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Abstract

Systematic improvements in mortality results in dependence in the
survival distributions of insured lives. This is not allowed for in stan-
dard life tables and actuarial models used for annuity pricing and
reserving. Systematic longevity risk also undermines the law of large
numbers; a law that is relied on in the risk management of life insur-
ance and annuity portfolios. This paper applies a multivariate gamma
distribution to incorporate dependence. Lifetimes are modelled using
a truncated multivariate gamma distribution that induces dependence
through a shared gamma distributed component. Model parameter
estimation is developed based on the method of moments and gener-
alized to allow for truncated observations. The impact of dependence
on the valuation of a portfolio, or cohort, of annuitants with similar
risk characteristics is demonstrated by applying the model to annuity
valuation. The dependence is shown to have a significant impact on
the risk of the annuity portfolio as compared with traditional actuarial
methods that implicitly assume independent lifetimes.
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1 Introduction

Systematic improvements in mortality results in dependence in the survival
distributions of insured lives. This is not allowed for in standard life tables
and actuarial models used for annuity pricing and reserving. Systematic
longevity risk also undermines the law of large numbers; a law that is relied on
in the risk management of life insurance and annuity portfolios. Given recent
world-wide trends by employers towards the elimination of pension scheme
liabilities, understanding systematic longevity risk is especially relevant for
bulk annuity providers; see e.g. Hull (2009).

This paper applies a multivariate gamma distribution to model dependent
lifetimes within a pool of individuals. Lifetimes are often modelled with para-
metric distributions such as the gamma distribution, which has similar prop-
erties to the Weibull distribution; see e.g. Klein and Moeschberger (1997).
Dependence between the lifetimes is captured with a common stochastic
component. The multivariate dependence structure is developed from the
trivariate reduction method used to generate two dependent random variables
from three independent random variables. This trivariate method was used
to generate the bivariate version of the multivariate gamma distribution in
Chereiyan (1941). The method uses the fact that the sum of gamma random
variables with the same rate parameter also follows a gamma distribution
with that same rate parameter. The trivariate method was generalized to
multivariate reduction and the bivariate gamma distribution model extended
to the multivariate setting by Ramabhadran (1951) and applied by Mathai
and Moschopoulus (1991), and Chatelain et al. (2006), amongst others. The
multivariate gamma distribution has found many applications in actuarial
science including Furman and Landsman (2005).

The paper develops estimation theory for the multivariate gamma distri-
bution in the presence of truncation, which we highlight as the main theo-
retical contribution to the literature. To quantify the effect of dependence,
life annuities are valued with the model and compared to standard actuar-
ial models for annuity pricing. Although the expected present value of the
annuity payment streams do not vary much as the level of dependence in-
creases, the variance increases significantly more than the square root of the
size of the portfolio for the independence case. Risk based capital reflects the
variance of the payment stream and the cost of this capital is reflected in the
market pricing of annuities. Hence, we provide evidence that dependence
is a significant factor with important implications for annuity pricing and
risk based capital, which we highlight as the main practical contribution.
The model presented here provides a tractable method for estimating the
dependence and computing the distribution of life annuity values. Finally,
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an assessment of the model fit to data is provided based on Norwegian pop-
ulation mortality. Some insight is provided on ways in which the fit can be
improved, the implementation of which is anticipated in future research.

Organization of the paper: Section 2 defines the multivariate gamma de-
pendence structure for survival models for a pool of lives. Section 3 provides
the estimation of the parameters of the model by method of moments. We
consider the case when samples are given both with and without truncation.
The former is essentially more complicated, but required in practice. The
performance of the estimation methods are assessed with simulation. Section
4 outlines the application to survival theory including implications for annu-
ity values and portfolio risk based on standard deviation of values. Section
5 reports the fitting of the model to Norwegian population data. Section 6
concludes the paper.

2 Multivariate Gamma Survival Model

The model is applied to individuals within a pool of lives. We assume M
pools, each constituted of N lives. The pools can, in general, be of indi-
viduals with the same age or other characteristics that share a common risk
factor. Let Ti,j be the survival time of individual i ∈ {1, . . . , N} in pool
j ∈ {1, . . . ,M}. We assume the following model for the individual lifetimes:

Ti,j =
α0

αj
Y0,j + Yi,j,

where

• Y0,j follows a gamma distribution with shape parameter γ0 and rate
parameter α0, G(γ0, α0), j ∈ {1, . . . ,M},

• Yi,j follows a gamma distribution with shape parameter γj and rate
parameter αj, G(γj, αj), i ∈ {1, . . . , N} and j ∈ {1, . . . ,M},

• The Yi,j are independent, i ∈ {0, . . . , N} and j ∈ {1, . . . ,M}.

Hence, there is a common component Y0,j within each pool j that impacts
the survival of the individuals of that pool (i.e. Y0,j captures the impact of
systematic mortality dependence between the lives in pool j). The parame-
ters γj and αj can jointly be interpreted as the risk profile of pool j.

From the properties of the gamma distribution it immediately follows
that the survival times Ti,j are also gamma distributed with shape parame-
ter γ̃j = γ0 + γj and rate parameter αj. One can see that within each pool,
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individual lifetimes are dependent and all follow the same gamma distribu-
tion, G(γ̃j, αj).

3 Parameter Estimation

In this section we consider parameter estimation using the method of mo-
ments. For an excellent reference we can suggest, for example Lindgren
(1993) (Ch. 8, Theorem 6).

Notation

Before we undertake parameter estimation, we provide some necessary nota-
tion concerning raw and central, theoretical and sample, moments. Consider
arbitrary random variable X. We denote with αk(X) and µk(X) the kth,
k ∈ Z+, raw and central (theoretical) moments of X, respectively. That is,

αk(X) = E[Xk],

µk(X) = E[(X − α1(X))k].

Next, consider random sample X = (X1, . . . , Xn)′. The raw sample moments
are given by

ak(X) =
1

n

n∑
i=1

Xk
i , k ∈ Z+.

For X1, . . . , Xn identically distributed, the raw sample moments are unbiased
estimators of the corresponding raw moments of X1:

E[ak(X)] = αk(X1).

Finally, we define the adjusted second and third central sample moments as

m̃2(X) =
1

n− 1

n∑
i=1

(Xi − a1(X))2,

m̃3(X) =
n

(n− 1)(n− 2)

n∑
i=1

(Xi − a1(X))3.

For X1, . . . , Xn independent and identically distributed, these (adjusted) cen-
tral sample moments are unbiased and consistent estimators of the corre-
sponding central moments of X1:

E[m̃2(X)] = µ2(X1) and E[m̃3(X)] = µ3(X1).
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3.1 Parameter Estimation for Lifetime Observations

We assume we are given samples, T1, . . . ,TM , from the pools, where Tj =
(T1,j, . . . , TN,j)

′. In order to facilitate estimation, we presently make the as-
sumption that α0 = 1. This assumption is equivalent to setting the rate
parameter of the systematic component, (α0

αj
Y0,j), equal to that of the id-

iosyncratic component, (Yi,j), within each pool j.
We begin by considering the Tj separately in order to estimate corre-

sponding parameters γj and αj, as well as predict the value of Y0,j. Sub-
sequently, we combine the obtained predictions of Y0,1, . . . , Y0,M in order to
estimate γ0.

In our estimation procedure, we utilize the first raw sample moment and
the second and third central sample moments. Define Yj = (Y1,j, . . . , YN,j)

′.
For the first raw sample moment, we obtain

a1(Tj) =
1

N

N∑
i=1

Ti,j =
1

N

N∑
i=1

1

αj
Y0,j +

1

N

N∑
i=1

Yi,j =
1

αj
Y0,j + a1(Yj). (1)

For the second central sample moment, we obtain

m̃2(Tj) =
1

N − 1

N∑
i=1

(Ti,j − a1(Tj))
2

=
1

N − 1

N∑
i=1

(α0

αj
Y0,j + Yi,j −

α0

αj
Y0,j − a1(Yj)

)2
=

1

N − 1

N∑
i=1

(Yi,j − a1(Yj))
2 = m̃2(Yj).

Similarly, for the third central sample moment, we obtain

m̃3(Tj) = m̃3(Yj).

We take expectations of our sample moments in order to formulate a sys-
tem of equations. Since each pool contains only one realization from the
G(γ0, α0 = 1) distribution, namely, Y0,j, it is not prudent to take its expected
value. Therefore, we condition on Y0,j. Since Y1,j, . . . , YN,j are identically dis-
tributed, the first raw sample moment is an unbiased estimator of the first
raw moment of Y1,j. Consequently, we have

E[a1(Tj)|Y0,j] =
1

αj
Y0,j + E[a1(Yj)] =

1

αj
Y0,j + α1(Y1,j) =

1

αj
Y0,j +

γj
αj
.
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Furthemore, since Y1,j, . . . , YN,j are also independent, the (adjusted) second
and third central sample moments are unbiased estimators of the second and
third central moments of Y1,j, respectively. As a result, we obtain

E[m̃2(Tj)|Y0,j] = E[m̃2(Yj)] = µ2(Y1,j) =
γj
α2
j

, (2)

E[m̃3(Tj)|Y0,j] = E[m̃3(Yj)] = µ3(Y1,j) =
2γj
α3
j

. (3)

Note that the above central sample moments do not depend on Y0,j. As a
result, equations (2) and (3) can be used to estimate γj and αj. Let us notice
that from (1), it follows that for N →∞,

a1(Tj)
P→ 1

αj
Y0,j +

γj
αj
,

and we cannot estimate parameters of Y0,j from one pool (j-pool). However,
the estimators of γj and αj can be substituted into equation (1) to yield a
prediction of Y0,j. Hence, by replacing the expected sample moments with
observed sample moments, we obtain the following:

γ̂j = 4
m̃3

2(Tj)

m̃2
3(Tj)

,

α̂j = 2
m̃2(Tj)

m̃3(Tj)
,

Ŷ0,j = a1(Tj)α̂j − γ̂j.

Finally, we estimate γ0 using the predicted values of Y0,j and the fact that
E[Y0,j] = γ0 (since α0 = 1). We obtain

γ̂0 =
1

M

M∑
j=1

Ŷ0,j.

Summarizing, when considering only one pool j, the parameters γj and αj
can be estimated and the random variable Y0,j predicted. In order to estimate
γ0, multiple pools are required.

3.2 Parameter Estimation for Truncated Observations

The results of the previous section cannot be directly used for calibration of
parameters of the proposed model, because, in fact, we deal with truncated
lifetime data. In this section we consider truncated observations τjTi,j =
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Ti,j|Ti,j > τj with known truncation point τj. As before, we assume α0 = 1.
Furthermore, we assume all pools are subject to the same truncation point,
that is τj = τ for all j.

We begin by constructing a useful lemma regarding the raw moments of
truncated gamma random variables.

Lemma 1 Consider Y ∼ G(γ, α) with probability density and survival func-
tion denoted g(y, γ, α) and Ga(y, γ, α), respectively. Define associated trun-
cated random variable τY = Y |Y > τ , where τ ≥ 0. The kth raw moment,
k ∈ Z+, of τY is given by

αk(τY ) = αk(Y )Kk(τ, γ, α),

where

Kk(τ, γ, α) =
Ga(τ, γ + k, α)

Ga(τ, γ, α)
.

Proof. The probability density function of τY is given by

fτY (y) =
g(y, γ, α)

Ga(τ, γ, α)
, y > τ.

αk(τY ) =

∫∞
τ
ykg(y, γ, α)dy

Ga(τ, γ, α)
=
αγ
∫∞
τ
yk · yγ−1e−α·ydy

Γ(γ)Ga(τ, γ, α)

=
αγΓ(γ + k)Ga(τ, γ + k, α)

αγ+kΓ(γ)Ga(τ, γ, α)
=

Γ(γ + k)

Γ(γ)

1

αk
Ga(τ, γ + k, α)

Ga(τ, γ, α)

= E[Y k]
Ga(τ, γ + k, αj)

Ga(τ, γ, α)
= E[Y k]Kk(τ, γ, α)

= αk(Y )Kk(τ, γ, α).

In the above lemma, Kk can be interpreted as a truncation adjustment
coefficient, which is required for transforming un-truncated raw moments
into truncated raw moments.

We explore the truncated lifetime τTi,j by separating it into its component
parts: the systematic, un-truncated 1

αj
Y0,j and the idiosyncratic, truncated

Yi,j. We obtain

τTi,j =
1

αj
Y0,j + τ ′Yi,j,
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where τ ′ = τ − 1
αj
Y0,j. The truncation on Yi,j must account for the value

of the systematic component and hence differs from the relatively simple
truncation imposed on Ti,j.

We first consider the general case and obtain a system of equations that
is difficult to solve because of numerical instability. We then consider a
simplified structure for which we obtain parameter estimates.

3.2.1 The General Case

In this section, we follow the same method utilized in parameter estimation
for un-truncated observations. That is, we aim to use the first raw sample
moment, and the second and third central sample moments. Consider given
truncated samples τT1, . . . , τTM , where τTj = (τT1,j, . . . , τTN,j)

′. From each
pool j, we aim to estimate γj and αj, and predict the value of Y0,j. Define

τ ′Yj = (τ ′Y1,j, . . . , τ ′YN,j)
′. For the first raw sample moment, we obtain

a1(τTj) =
1

αj
Y0,j +

1

N

N∑
i=1

τ ′Yi,j =
1

αj
Y0,j + a1(τ ′Yj).

For the second and third central sample moment, we obtain

m̃2(τTj) = m̃2(τ ′Yj) and m̃3(τTj) = m̃3(τ ′Yj).

Note that Y0,j is present in the truncation point τ ′. Hence, unlike in the un-
truncated case, we cannot solely use the second and third central moments
to estimate γj and αj.

Now suppose that Y0,j is given. Then τ ′Y1,j, . . . , τ ′YN,j are independent
and identically distributed. Consequently, the first raw sample moment is an
unbiased estimator of α1(τ ′Y1,j|Y0,j). Moreover,

a1(τTj)|Y0,j
P→ 1

αj
Y0,j + α1(τ ′Y1,j|Y0,j)

and the (adjusted) second and third central sample moments are unbiased
and consistent estimators of µ2(τ ′Y1,j|Y0,j) and µ3(τ ′Y1,j|Y0,j), respectively.
We take conditional expectations of the sample moments, with respect to
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Y0,j, and obtain

E[a1(τTj)|Y0,j] =
1

αj
Y0,j + E[a1(τ ′Yj)|Y0,j]

=
1

αj
Y0,j + α1(τ ′Y1,j|Y0,j)

=
1

αj
Y0,j +

γj
αj
K1, (4)

E[m̃2(τTj)|Y0,j] = E[m̃2(τ ′Yj)|Y0,j] = µ2(τ ′Y1,j|Y0,j)
= α2(τ ′Y1,j|Y0,j)− α2

1(τ ′Y1,j|Y0,j)

=
γj(γj + 1)

α2
j

K2 −
γ2j
α2
j

K2
1 , (5)

E[m̃3(τTj)|Y0,j] = E[m̃3(τ ′Yj)|Y0,j] = µ3(τ ′Y1,j|Y0,j)
= α3(τ ′Y1,j|Y0,j)− 3α2(τ ′Y1,j|Y0,j)α1(τ ′Y1,j|Y0,j) + 2α3

1(τ ′Y1,j|Y0,j)

=
γj(γj + 1)(γj + 2)

α3
j

K3 − 3
γ2j (γj + 1)

α3
j

K2K1 + 2
γ3j
α3
j

K3
1 , (6)

where the arguments of the K functions above are (τ ′, γj, αj). Notice that ev-
erything in the above system of equations is written in terms of raw moments,
such that Lemma 1 can be utilized. Upon careful inspection, we furthermore
notice that equations (4)-(6) are generalizations of equations (1)-(3). The
latter set of equations are obtained when the K functions take value one,
which only occurs when the truncation point is zero (i.e. when there is no
truncation).

Unfortunately the above system of equations is highly unstable and can-
not be solved using either iterative or numerical procedures.

3.2.2 The Simplified Case

In addition to the assumptions that α0 = 1 and τj = τ , for all j, we further
assume that γj = γ and αj = α, for all j. This additional assumption is
equivalent to assuming that lives in every pool have similar risk profiles. The
level of dependence within pools, however, still varies since this depends on
the value Y0,j.

In this simplified case, we begin our estimation procedure by combining all
pools. Define τT = (τT1,1, . . . , τTN,M)′. Due to our simplifying assumptions,
the components of τT are identically distributed, although not independent.
This implies that the raw sample moments of τT are unbiased estimators of
the raw moments of τT1,1. Recall that Ti,j ∼ G(γ̃ = γ0 + γ, α), and τTi,j
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has a truncated G(γ̃ = γ0 + γ, α) distribution. Utilizing the first two raw
moments, we obtain the following:

E[a1(τT)] = α1(τT1,1) =
γ̃

α
K1(τ, γ̃, α), (7)

E[a2(τT)] = α2(τT1,1) =
γ̃(γ̃ + 1)

α2
K2(τ, γ̃, α). (8)

Notice that we no longer condition on a single Y0,j. This is due to the fact
that τT contains M different realizations from the G(γ0, α0 = 1) distribution,
rather than one. It is, therefore, a viable option to take expectations with
respect to the Y0,j.

Equations (7) and (8) provides a two by two system of equations, but
due to the presence of the K’s, requires the development of a computational
algorithm to provide solutions. We apply an iterative algorithm that is found
to perform exceptionally well.

Algorithm 2

1. Assume starting values for γ̃ and α, denote them γ̃(1) and α(1).

2. Using γ̃(r) and α(r), obtain estimates for the truncation adjustment
coefficients K1 and K2. Recall that

Kk(τ, γ̃(r), α(r)) =
Ga(τ, γ̃(r) + k, α(r))

Ga(τ, γ̃(r), α(r))
.

3. Substitute the values of K1 and K2 into equations (7) and (8), rear-
range, and obtain parameter estimates γ(r + 1) and α(r + 1):

α(r + 1) =
a1(τT)/K1

a2(τT)/K2 − a21(τT)/K2
1

,

γ̃(r + 1) = α(r + 1)
a1(τT)

K1

,

where the arguments of the K functions above are (τ, γ̃j(r), αj(r)) and
the sample moments of τT are used to estimate the theoretical moments.

4. Return to Step 2 with r = r + 1 until parameter estimates are stable.

From Algorithm 2, we obtain parameter estimate α̂. With this estimate
in hand, we return our consideration to individual pool j. We reconsider
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equations (4) and (5), this time armed with estimate α̂.

E[a1(τTj)|Y0,j] ≈
1

α̂
Y0,j +

γ

α̂
K1(τ

′, γ, α̂), (9)

E[m̃2(τTj)|Y0,j] ≈
γ(γ + 1)

α̂2
K2(τ

′, γ, α̂)− γ2

α̂2
K1(τ

′, γ, α̂)2. (10)

Again, we are presented with a non-trivial system of equations. We apply
the following iterative algorithm.

Algorithm 3

1. Assume starting values for Y0,j and γ, denote them Y0,j(1) and γ(1).

2. Using Y0,j(r) and γ(r), obtain estimates for the truncation adjustment
coefficients K1 and K2, where

Kk

(
τ − Y0,j(r)

α̂
, γ(r), α̂

)
=
Ga
(
τ − Y0,j(r)

α̂
, γ(r) + k, α̂

)
Ga
(
τ − Y0,j(r)

α̂
, γ(r), α̂

) .

3. Substitute the values of K1 and K2 into equations (9) and (10), rear-
range, and obtain Y0,j(r + 1) and γ(r + 1):

γ(r + 1) =
−K2 +

√
K2

2 + 4(K2 −K2
1)m̃2(τTj)α̂2

2(K2 −K2
1)

,

Y0,j(r + 1) = a1(τTj)α̂− γ(r + 1)K1,

where the arguments of the K functions above are (τ − Y0,j(r)

α̂
, γ(r), α̂)

and the sample moments of τT are used to estimate the theoretical
moments.

4. Return to Step 2 with r = r + 1 until parameter estimates are stable.

Remarks 4 (implementing Algorithm 3)

• In Step 3, the expression under the square root can become negative;
when this occurs, we set it equal to zero. The resulting estimate of γ is
positive since (K2 −K2

1) is necessarily negative.

• In Step 3, Y0,j can become negative. When this occurs, we set it equal
to zero.
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• As a result of the above two corrections, the iterative procedure can
oscillate between two fixed points, with the solution typically lying in the
middle. When this occurs, we take the average over these two oscillating
points.

• For this algorithm to produce sensible results, Y0,j(1) must be close
enough to the eventual stable value.

As an alternative to applying Algorithm 3, one can solve (9) and (10) us-
ing a numerical method for solving nonlinear systems of equations. We make
use of a strategy using different Barzilai-Borwein, see Barzilai and Borwein
(1988), steplengths found in R-package BB, see Varadhan and Gilbert (2009).
This procedure occasionally provides negative predictions of Y0,j.

To complete the estimation procedure, we set

γ̂ =
1

M

M∑
j=1

γ̂(j), and γ̂0 =
1

M

M∑
j=1

Ŷ0,j,

where γ̂(j) and Ŷ0,j are the estimate of γ and predicted value of Y0,j, respec-
tively, obtained using Algorithm 3 on pool j. Alternatively, we have

γ̂(BB) =
1

M

M∑
j=1

γ̂(j,BB), and γ̂
(BB)
0 =

1

M

M∑
j=1

Ŷ
(BB)
0,j ,

where γ̂(j,BB) and Ŷ
(BB)
0,j are the estimate of γ and predicted value of Y0,j,

respectively, obtained using the Barzilai-Borwein numerical procedure.

3.3 Numerical Results

In this section we study estimation performance using simulation. We inves-
tigate accuracy with and without the presence of truncation.

In Table 1, the simulation results are presented for the case with no
truncation. Here, we investigate the estimation procedure for one pool, j = 1.
It is evident that estimation is highly irratic for small N . Furthermore, the
estimation appears dependent on the value of Y0,1, where a low value of Y0,1
produces more desirable results.

In Table 2, simulation results are presented in the face of truncated ob-
servations. Recall that under truncation, we assume each pool has the same
risk profile, given by parameters γ and α.

Simulations 1 and 2 are based on only one pool. From a theoretical
standpoint, it is clear that it is not appropriate to undertake parameter
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Simulation 1 2 3 4 5 6
N 100 1,000 10,000 100,000 1,000,000 10,000,000
Y0,1 7.107 1.493 4.030 3.762 4.518 4.111

Ŷ0,1 -26.258 0.038 0.152 3.948 4.214 4.169
γ1 30.000 30.000 30.000 30.000 30.000 30.000
γ̂1 87.727 32.166 38.939 29.718 30.792 29.847
α1 0.500 0.500 0.500 0.500 0.500 0.500
α̂1 0.827 0.514 0.573 0.498 0.507 0.499

Table 1: Simulation results with no truncation present.

estimation with only one pool. Our simulation results verify this. That is, in
Simulation 1, Algorithm 2 appears to provide a good estimate of α. However,
it is evident from the results of Simulation 2, that this is due to chance. In
Simulation 2, we have 100 times more observations than in Simulation 1,
but the estimate of α is much worse. Hence, as previously stipulated, it is
not prudent to apply Algorithm 2 on one pool. From Simulation 2, it is
also evident that without a good estimate of α, it is very difficult to obtain a
reliable estimate of γ and prediction of Y0 (or an estimate of γ0 when M > 1).

In Simulations 4, 5, and 6, estimates of α are near exact, and the Barzilai-
Borwein estimates of γ and γ0 equally impressive. The reasons for the short-
comings of Algorithm 3 are found in Remarks 4.

Simulation 1 2 3 4 5 6
N 1,000 100,000 10,000 1,000 1,000 10,000
M 1 1 50 1,000 10,000 1,000
τ 60 60 60 60 60 60
α 0.500 0.500 0.500 0.500 0.500 0.500
α̂ 0.522 0.703 0.524 0.497 0.499 0.498
γ 30.000 30.000 30.000 30.000 30.000 30.000
γ̂ 26.366 59.966 32.407 28.692 28.934 29.044
γ̂(BB) 32.991 59.966 33.415 29.875 30.032 29.718
Y0 / γ0 2.191 12.680 5.000 5.000 5.000 5.000

Ŷ0 / γ̂0 7.741 0.000 4.421 6.415 6.241 5.992

Ŷ0 / γ̂0
(BB) -0.116 -0.001 3.179 4.949 4.882 5.173

Table 2: Simulation results with truncation present.
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4 Applications

In this section we provide important results for actuarial analysis as a con-
sequence of modelling lifetimes using the multivariate gamma distribution.

4.1 Maximum Survival Time Probability

An important characteristic in survival theory is the maximum survival time
in pool j, T(N),j = max(T1,j, . . . , TN,j). It is important to know the probabil-
ity that the maximum survival time exceeds t,

P (T(N),j > t) = 1−
∫ ∞
0

P (T(N),j ≤ t|Y0,j = y0,j)g(y0,j, γ0, α0)dy0,j,

where g(y, γ, α) is the density of G(γ, α). For a given Y0,j = y0,j, the
T1,j, . . . , TN,j are independent and identical distributed, as a result we have

P (T(N),j > t) = 1−
∫ ∞
0

P (Y1,j ≤ t− α0

αj
y0,j)

Ng(y0,j, γ0, α0)dy0,j

= 1−
∫ ∞
0

Ga(t− α0

αj
y0,j, γj, αj)

Ng(y0,j, γ0, α0)dy0,j,

where Ga(y, γ, α) is the distribution function of G(γ, α).

Maximum Survival for Truncated Observations

In the case of truncated observations, we analogously define the maximum
survival time in pool j, τT(N),j = max(τT1,j, . . . , τTN,j). We similarly obtain
the probability that it exceeds τ + t as follows:

P (τT(N),j > τ + t) = 1−
∫ ∞
0

P (τT(N),j ≤ τ + t|Y0,j = y0,j)g(y0,j , γ0, α0)dy0,j

= 1−
∫ ∞
0

P (τ < T1,j ≤ τ + t|Y0,j = y0,j)
N

P (T1,j > τ |Y0,j = y0,j)N
g(y0,j , γ0, α0)dy0,j

= 1−
∫ ∞
0

(Ga(τ + t− α0

αj
y0,j , γj , αj)−Ga(τ − α0

αj
y0,j , γj , αj))

N

Ga(τ + t− α0

αj
y0,j , γj , αj)N

g(y0,j , γ0, α0)dy0,j ,

where Ga(y, γ, α) is the survival function of G(γ, α).

4.2 The Distribution of Survival

Let St,j denote the number of individuals in pool j alive at time t, hence,

St,j =
N∑
i=1

I{Ti,j>t},
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where I{Ti,j>t} = 1 if Ti,j > t, and zero, otherwise. We are interested in
the distribution of St,j. Define Tj = (T1,j, T2,j, . . . , TN,j)

′ and t to be an N
dimensional vector where every component is equal to t.

P (St,j = 0) = P (Tj ≤ t) = P (T(N),j ≤ t),

P (St,j = n) =

(
N

n

)
P (T1,j > t, . . . , Tn,j > t, Tn+1,j ≤ t, . . . , TN,j ≤ t),

n ∈ {1, . . . , N − 1},
P (St,j = N) = P (Tj > t) = P (T(1),j > t),

where T(1),j = min(T1,j, ..., TN,j). We condition on Y0,j = y0,j and obtain, for
i ∈ {0, . . . , N},

P (St,j = n)

=

∫ ∞
0

(
N

n

)
P (T1,j > t|Y0,j = y0,j)

nP (T1,j ≤ t|Y0,j = y0,j)
N−ng(y0,j , γ0, α0)dy0,j

=

∫ ∞
0

(
N

n

)
P (Y1,j > t− α0

αj
y0,j)

nP (Y1,j ≤ t−
α0

αj
y0,j)

N−ng(y0,j , γ0, α0)dy0,j

=

∫ ∞
0

(
N

n

)
Ga(t− α0

αj
y0,j ; γj , αj)

nGa(t− α0

αj
y0,j ; γj , αj)

N−ng(y0,j , γ0, α0)dy0,j .

It is clear that conditional on Y0,j = y0,j, St,j follows a binomial distribution
where the probability of success is given by Ga(t− α0

αj
y0,j; γj, αj).

The Distribution of Survival for Truncated Lifetimes

Given truncation point τ , let τSt,j denote the number of individuals in pool
j alive at time t, hence,

τSt,j =
N∑
i=1

I{τTi,j>τ+t}.

Note that the members of this pool are all aged τ at inception (i.e. when
t = 0). As a result, we obtain that

P (τSt,j = n)

=

∫ ∞
0

(
N

n

)
P (T1,j > τ + t|Y0,j = y0,j)

nP (τ < T1,j ≤ τ + t|Y0,j = y0,j)
N−n

P (T1,j > τ |Y0,j = y0,j)N
g(y0,j , γ0, α0)dy0,j .

The distribution of the number of individuals alive is critical in valuing a bulk
annuity, which is an annuity on a portfolio of individuals. We investigate this
next.
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4.3 Annuity Valuation: Actuarial Present Value

Let At,j denote the value of a bulk annuity sold to members in pool j at time
t. The annuity pays $1 at the end of each year to the surviving members of
the pool. We are interested in the actuarial present value of A0,j ≡ Aj, the
price of such an annuity at inception.

Aj =
∞∑
t=1

St,jv
t,

where v = e−δ, the discount factor with constant force of interest δ. Alter-
natively, Aj could be represented using the individual lifetimes:

Aj =
N∑
i=1

∞∑
t=1

I{Ti,j>t}v
t.

Annuity Valuation for Truncated Lifetimes

Let τAt,j be the truncated analog of At,j and define τAj ≡ τA0,j. We obtain

τAj =
∞∑
t=1

τSt,jv
t,

alternatively,

τAj =
N∑
i=1

∞∑
t=1

I{τTi,j>τ+t}v
t.

The actuarial present value is obtained by taking the expectation of τAj. We
calculate this value under two different assumptions. The first considers the
dependence between the lifetimes, which means expectation is taken with
respect to the multivariate gamma distribution outlined above. The second
treats the lifetimes as independent, which means expectation is taken with
respect to a univariate gamma distribution. In both cases, the expected value
is obtained using numerical methods. We compare numerical integration with
simulation.

4.4 Numerical Results

Table 3 presents both numerical integration and simulation results for two
sets of parameter values and various portfolio sizes. The annuity valuation is
based on each surviving individual receiving $1 at the end of each year. The
results show that the dependence induced by the multivariate gamma (MVG)
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distribution does not play a significant role in the actuarial present value of
bulk annuities. In contrast, the uncertainty, as quantified by the standard
deviation, in the annuity valuation is severely affected by the presence of this
dependence. For the independent case the standard deviation scales with the
square root of the portfolio size. For the dependent case, the scaling factor is
much larger and increases with portfolio size significantly more than in the
independent case.

Parameter values

N 1 10 100 1 10 100
δ 2% 2% 2% 2% 2% 2%
α 0.5 0.5 0.5 0.5 0.5 0.5
α0 1.0 1.0 1.0 1.0 1.0 1.0
γ 35.0 35.0 35.0 30.0 30.0 30.0
γ0 5.0 5.0 5.0 10.0 10.0 10.0
τ 60.0 60.0 60.0 60.0 60.0 60.0

Theoretical results obtained with numerical integration

E[τAj ] MVG 15.81 158.11 1,571.99 15.73 157.24 1,482.70
Ind. 15.81 158.11 1,581.07 15.73 157.32 1,573.20

Simulation results

M (000’s) 1,000 10 10 10 10 10

Mean MVG 15.81 158.48 1,581.70 15.75 157.40 1,572.08
Ind. 15.81 158.86 1,588.39 15.75 158.95 1,589.29

Standard MVG 7.46 33.00 253.21 7.51 41.03 356.22
Deviation Ind. 7.46 23.42 74.59 7.51 23.54 75.00

Table 3: Annuity valuation.

Remark 5 The numerical integration we applied (using statistical comput-
ing software package R) tends to undervalue the bulk annuity. In various
scenarios, it is a marked undervaluation; see e.g. the last column of Table 3.
The source of this issue relates to inaccuracies when numerically calculating
P (τSt,j = n) for large n.

The model facilitates the assessment of capital requirements for an in-
surer allowing for dependence. Capital requirements based on the standard
deviation of the annuity values will be significantly higher than for the case of
independence, an assumption that usually underlies valuation using standard
actuarial techniques.
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5 Fitting Norwegian Population Data

We show how the model can be calibrated by fitting to Norwegian popu-
lation data obtained from the Human Mortality Database (HMD), Human
Mortality Database (2011). The HMD publishes aggregate mortality rates
and exposures rather than individual lifetimes. Therefore, we transform the
given mortality rates and exposure levels into crude lifetime data. Although
there are factors – such as migration – that must needs be addressed if the
goal is to obtain as accurate a picture of individual lifetimes as possible, we
abstract from these details to illustrate the broad results.

We make use of cohort data from birth years 1846-1898. These were the
only complete cohorts in the data at the time of acquisition. We consider each
of these 53 cohorts as a group or pool. We assume that all cohorts share the
same risk characteristics but with potentially varying levels of dependence.
That is, we incorporate the assumptions associated with the simplified case
discussed in Section 3.2.2. We have a total of 2, 399, 610 deaths; by applying
a truncation point of 60, this number decreases to 1, 234, 957.

We begin by applying Algorithm 2. Using this algorithm, we fit the
entire population in order to obtain an estimate of α. We obtain the estimate
α̂ = 0.87. The plot of the histogram versus the fitted gamma density function
is given in Figure 1.

With this estimate of α, we can apply either Algorithm 3 or the Barzilai-
Borwein procedure in order to obtain an estimate of γ. In this example, we
use the Barzilai-Borwein procedure, consequently we obtain γ̂ = 67.52. The
plot of the histogram versus the fitted gamma density function for the cohort
born in 1885 is given in Figure 2. For this particular cohort, the dependence
level is predicted to be Ŷ0,1885 = 6.26.

5.1 Adjusting the Data to Achieve a Better Fit

Figures 1 and 2 show that the theoretical distribution captures some of the
features of the survival distribution data but is not an ideal fit. This is a
common feature of many parametric survival distributions. In this section
we discuss a method of improving the fit by performing a simple adjustment
to the data. The adjustment we consider is the following,

x′i,j = ω − xi,j,

where xi,j denotes the lifetime observation and ω is some highest attainable
(theoretical) age. In our example, we set ω = 110, but we note that ω could
be set greater than the maximum observed lifetime. Ideally, ω would be
estimated from the data but for illustrative purposes we take it as given
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Truncated Deaths with Fitted Gamma Density
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Figure 1: Histogram of population deaths versus fitted gamma den-
sity function.

Truncated Deaths from Cohort 1885 with Fitted Gamma Density
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Figure 2: Histogram of deaths from those born in 1885 versus fitted
gamma density function.
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We operate under the assumption that the transformed data follows a
multivariate gamma distribution. Consequently the theory largely stays the
same. However, there is one critical difference, where the original data is trun-
cated from the left, the transformed data is truncated from the right. This
requires a new fitting procedure to be developed in order to estimate param-
eter values. To demonstrate the concept, we omit truncation considerations
and fit a straight forward un-truncated multivariate gamma distribution.

Truncated Deaths with Fitted (untruncated) Gamma Density
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Figure 3: Histogram of deaths versus fitted (untruncated) gamma
density function.

We fit the transformed data with a right truncation point of 60, which
corresponds to a left truncation point of 50 in the original data. The extension
of the truncation point ensures a slightly better fit. When fitting the entire
population, we make use of Algorithm 2, which reduces to equations (7) and
(8) with adjustment coefficients set to unity. When fitting the cohort from
1885, we make use of Algorithm 3 with the given value of α̂, which reduces
to equations (9) and (10) with adjustment coefficients set to unity.

Figure 3 shows the fit from the entire population; the relevant estimated
parameter is α̂ = 0.28. Figure 4 shows the fit from those born in 1885; the
additional estimated parameter is γ̂ = 9.24 and the predicted translation
point is Ŷ0,1885 = 0.09. The fact that Y0 is small could indicate a low level of
dependence, but could also imply that ω has been set too low.
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Truncated Deaths (1885) with Fitted (untruncated) Gamma Density
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Figure 4: Histogram of deaths from those born in 1885 versus fitted
(untruncated) gamma density function.

The fit from the transformed data looks promising in both scenarios,
that is, in fitting the entire population and fitting one cohort. These fitted
distributions improve once right truncation is accounted for in the parameter
estimation procedure. This is a topic for future research.

6 Conclusion

The aim of this paper is to assess the potential impact of lifetime depen-
dence within a pool of lives on annuity valuation and risk management. Un-
derlying our assumption of dependent lifetimes is the presence of systematic
changes in mortality, especially on a cohort level. We postulate the use of
the multivariate gamma distribution for two reasons. First, due to the fact
that the gamma distribution has previously been applied to model survival
times. And second, due to the manner in which the multivariate gamma
distribution induces dependence. That is, it exactly serves our underlying
assumption and allows for mortality to be categorized into systematic and
idiosyncratic components.

Parameter estimation is a practical impediment to the use of the multi-
variate gamma distribution. In our application, data is necessarily truncated.
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We resolve the issue of parameter estimation in the presence of truncation,
which we consider to be the main theoretical contribution. We apply the
model to assess the impact of dependence and find that the uncertainty is
severely impacted. This has serious consequences to the area of annuity
pricing and risk management, which we consider to be the main practical
contribution.

Finally, we fit Norwegian population data and recognize the shortcomings
of our model. However, as a result of this investigative research, we imme-
diately identify an adjustment that could lead to a much improved fit. We
intend to explore this improvement in further research. Other areas where we
look to improve our model include generalizing the underlying distribution
and carefully refining our parameter estimation approach.
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