where the female is the oldest couple member. In the opposite case where
Z

M = 1, we observe a decreasing value of ⇢ and ⌧ as ZA increases. A di↵erent midpoint
of the Uniform distribution for the males age does not bring any change in the results.
The modest impact of the age di↵erence on the values of ⇢ and ⌧ might be due to
the direct relationship between the age and the computation of the age di↵erence. We
remark how we perform this analysis on the basis of the solely available joint covariates.
In any case, we could show how the AVDPM approach of this work can account for the
Z-lifetime dependence as by-product.
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Figure 6.3: Value of the Spearman ⇢ (left panel) and of the Kendall ⌧ (right panel) for
di↵erent values of AD and MO.

Class analysis

The mixture modelling nature of AVDPM allows to classify the observations a posteriori,
which can be helpful to learn further information about the resulting groups. A similar
analysis was carried out in Ungolo and van den Heuvel (2024).
For this purpose we use Bayes’ rule: for the ith couple, we calculate the probability

to be in the kth class, denoted as qi,k, conditional on the observable data and the model
parameters as follows:
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where we average both the numerator and the denominator (separately) over the poste-
rior draws of the parameters.
The ith couple is then hard-assigned to the kth class, by setting wi = k if qi,k > qi,h for

h 6= k. The four largest classes total 98.4% of the observations. Table 6.2 illustrates the
key features of groups 1, 2, 4 and 9, alongside the posterior mean of their class-specific
parameters

�
�
⇤
·,1, �

⇤
·,2, ⇣

A⇤
· , ⇣

M⇤
·
�
. The di↵erence between % Composition in Table 6.2 and

⇡ is due to the specific classification rule we use.

Table 6.2: Features of the four largest classes as determined by Bayes’ rule.

Group 1 Group 2 Group 4 Group 9 Train. sample

% Composition 29.25 50.73 12.99 5.39 �
Age male (mean) 64.68 66.29 64.96 64.56 65.55
Age female (mean) 65.22 60.28 64.89 64.55 62.63
log(|Age Di↵.|) (mean) 0.74 1.71 �0.47 �2.07 0.91
Male older (in %) 53.75 98.71 56.39 55.05 77.26

�
⇤
·,1 �1.00 �0.71 �0.51 �1.19 �
�
⇤
·,2 �2.14 �0.39 �0.39 �1.19 �
⇣
⇤
AD,· 1.13 1.71 �0.36 �1.72 �
⇣
⇤
MO,· 0.66 0.95 0.58 0.54 �

A first striking evidence is that these four classes have di↵erent features compared to
the whole training sample. This means that we can be able to identify groups of couples
which have distinctive features.
Around 50% of the couples compose Group 2, which is characterized by the largest

log-absolute age di↵erence among the four groups and the males are the oldest member
of the couple for almost all observations.
Group 1 is characterized by the lowest percentage of couples where the males are

the oldest couple members, and where females have an average age higher than males.
Furthermore, this group is characterized by the lowest hazard function for males and
females, given their �⇤ posterior mean coe�cient. Group 4 and 9 are almost similar in
terms of average age of the males and females therein, as well as the percentage of older
males, while these di↵er in terms of the log-absolute age di↵erence in couples.

Comparison with other models

The results of the AVDPM approach are compared with those obtainable by assuming
a basic Gompertz (BG) hazard function, and with a proportional hazard model which
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includes all covariates (PH), similarly to Deresa et al. (2022)1 which assume that:

µ
BG (t | xi,j ;↵j ,�j) = exp (↵j + �j (xi,j � x̄+ t))

µ
PH
�
t | xi,j , zAi , zMi ;↵j ,�j , �j,1, �j,2

�
= exp

�
↵j + �j (xi,j � x̄+ t) + �j,1z

A

i + �j,2z
M

i

�

with parameters estimated by using maximum likelihood (results in Section 3 of the
Supplementary Material). Therefore, under BG and PH models we assume that condi-
tional on the individual age, and the two common covariates, then the males and females
lifetimes are independently distributed.

We quantitatively compare the three models by using the Akaike Information Criteria
(Akaike, 1974) for the BG and PH models, and its generalization to a Bayesian frame-
work with latent variables, known as Widely Applicable Information Criteria (WAIC,
Watanabe, 2009) for the AVDPM model. Their calculation is detailed in Appendix B.
AIC and WAIC are computed for both the training sample and the held out part of the
dataset (Table 6.3), and we chose the model which minimizes the value of these criteria.

Table 6.3: AIC and WAIC of the models (the lowest value is shown in bold).

(W)AIC BG PH AVDPM
In sample 13,603.41 13,603.11 13,527.50

Out of sample 4,537.42 4,541.64 4,515.14

The inclusion of the covariates within a proportional hazard model has the e↵ect to
slightly improve the performance of the model compared to the base Gompertz hazard
function, as earlier discussed. The benefit of including covariates is very negligible when
looking at the out-of-sample performance of the PH model. Conversely, the AVDPM
approach shows a smaller value of the WAIC for both the training and test dataset.
Therefore, we conclude that the enhanced flexibility of AVDPM yields a better in sample
and out of sample fit for these data.
These results are confirmed also when calculating AIC and WAIC by gender (Ta-

ble 6.4). The use of the AVDPM yields a better in sample and out of sample performance
for both males and females (the sum of the WAICs by gender is not equal to the overall
WAIC as consequence of the Jensen’s inequality, as we can observe from its computation
in Appendix B.).

1Compared to this paper, we consider the fact that age increases over time, instead of being a fixed
covariate, and take the logarithm of the absolute value of the age di↵erence. In our analysis this
shows an improvement in the value of the Akaike Information Criteria. The results are available
upon request to the authors.

20



Table 6.4: AIC and WAIC of the models by gender (the lowest value is shown in bold).

(W)AIC
Males Females

BG PH AVDPM BG PH AVDPM
In sample 9,576.52 9,579.78 9,498.77 4,026.89 4,023.33 3,948.61

Out of sample 3,185.87 3,188.66 3,166.74 1,351.55 1,352.98 1,330.25

7. Actuarial illustration of AVDPM

Let Yx1,x2 (z) denote the present value of a cash flow of $1 paid continuously to a couple
with characteristics z, where the male is aged x1 and the female x2, as long as both are
alive (joint status). Conversely, let Yx1,x2 (z) denote the present value of a $1 cash flow
paid continuously until the death of the last survivor of a similar couple.
Assuming a force of interest ◆, we can obtain the annuity factor of these cash flows as

the expected value of Yx1,x2 (z) and Yx1,x2 (z) (Dickson et al., 2013):

ax1,x2 (z) = E [Yx1,x2 (z)] =

Z 1

0

exp (�◆t)Sx1,x2 (t | z) dt;

ax1,x2 (z) = E [Yx1,x2 (z)] =

Z 1

0

exp (�◆t)Sx1,x2 (t | z) dt,

where the last survivor function Sx1,x2 (t | z) was defined in Section 3, and Sx1,x2 (t | z)
denotes the corresponding joint survivor function.
We analyze the e↵ect of the covariates by comparing the annuity value under the

AVDPM with the annuity value obtainable using the BG model in order to assess the
e↵ect of the covariates (as well as the dependence), and with the value obtained using
the PH model to assess the e↵ect of the dependence.
Figure 7.1 shows the value of the last survivor annuity factor obtainable under the

AVDPM model and the other two competing models PH and BG described in Section 6.
The annuity factors are evaluated at di↵erent male ages (60 and 70), di↵erent values of
Z =

�
Z

A
, Z

M
�
and two di↵erent forces of interest ◆ = (0.01, 0.05). The same plot for

the joint life annuity is shown in Section 4 of the Supplementary Material (Figure 4.1).
The plot shows that the AVDPM annuity value is always higher than the value ob-

tained using the PH model. When the male is the oldest couple member, the di↵erence
between these two values is highest when the age di↵erence is within five years, and
narrows afterwards. Such annuity price di↵erence is also negligible for an age di↵erence
of one year. This means that neglecting the e↵ect of the dependence has the e↵ect of
underpricing the last survivor annuity, especially when the age di↵erence is between two
and five years. A similar evidence is obtained when the female is the oldest couple mem-
ber, whenever the male is lesser than ten years younger. This evidence is in contrast
with earlier findings in the literature which use copula models to account for lifetime
dependence. Using a Frank copula, Frees et al. (1996, Figure 3) show that the price of
a last survivor annuity is higher under a model which assumes independent lifetimes,
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Figure 7.1: Last survivor annuity factor calculated using the AVDPM model (solid line),
the PH model (dashed line) and the BG model (dotted line) for di↵erent
values of age di↵erence (exp

�
Z

A
�
, x-axis) and Z

M when the oldest member
is aged 60 (top panel) and 70 (bottom panel), for ◆ = 1% (left panel) and
◆ = 5% (right panel).

especially for couples where males and females have a similar age. Similarly, Dufresne
et al. (2018, Figure 5.2) observe that the di↵erence between independent and dependent
lifetime (using a Clayton and a Joe copula) in the last-survivor life expectancy is highest
for an age di↵erence around 0, regardless the value of ZM .
When comparing the annuity factor using the AVDPM with the value obtained using

a Base Gompertz model which assumes independent lifetimes and does not account for
the e↵ect of the covariates, we note that using latter in annuity pricing yields a lower
value compared to the former when the female is the older couple member. Conversely,
when Z

M = 1, the BG model underprices the last survivor annuity for an age di↵erence
lower than eight years. These evidences are consistent with the findings in Frees et al.
(1996, Figure 4), and Deresa et al. (2022), where the latter analyze only the case of a
couple where the male is aged 65 and the female is two years younger.
A higher interest rate, which decreases the value of the annuity all else being equal,

yields a reduction of both the e↵ect of the dependence, as well as of the e↵ect of the
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price di↵erence due to the covariates. On the other hand, an increase in the age of
the two heads (Figure 7.1 bottom panel) yields a higher percentage di↵erence between
the annuity value priced using the AVDPM model and the two models which assume
independence. Therefore, in this latter case, the dependence turns out to have a higher
impact in the pricing of the last survivor annuity.
For the joint life annuity, we note that when the male is the oldest couple member,

the joint life annuity factor under the AVDPM is always higher compared to the value
obtainable under the two models assuming independent lifetimes for an age di↵erence
higher than a year, and the same is obtained in case Z

M = 0 and the age di↵erence is
between 1 and 15 years. This is obtained for both male ages and for the two interest
rates hereby analysed. Similarly, the copula-based dependence model analysed by Deresa
et al. (2022) yields a higher joint life annuity value compared to the independence case,
although they focus on the sole case where males and females are again aged 65 and 63
respectively.

8. Extension of AVDPM to the analysis of the joint lifetimes of
non-exchangeable units

So far we have illustrated the method for the case of males-females couples. If we want
to allow for groups with di↵ering number of exchangeable members, as can be the case of
collective insurance policies, we can extend the framework through a hierarchical model
with additional layers.
Suppose the ith group includes Ji members, with common set of variables zi, and

individual (within group) characteristics xi,j (j = 1, . . . , Ji). A possible solution is to
model the group-specific joint distribution of the lifetimes and Z as:

f (ti,1, . . . , ti,Ji , zi | xi;�, G) =

Z

⌦�,⌘

2

4
JiY

j=1

f (ti,j | xi,j ;�, �i,j)

3

5 f (zi | ⇣i) dQ (�i,j | ⌘i) dG (⌘i, ⇣i)

(8.1)

where Q denotes a suitable distribution function for �i,j , indexed by the group specific
parameter ⌘i. Again, Q can also be a random draw from a Dirichlet Process, although
we would opt for a simpler known parametric form for computational reasons and also
because we are indexingQ with a group-specific parameter ⌘i whose distribution is drawn
from a DP.

9. Conclusion

This paper contributes to the analysis of grouped dependent lifetime events by proposing
a joint model for the lifetimes which is augmented of the distribution of the group-
specific covariates. The inclusion of multivariate random e↵ects captures the dependence
among the lifetimes, and between the lifetimes and the group-specific covariates. The
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use of Dirichlet Process Mixture models enhances the flexibility of the random e↵ects
distribution and of the standard parametric assumptions for the covariates. The resulting
Augmented Variable DPM (AVDPM) model has been illustrated through the empirical
analysis of the mortality rates of the male and female members of a couple, which
resulted in an enhanced in-sample and out-of-sample fitting performance. We showed
how the model output can be used to infer additional information on the nature of the
male-female mortality dependence, and how this can a↵ect the price of joint life and last
survivor annuities.
The full Bayesian analysis of the AVDPM model of this work allows for the incor-

poration of the prior information about possible parameter values from the user. An
alternative to the full Bayesian analysis can be the assumption of a fixed, known num-
ber of mixture components, and fit the model parameters using maximum likelihood.
The results of similar analysis in the field can be used at this purpose. In addition,
an approach based on the use of random e↵ects allows for the specification of di↵erent
parametric forms for the lifetime of each couple or group member.
An important future research avenue is the development of fast approximation tech-

niques for the computation of posterior distribution of the parameters (for example,
based on Variational Inference techniques (Blei et al., 2016)), which would allow to
quickly explore di↵erent parametric models for the data on hand.
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A. Data Augmentation MCMC sampler

Below, we outline the steps of the Data Augmentation MCMC scheme to sample the
parameters from the posterior distribution:

Step 0: Set an initial value for the parameters⇣
↵
(0)

,�
(0)

, �
⇤(0)

, ⇣
A⇤(0)

, ⇣
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For each iteration ` = 1, . . . ,M :

Step 1: For each unit sample the mixture component w
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(W (`)

i
2 {1, . . . ,K}) from a

discrete distribution with probability:

P
⇣
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where

f

⇣
zi | ⇣⇤(`)k

⌘
= f

⇣
z
A

i | ⇣A⇤(`)
k

,�
2(`)

A
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M⇤(`)
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⌘
z
M
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M⇤(`)
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⌘1�z
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i
. (A.2)

Hence, s(`)
i,k

= 1 if w(`)

i
= k and 0 otherwise;

Step 2: Sample the stick-breaking weights  and update ⇡:

Step 2.1: Sample  (`)

k
(k = 1, . . . ,K � 1, with  K = 1):
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Step 2.2: Update ⇡k:
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Step 3: Sample exp
⇣
↵
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j

⌘
from a conjugate Gamma distribution with shape �j,1 and

rate �J,2:
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Step 4: Sample �(`)
j

(j = 1, 2) using the acceptance-rejection sampling method:

Step 4.1: Sample �⇤
j
from a Truncated Normal proposal distribution q with mean

�
(`�1)

j
and variance �2(`�1)

p,j
. The proposal distribution has truncation bounds

given by the parameters of the uniform distribution specified as prior. The
variance of the proposal distribution is iteratively updated using the Robust
Adaptive Metropolis (RAM) algorithm of Vihola (2012), described in Step
4.4;

Step 4.2: Compute the ratio
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(A.6)

where q10�5,5 (a | b, c) denotes the density of the proposal distribution at the
value of a, with mean b and variance equal to c;
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Step 4.3: Set:
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(A.7)

Step 4.4: Update the standard deviation of the proposal distribution �p,j :

�
(`)

p,j
= �

(`�1)

p,j

p
1 + `�0.6 (min (r0, 1)� 0.234) (A.8)

The parameter 0.6 is chosen following Vihola (2012), who suggests a value be-
tween 0.5 and 1, while 0.234 is the desired acceptance probability, chosen following
Roberts et al. (1997);

Step 5: Sample �⇤ using the acceptance-rejection sampling method:

Step 5.1: For k = 1, . . . ,K sample �0
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and I2 denotes the 2⇥ 2 identity matrix;
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k is the lower triangular matrix denoting the Cholesky decom-
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distribution is again updated using the RAM algorithm described in Step 5.4
for its multivariate version;

Step 5.2: Compute the ratio:

r
00 =

p

⇣
�
0
k | 0,⌃(`�1)

�

⌘
2

64
Y

{i:w(`)
i =k}

2Y

j=1

fj

⇣
ti,j | xi,j , di,j , ai;↵

(`)
j ,�

(`)
j , �

0
k,j

⌘
3

75 q

⇣
�

0

k | �⇤(`�1)
k ,⌃(`�1)

p,k

⌘

p

⇣
�
⇤(`�1)
k | 0,⌃(`�1)

�

⌘
2

64
Y

{i:w(`)
i =k}

2Y

j=1

fj

⇣
ti,j | xi,j , di,j , ai;↵

(`)
j ,�

(`)
j , �

⇤(`�1)
k,j

⌘
3

75 q

⇣
�
⇤(`�1)
k | �0

k,⌃
(`�1)
p,k

⌘

(A.9)
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Step 5.4: Update the lower triangular Cholesky factor of ⌃p,k:
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Step 5.4.1: Compute ⌃(`)
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where ||h|| denotes the Euclidean norm of h;

Step 5.4.2: Compute L(`)

k as the Cholesky factor of ⌃(`)

p,k;

Step 6: Sample ⌃� from the conjugate posterior which is the Inv-Wishart distribution
with degrees of freedom ⇤1 and scale matrix ⇤2, calculated as:
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Step 12: Sample � by following the steps outlined in Escobar and West (1995):
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B. Computation of AIC and WAIC

Let ✓̂ denote the set of the parameter estimates using maximum likelihood for BG and
PH, and ✓(`) the retained `th draw from the posterior distribution of the parameters of
the AVDPM approach. AIC and WAIC are calculated as follows:
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⇣
✓̂ | t,x,a,d, zA, zM

⌘
is the likelihood function of the parameters given the

data, r denotes the number of parameters of the model under analysis, H the number
of retained draws from the posterior distribution, and
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In this equation we take the joint distribution of Ti,1 and Ti,2 conditional to the values
of ZA

i
and Z

M

i
, in order to make the three models comparable among them.

When computing the WAIC by gender, for the males we compute:
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Similar calculations are performed for the WAIC of the AVDPM for the females.
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1 Data cleaning operations

The data preparation steps are listed below:

1. Discard observations with same-gender couples, as in Frees et al. (1996) and Deresa

et al. (2022);

2. Eliminate records of couples where males and females aged lesser than 40 at the

start of the observation period. In this way, the Gompertz model is a reasonable

fit for these data;

3. Check of records of couples where both members are alive at the start of the

observation period;

4. Elimination of duplicated records.
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2 Occupied mixture components throughout the MCMC

iterations
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Figure 2.1: Histogram of the number of occupied classes throughout the MCMC itera-

tions.
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3 Results of the competing models

Table 3.1: Parameter estimates and corresponding standard errors of the Base Gompertz

and Proportional hazard models.

Base Gompertz Proportional hazard
Parameter Estimate St. err. Estimate St. err.

↵1 �3.92 0.0367 �3.97 0.0715

�1 0.0991 0.0046 0.0987 0.0046

�1,1 � � �0.0035 0.0279

�1,2 � � 0.0697 0.0827

↵2 �4.85 0.0581 �5.10 0.1143

�2 0.1243 0.0074 0.1309 0.0077

�2,1 � � 0.0053 0.0448

�2,2 � � 0.3234 0.1208
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4 Joint life annuity factor
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Figure 4.1: Joint life annuity factor calculated using the AVDPM model (solid line), the

PH model (dashed line) and the BG model (dotted line) for di↵erent values

of age di↵erence (exp
�
ZA

�
, x-axis) and ZM

when the oldest member is aged

60 (top panel) and 70 (bottom panel), for ◆ = 1% (left panel) and ◆ = 5%

(right panel).
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