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Abstract

The cost of capital is an important factor determining the premiums charged by life

insurers issuing life annuities. Insurers will be able to offer more finely priced annuities if

they can reduce this cost whilst maintaining solvency. This capital cost can be reduced by

hedging longevity risk with longevity swaps, a form of reinsurance. We assess the costs of

longevity risk management using longevity swaps compared to costs of holding capital under

Solvency II. We show that, using a reasonable market price of longevity risk, the market

cost of hedging longevity risk for earlier ages is lower than the cost of capital required under

Solvency II. Longevity swaps covering higher ages, around 90 and above, have higher market

hedging costs than the saving in the cost of regulatory capital. The Solvency II capital

regulations for longevity risk generates an incentive for life insurers to hold longevity tail

risk on their own balance sheets, rather than transfer this to the reinsurance or the capital

markets. This aspect of the Solvency II capital requirements is not well understood and

raises important policy issues for the management of longevity risk.

Keywords: capital management, solvency, longevity risk, reinsurance, securitization
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1 Introduction

Longevity risk is one of the largest, yet least understood, risks to which insurance compa-

nies and annuity providers are exposed [Crawford et al., 2008]. Annuity providers will incur

significant losses if mortality improves significantly more than expected. Longevity-linked

securities, with cash-flows linked to the longevity of an underlying population, have been

proposed as a way for life insurers to hedge this risk [Blake et al., 2006a]. Within the market

for longevity-linked securities, longevity swaps have become the most common transaction.

Longevity swaps are agreements between two parties to exchange fixed payments for floating

payments that vary with the mortality experience of an underlying reference population.

Longevity swaps are mostly structured as reinsurance transactions. The floating payments

of the swap match the mortality experience of the insured population. The swap is indemnity

based and hedges the actual experience of the lives, covering both systematic and idiosyn-

cratic risk, to eliminate any basis risk.

At present there is no standard model for pricing longevity swaps. Pricing is problem-

atic because the underlying assets, for example annuities and life insurance policies, are not

traded. Unlike standard fixed interest yield curves, forecast mortality rates are not based

on traded rates. Alternative approaches to pricing longevity-linked securities that have been

proposed include transform methods, risk-neutral pricing and a Sharpe ratio approach. Risk

neutral pricing is suited for life insurance contracts written on multiple cohorts and ages since

risk-neutral models can consistently capture the dependence between different policies in an

insurer’s portfolio (Schrager [2006] and Wills and Sherris [2011]). The main issue with all

of these methods is that there is limited data on the market price of mortality risk to which

models can be calibrated. Approaches other than risk-neutral pricing have other draw backs

however; the pricing transforms developed in the actuarial literature, including the Wang

[2000] transform, are widely criticised because they are not linear functionals and so yield ar-

bitrage opportunities [Kijima and Muromachi, 2008]. Furthermore the relationship between
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transforms for different cohorts and terms to maturity are unclear [Cairns and Dowd, 2006].

Similarly, the Sharpe ratio method makes no allowance for dependence between different ages.

A common feature of proposed pricing methods is that the market price of longevity risk is

determined by the volatility of the underlying survivor index. Figure 1 shows the volatility

of UK male survival rates for varying ages. Longevity risk over relatively short time horizons

is very low, but at horizons in excess of 10 years it increases very rapidly due to volatility of

the underlying survivor index [Cairns et al., 2006].

For longevity bonds, the reference cohort’s initial age determines the bond’s risk premium
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Figure 1: Variance of the survivor index for cohorts of UK males initially aged 60, 65 and
70. Based on UK Male life tables 1970 to 2009. Source: the Human Mortality Database.

more than the bond’s maturity. Cairns et al. [2006] estimate the premium for a 30-year bond

with a reference cohort aged 60 as 15.0 basis points, whereas the premium for a 20-year bond

with a reference cohort aged 70 is estimated as 26.1 basis points. That is, the uncertainty

in mortality rates at higher ages dominates the greater discounting of the distant cash flows

of the longer maturing bonds. The resulting high risk premiums reduce the attractiveness
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of long-term longevity-linked securities, especially if the cost of the longevity-linked security

exceeds the benefits it generates, for example from reduced risk-based capital requirements.

The use of longevity-linked securities by life insurers to hedge longevity risk has been as-

sessed in Blake et al. [2006b], Ngai and Sherris [2011], Dahl et al. [2008] amongst others.

Existing research considers the benefits of hedging using financial risk measures. For exam-

ple, Blake et al. [2006b] estimate the risk measures of value at risk and expected shortfall

for an annuity book hedged with a longevity bond. Dahl et al. [2008] were the first to study

hedging of systematic longevity risk using longevity-linked securities. They derive optimal

hedging strategies using the risk minimization framework. Ngai and Sherris [2011] quantify

how different hedging strategies influence an insurers’ cash flows and risk measures based on

accumulated surplus. Similarly, Norberg [2013] derives optimal hedging strategies using a

mean-variance criterion that amounts to minimizing the expected squared difference between

the total insurance payments and the terminal value of the hedge portfolio of longevity-linked

derivatives. Although these papers assess the financial risks associated with longevity hedg-

ing, the impact on capital requirements and, in particular, of the different terms and ages

used for hedging has not been considered.

Competition in the financial services industry has reinforced incentives for insurers to man-

age their cost of capital [Jones, 2000]. In perfect markets, hedging cannot contribute to the

creation of shareholder value1. In real-world markets, however, empirical evidence shows

that hedging reduces the cost of capital market imperfections including the costs of financial

distress and external financing [Stulz, 2001, Fite and Pfleiderer, 1995]. For the insurance

industry, reduction of the cost of capital is the primary source of value creation from hedging

[van Rooijen, 2013, Borger, 2010].

1For example, based on the Modigliani and Miller [1958] propositions, corporate financing decisions
including hedging cannot increase firm value in perfect capital markets.
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Capital requirements for insurers are determined in many countries based on the risk of

insolvency, typically over a one-year horizon. The Solvency II framework for Europe is simi-

lar to the regulatory requirements in other countries. Eling and Holzmuller [2008] compares

risk based capital standards in NZ, EU, the US and Switzerland and find that value at risk

and expected shortfall are used in most approaches, although there are differences in the

treatment of operational risk and the use of internal models. The US system is unique in be-

ing rules-based rather than principles-based. Several authors predict changes in the US will

bring it into line with Solvency II, in part due to the trend of global regulatory convergence

[Cummins and Phillips, 2009, Elderfield, 2009]. Solvency II provides a basis for considering

insurer risk base capital requirements that is relevant to many countries. For this reason

most recent research on insurance capital is done under the Solvency II framework, for ex-

ample [Braun et al., 2013].

This paper assesses longevity risk management from a cost of capital perspective. We quan-

tify the trade off between the costs and benefits of hedging longevity risk. The benefits arise

from reduction in the Solvency Capital Requirement (SCR) that would otherwise have to

be held against longevity risk under Solvency II. We consider different terms for hedging

longevity risk using a longevity swap. A stochastic mortality model and realistic risk premi-

ums are used to price longevity swaps with different terms to maturity, referenced to different

cohorts. These prices are compared to the resulting cost of capital saving under Solvency II.

The results demonstrate that the cost of hedging longevity risk over short time horizons is

low relative to the Solvency II cost of capital. The cost of medium-term to long-term swaps,

covering ages 90 and above, however, exceeds the cost of holding solvency capital.

The remainder of this paper is structured as follows. Section 2 introduces the model used to

price the longevity swap and the cost of the solvency capital requirements under Solvency

II. Section 3 describes the mortality data and the longevity-linked security data used to

5



calibrate the model. Section 4 presents the results on the cost of longevity swaps with differ-

ent terms to maturity, referenced to different cohorts, and the corresponding cost of capital

saving under Solvency II. We derive the optimal term over which longevity risk should be

hedged. Section 5 concludes.

2 Quantifying the Costs and Benefits of Hedging Longevity

2.1 Solvency capital requirements

Our analysis is based on the Solvency II SCRs. The SCR for each risk is calculated by

revaluating best estimate liabilities under a specific stress scenario. These SCRs are then

aggregated to arrive at the overall SCR. In this paper we exclusively focus on longevity risk.

The SCR for longevity risk under Solvency II is the amount of capital necessary to cover all

losses which may occur over a one-year horizon with a probability of at least 99.5%. This is

the smallest amount x for which

Pr(NAVt+1 > 0|NAVt = x) ≥ 99.5% (1)

where NAVt is the Net Asset Value at time t. NAVt is equal to the value of Assets at time

t less the value of best estimate liability (BEL) at time t, or At − BELt
2. The following

equivalent definition is commonly used in practice [Borger, 2010]:

SCRV AR(t) := argminxPr(NAVt −
NAVt+1

1 + it+1

> x) ≤ 0.005. (2)

In the Solvency II standard formula, an insurer’s overall risk includes market risk and op-

erational risk for which separate SCRs are computed. The SCR for longevity risk can be

calculated using 1 or 2 with At and BELt in the definition of NAVt corresponding to the

2Original rulings by the Committee of European Insurance and Occupational Pensions Supervisors define
the SCR in terms of ‘Available Capital’. The change in Available Capital can be approximated by the change
in Net Asset Value [Borger, 2010].
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assets and liabilities associated with all contracts exposed to longevity risk.

There is a standard formula approach to calculating the SCR, which is an alternative to

the internal model based approach. The standard formula sets the SCR according to the

change in NAV resulting from a one-off permanent shock to mortality rates that is equivalent

to a 1-in-200 year event (or 99.5% VaR). That is

SCRShock(t) := NAV (t)− (NAV (t)|Longevity shock). (3)

The longevity shock in the standard formula is a permanent reduction to best estimate mor-

tality of 20% for all ages [European Insurance and Occupational Pension Authority, 2011].

Under Solvency II the insurer must hold the SCR plus a risk margin (RM) as a loading

in addition to the best estimate liabilities [European Insurance and Occupational Pension

Authority, 2011]. The RM is the amount another insurer would require to take over the

insurance liabilities at the fair value on exit basis. Under the Solvency II standard formula

the RM is calculated (assuming a cost of capital of 6%) as RM = 6%
∑

t Z(0, t)SCRt, where

Z(0, t) is the time 0 price of a zero-coupon bond that pays one at the end of year t [European

Insurance and Occupational Pension Authority, 2011].

2.2 Hedging Instruments

A range of hedging instruments have been proposed for longevity risk including q-forwards

and longevity swaps. For example, a q-forward exchanges the realized mortality rate at some

future date for a fixed mortality rate agreed at inception. Longevity swaps are approximately

equivalent to portfolio of q-forwards, the difference being that they are based on survival

probabilities or s-forwards.
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A T year longevity swap can be constructed from a portfolio of 1, 2, · · · , T year q-forwards

[Blake et al., 2006b]. The cash flows for a longevity swap are shown in Figure 2. A longevity

swap involves a contract where the insurer (the fixed payer) pays the floating payer (typi-

cally a reinsurer) a set of fixed payments based on the expected level of a survivor index at

specified future dates plus a premium. In exchange the floating payer pays the reinsurer a

set of payments based on the actual level of a survivor index at specified future dates. If the

insurer pays the fixed leg of the swap, then in year t the insurer receives payments linked to

actual survival, S(x, t), the proportion of survivors aged x at time 0 and still alive at time

t. At the same time the insurer also pays the swap counterparty FŜ(x, t)(1 + πT ), where

Ŝ(x, t) is the expected proportion of survivors aged x at time 0 still alive at time t and πT

is the risk premium paid by the fixed payer for a T year swap3.

 

 
Annuitant 

 
Insurer / Annuity provider 
 

 
Swap Counterparty 

S (t) 

S (t) 

P (0) 

 (t) (1 + π) 

Figure 2: The cash-flows of a longevity swap.

3In a longevity swap the fixed leg payment is based on an estimate of future mortality experience, so
throughout we use Ŝ(x, t) to represent the expected future survivor index and S(x, t) to represent the actual
future survivor index.
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We focus on longevity swaps in the remainder of this paper since longevity swaps are the

most widely used longevity risk management strategy at present [Dahl et al., 2008]. This is

because longevity swaps have zero basis risk, whereas proposed longevity bonds expose in-

surers to basis risk because their coupon payments are linked to general population mortality

experience.

2.3 The impact of hedging on capital

An insurer can reduce its capital requirements by hedging its risk. If a risk is per-

fectly hedged then the insurer does not need to hold the SCR for that year. Buying a

T year longevity swap changes cash flow and capital requirements as shown in Table 1.

When a T year longevity swap is in place, in aggregate the insurer will only pay out ex-

pected longevity at each payment date, since it will receive the difference between actual

and expected longevity payments from the swap counterparty and it will pay actual to the

annuitants4

To add value, however, the cost of hedging must be less than the associated reduction

Table 1: Cash-flows and capital requirements under different hedge scenarios.
No hedge Buy a T year longevity bond

Payments S(x, t) in all years (1 + π)Ŝ(x, t) in years 1 to T
S(x, t) year T + 1 onwards

Capital SCR(t) in all years 0 in years 1 to T
required SCR(t) from T+1 onwards

in the cost of capital. A reduction in the SCR at t = 0 is a measure of the benefit of hedging

as is the cost of capital saving for the T years over which longevity risk is hedged. That

4A swap may be set up with alternative payment structures. For example, the swap counterparty could
pay the full actual amount each period to the insurer, and the insurer could pay expected to the swap
counterparty; however the structure is always set up such that in aggregate the insurer will only pay out
expected longevity at a point in time.
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is, holding a T -year hedge generates a notional saving of k%
∑T

t=1 Z(0, t)4SCR(t) at time

0, where k% is the annual cost of capital and 4SCR(t) is the capital reduction in year t

from holding the hedge. Under Solvency II, the cost of capital is set at 6% and the full risk

margin is 6%
∑∞

t=1 Z(0, t)SCR(t) in year 0. The cost of capital saving from hedging for T

years is determined by the change in the risk margin after the hedge is implemented.

2.4 Mortality model and risk neutral pricing model

We price the longevity swap based on the financial pricing mortality model in Wills and

Sherris [2011]. A main motivation for using the model is that it captures expected mortality

changes by cohort as well as dependence between cohorts, which is important for modelling

life insurance portfolios that span multiple cohorts.

The model is of a finite dimensional multivariate random vector of mortality rates µ(t) =

[µ(x1, t), · · · , µ(xN , t)], for ages x = [x1, · · · , xN ] at time t. It is based on the continuous

dynamics dµ(t) = [dµ(x1, t), · · · , dµ(xN , t)] driven by a stochastic diffusion process, such

that for initial age x,

dµ(x, t) = (a(x+ t) + b)µ(x, t)dt+ σµ(x, t)dW (x, t)

dW (x, t) =
N∑
y=1

δxiZy(t) (4)

where a, b and σ are constants, δxy is the dependence between shocks to µ(x, t) and µ(y, t)

and Zy(t) (y = 1, · · · , N) are independent and identically distributed normal random vari-

ables with mean 0 and variance 1. Equation (4) defines a system of equations for ages

x = [x1, · · · , xN ], with dependence between ages captured by the δxy terms. The expected

changes in mortality rates differ by cohort, as the drift term includes the constant b plus

a cohort varying term a(x + t). The volatility of µ(x, t) is a constant percentage σ, so the

variability of dµ(x, t) increases with µ(x, t) and is more variable for higher initial ages x and
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later times t.

The discrete time model used takes dt = 1, and is given by

∆µ(x, t) = (a(x+ t) + b)µ(x, t) + σµ(x, t)
N∑
y=1

δxyZy(t).) (5)

The dependence between shocks to mortality rates at different ages (the elements δxy where

x, y ∈ [50, 99]) can be estimated as the covariance of the detrended, standardised change in

mortality rates

∆µ(x, t)/µ(x, t)− (â(x+ t) + b̂)

σ̂
. (6)

The model above is defined on the probability space (Ω,F ,P), where P is the ‘real-world’

probability measure. For risk-neutral pricing, however, we must include a price of risk in the

model. From the Cameron-Martin-Girsanov theorem, the process dW (t) under an equivalent

risk-neutral probability measure Q is given by

dWQ(x, t) =
N∑
y=1

δxy(Zy(t)− λy(t)dt)

= dW (x, t)−
N∑
i=1

δxyλy(t)dt; (7)

where λy(t) is the price of mortality risk for systematic changes at age y and time t. The

continuous time dynamics of the mortality rate are given under a risk neutral probability

measure Q by inserting (7) into (4) to yield

dµQ(x, t) =

(
a(x+ t) + b− σ

N∑
y=1

δxyλy(t)

)
µQ(x, t)dt+ σµQ(x, t)dW (x, t), ∀x. (8)

11



with corresponding discrete time dynamics.

The prices of risk should be calibrated to market price data if they were available. However

the capital market for longevity bonds has yet to develop. The longevity swap market is

a private over-the-counter market5. To allow a simpler structure for the market price of

longevity risk, we assume only a single ‘aggregate’ price of risk such that (8) becomes

dµQ(x, t) = (a(x+ t) + b− σλ)µQ(x, t)dt+ σµQ(x, t)dW (x, t). (9)

The aggregate price of risk, λ, is calibrated to match available market price data.

2.5 The pricing formula

We price longevity swaps over different terms to maturity and under different assumptions

for λ. For a T year swap for a notional amount F , in year t < T the cash flow to the fixed

payer is FS(x, t) and the cashflow to the floating payer is FŜ(x, t)(1 + πT ). Using risk-

neutral valuation, the value of a swap to the fixed payer at time 0 is the sum of the present

value of all expected cash flows under the risk neutral probability measure Q. Under the

standard assumption that the development of mortality rates over time is independent of

the dynamics of the term structure of interest rates, the value of a swap to the fixed payer

at time 0 is

V (0) = F

T∑
t=1

Z(0, t)EQ(λ)S(x, t), (10)

where T is the time to maturity (in years). That is, the value of the swap is the sum of

the forecast survival indices under the risk neutral probability measure Q as EQ(λ)S(x, t) =

5For example, there were nine publicly announced longevity swaps in the U.K. in 2008, covering five
insurance companies’ annuity books, three private sector pension funds and one local authority pension
fund. The largest to date, covering 3 billion GBP of pension liabilities, was the longevity swap for the
BMW (U.K.) Operations Pension Scheme, arranged by Deutsche Bank and Paternoster in February 2010,
and involving a number of reinsurers, including Hannover Re, Pacific Life Re and Partner Re [Blake et al.,
2011].
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e−
∫ t
0µQ(x, s)ds discounted at the risk-free interest rate.

The swap is priced so that no payment changes hands at the inception of the trade. This

means that the present value of the fixed and floating legs of the swap at time 0 must be

equal, so that
T∑
t=1

Z(0, t)EQ(λ)S(x, t) =
T∑
t=1

Z(0, k)Ŝ(x, t)(1 + πT ). (11)

Pricing a longevity swap is therefore equivalent to searching for a premium πT that satisfies

(11). Mathematically, we solve the following equation for πT :

πT =

∑T
t=1 Z(0, t)EQ(λ)S(x, t)∑T

t=1 Z(0, t)Ŝ(x, t)
− 1. (12)

We compute EQ(λ)S(x, t) by Monte Carlo simulations of (9), using estimated values of a, b,

σ and δxy∀x, y ∈ [50, 99], and the following steps:

• Obtain 10,000 sample paths of ∆WQ(x, t) under the risk neutral probability measure

by simulating 10,000 random normal variables Zy(t) for each age and evaluating (7)

• Given the sample path of ∆WQ(x, t), compute future death probabilities in annual

time steps as µQ(x, t) = µQ(x, 0) +
∑t

y=1 ∆µQ(x, y), where ∆µQ(x, y) is given by (8)

• Average across all 10,000 realisations of µ(x, t) by age to get EQ(λ)µ(x, t), the mean of

the future death probabilities under Q

• Finally set EQ(λ)S(x, t) =
∏t

s=0(1− EQ(λ)µ(x, s)).

The fixed payment basis, Ŝ(x, t), is based on actuarial best estimate assumptions of 2002

UK Male mortality projected forward using 25 year average annual age-specific improvement

rates. Once πT has been estimated the cost of the swap is calculated as the present value of
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the premium payments on the fixed leg, given by

π̂T

T∑
t=1

Z(0, t)Ŝ(x, t). (13)

3 Results

3.1 Assumptions

We assume a discount rate of 4% per annum for all maturities consistent with Cairns

et al. [2006]. The cost of capital is set to 6%, its current calibration in the Solvency II

standard model. Borger [2010] observe that the cost of capital rate of 6% corresponds to

Sharpe ratios in the market which are of reasonable magnitude.

Prices are calculated for UK males with a purchase price for a life annuity of $100,000.

We assume that the insurer uses a best estimate basis for pricing. The same basis is as-

sumed for payments in the fixed leg of the swap, and we assume the swap is indemnity based

for the insured population.

We assume 100% capital relief for fully hedged positions under Solvency II. We do not

include profit loading, tax or frictional costs, or adjust for Solvency II capital requirements

other than those for longevity risk.

3.2 Mortality model

The mortality model was fitted to observed UK male population data for the age range

x = 50, · · · , 99 and time period t = 1961, · · · , 2002. Central death rates were obtained from

the Human Mortality Database, University of California, Berkeley (USA). We use the central

death rates because under the assumptions that the force of mortality is constant over each

integer age and calendar year, so that µ(x + u, t + s) = µ(x, t) for integers x and t and all

14



0 ≤ (s, u) ≤ 1, if the size of the population at all ages remains constant over the calendar

year it follows that

µ̂(x, t) = m(x, t),

where m(x, t) is the central death rate between age x + t and age x + t + 1. The observed

male mortality rates are displayed in Figure 3.

Maximum likelihood estimation was used to estimate the parameters of the ∆µ(x, t) process

in Equation 6. Simultaneously solving the maximum likelihood equations for â,b̂ and σ̂ (refer

to p. 10 Wills and Sherris [2011]) yields the parameter estimates in Table 2. Analysis of the

Table 2: Parameter estimates for the Wills and Sherris (2008) mortality model fit to UK
male mortality rates 1961 to 2002

Parameter MLE
a -0.0007
b 0.1343
σ 0.0430

model residuals indicated that the model fits the data well. The analysis of fit is based on

the standardised residuals, defined as

r(x, t) =
∆µ(x, t)/µ(x, t)− (â(x+ t) + b̂)

σ̂
(14)

These residuals are illustrated in Figure 4. The plot indicates that the assumption that the

residuals are normally distributed with mean 0 and variance 1 is reasonable. There are no

trends in either the age or the time dimension, and the residuals are randomly distributed

around zero. The model fit is confirmed by the residual descriptive statistics which show

that standard error of the mean estimate is small, and the standard deviation of the residuals

is very close to 1.
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Figure 3: Observed UK male mortality 1961 to 2002

Figure 4: UK male 1961 to 2002 fitted residuals

16



3.3 Market price of longevity risk

We determine values for λ based on available market prices. In the case of longevity

derivatives there is a shortage of observed market prices for these securities. Previous au-

thors have estimated values of λ based on the longevity bond announced by BNP Paribas

and the EIB in 2004, see for example, Cairns et al. [2006]. The BNP/EIB longevity bond is

a 25-year amortizing bond with coupon payments that are linked to a survivor index based

on the realized mortality rates of English and Welsh males aged 65 in 2002. We calibrate

to the price of risk implied in the European Investment Bank (EIB)/BNP Paribas longevity

bond issue announced in November 2004. The bond did not sell, however, suggesting that

models calibrated to this data may include a conservative price of risk. For this reason, we

test robustness of our results by using a range about the calibrated value for the price of risk.

The face value of the bond is 540 million and the initial coupon is 50 million. The index

S(x, t) on which the coupon payments are based is defined as follows:

S(x, 0) = 1

S(x, t) = S(t− 1)(1−m(64, t)) (15)

where t = 1, 2, · · · , 25 and the valuation year t = 0 is 2002. In each year t the bond pays a

coupon of 50S(x, t) million dollars.

The issue price was determined by BNP Paribas using two criteria. First, the anticipated cash

flows were based on the 2002-based mortality projections provided by the UK Government

Actuary’s Department (GAD). Second, each projected cash flow is priced by discounting at

LIBOR minus 35 basis points (bp). From these criteria we estimate the issue price per dollar
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coupon quoted in the contract as

V (0) =
25∑
t=1

Z(0, t)eδtS(x, t), (16)

where δ is the longevity risk premium6, Z(0, t) is the price at t = 0 of a fixed-principal zero

coupon bond that pays 1 at time t, and S(x, t) is the projected survivor index in year t based

upon the GAD projections available at time 0. For the BNP/EIB bond δ = 0.002. Because

the EIB curve usually sits at 15bp below LIBOR, so pricing at LIBOR minus 35 bp implies

an additional 20 bp discount for longevity risk. Finally Cairns et al. [2006] suggest using

zero-coupon prices of Z(0, t) = 1.04−t to price this bond. As shown in the first column of

Table 3, the price at issue of the bond on this basis is V (0) = 11.44.

In contrast, the risk-neutral approach to pricing assumes that

VQ(λ)(0) =
25∑
t=1

Z(0, t)EQ(λ)[S(x, t)] (17)

where λ is an adjustment to the real world mortality process that captures mortality risk

preferences under the market calibrated measure Q, as compared to the real world measure

P . λ creates a reduction in the mortality drift (see Equation 9); so higher λ results in im-

proved longevity assumptions under Q and a larger risk loading in longevity-linked securities.

We calibrate λ such that the risk-neutral price produced by the model matches the mar-

ket price of the EIB bond The results are shown in Table 3. When λ = 0.5 the price

produced by our model (11.42) closely matches the observed market price of 11.44. This

market price of risk is comparable to the range of values shown in Wills and Sherris [2010]

derived by calibrating the model to the Market Insurance Linked Security Data from Lane

6δ can be interpreted as an average risk premium per annum, and is related to but distinct from λ the
market price of longevity risk. This risk premium depends upon the term of the bond and on the initial age
of the cohort being tracked [Cairns et al., 2006].
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and Beckwith [2007]. When the Cairns et al. [2006] two factor model is calibrated to the

EIB bond issue, however, a lower value of λ results. This is because of differences between

the mortality model in Cairns et al. [2006] and the model in Equation 9. In the Cairns et al.

[2006] model, risk comes from two factors driving the mortality rates, and a risk adjustment

of λ = 0.175 on each factor is derived. In the model in this paper there is only one price of

risk, acting through the adjustment −σλ on the trend. With only one risk factor a higher

value of λ = 0.5 is expected.

We test robustness of the results to a low market price of risk scenario of λ = 0.25 and

a high market price of risk scenario of λ = 0.75.

3.4 Longevity risk premium

We calculate the premium charged based on the calibration of the fixed leg of longevity

swaps for cohorts of starting age 60, 65 and 70, and for terms T = 0, 1, 2, · · · , 30. Table

4 shows that the risk premium increases non-linearly at older ages. Similar to findings in

Cairns et al. [2006] the premium increases with both term and the initial age of the reference

cohort. This is a result of the greater volatility that is associated with the higher mortality

rates of older ages compared with younger ages. In addition, the risk premium increases

in line with the market price of longevity risk. The risk premiums are also consistent with

pricing q-forward contracts as in Loeys et al. [2007] where the risk adjustment to expected

future mortality rates is based on aged based historical volatility with:

qFx,t = (1− SRσxt)E(qx,t) (18)

where SR is the Sharpe ratio for the q-forward, E(qx,t) is the expected mortality rate under

the real-world measure, and σx is the historical (percentage) volatility of the mortality rates

or σ2
x = V ar(∆qx,t

qx,t
).
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Table 3: Longevity bond expected cash flows and market prices under various assumptions
for the market price of longevity risk. To calibrate the market price of longevity risk to the
EIB issue, we fit the mortality model to the data for UK males over the period 1961 to 2002,
as in Cairns et al. (2006). The market price, V (0), is calculated in column 1 by evaluating
Equation (15) at an interest rate of 4% p.a. with a risk premium of δ = 0.002. In column
2 and column 3 we solve for the risk-neutral bond price by evaluating Equation (16) with
λ = 0.2 and λ = 0.5 respectively, until the risk-neutral bond price matches the market price
of 11.44.

t V(0) EQ(λ)[S(x, t)]
δ 0.002 - -
λ - 0.2 0.5
1 0.984 0.983 0.983
2 0.966 0.964 0.965
3 0.948 0.945 0.946
4 0.928 0.925 0.926
5 0.907 0.903 0.906
6 0.885 0.881 0.884
7 0.861 0.857 0.862
8 0.836 0.833 0.840
9 0.810 0.807 0.816
10 0.782 0.781 0.792
11 0.752 0.753 0.767
12 0.721 0.725 0.742
13 0.689 0.695 0.716
14 0.655 0.665 0.690
15 0.620 0.635 0.663
16 0.583 0.604 0.636
17 0.545 0.572 0.609
18 0.506 0.540 0.581
19 0.466 0.508 0.553
20 0.426 0.476 0.526
21 0.385 0.444 0.498
22 0.345 0.413 0.471
23 0.305 0.382 0.443
24 0.267 0.351 0.416
25 0.230 0.321 0.390
Price 11.44 11.07 11.42
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The margin charged for longevity reinsurance is a fixed proportion of the annuity payments

for the life of the contract. The margin is based on the best estimate liability allowing for

mortality improvement and the mortality experience of the insurer. The margin depends on

many factors but is typically around 50bp in the interest rate used to value the expected

payments. On an expected benefit payments basis this is approximately equivalent to a 5%

reinsurance premium loading on each expected payment for a bond issued on a cohort of 65

year olds for life [Blackburn et al., 2012]. Comparing the premiums in Table 4 to this value,

we see that the premium for swaps issued for terms of over 25 years to cohorts aged 65 or

older is above 5% in almost all cases.

3.5 Optimal term (to minimize cost of capital)

If an insurer were to hedge longevity risk by entering into a swap this would lower the

amount of solvency capital they were required to hold under Solvency II. For the swap to

generate positive cash flow the decrease in the SCR at t=0, or the reduction in cost of capital

as measured by the Solvency II risk margin, needs to be larger than the hedging costs. To

assess when swaps are cost-effective, we calculate the cost of hedging longevity over different

terms to maturity and the SCR required under Solvency II before and after hedging. Figure

5 shows the decrease in the SCR, the cost of capital saving (or decrease in the risk margin)

and the hedge costs as a function of term to maturity for starting ages x = 60, 65, 70 and

market price of longevity risk λ = 0.25, 0.50, 0.75.

The main result is that hedging longevity is not cost effective at ages beyond 85 to 90,

even if the market price of longevity risk is low, for initial ages 70 and below. Extending

the term of the swap increases the hedge cost non-linearly due to the higher volatility of

mortality rates in old age (past 85). As the initial age decreases, however, the hedge cost

also decreases because there are fewer survivors past age 85. The rate of increase in the
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Figure 5: The cost of purchasing a T year swap vs. the associated cost of capital saving (RM)
and the capital released in year 1. From left to right, graphs are shown for increasing starting
age, and from top to bottom graphs are shown for increasing market price of longevity risk
(25bp, 50bp and 75bp respectively) (SCR)

swap cost relative to its term is more pronounced when the market price of longevity risk

is higher, as the market price of longevity risk has a proportionally greater impact on the

survival probability at higher ages. On the other hand, the SCR increases in line with the

change in best estimate liabilities under an adverse shock scenario. At long terms and old

ages the marginal increase in the SCR is much smaller than the marginal increase in the cost

of hedging because the best estimate liabilities increase proportionally less than the volatility

in the underlying survivor index.

Table 5 summarises the optimal term for hedging longevity risk. The optimal term cor-
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responds to the cross over point between the hedge cost and the SCR saving in each plot

in Figure 5. The results show that the initial age of the reference cohort and the market

price of longevity risk significantly impact on the term over which it is cost effective to hedge

longevity risk. For low, medium and high values of λ, the market price of hedging longevity

risk is greater than the SCR released as a result of hedging at ages over 85 to 90.

Table 5: Optimal term for hedging longevity risk
Scenario 1 2 3 4 5 6 7 8 9
λ (bp) 25 25 25 50 50 50 75 75 75
Start age 60 65 70 60 65 70 60 65 70
Cross-over term > 30 30 25 30 25 20 23 19 15
Cross-over age > 90 95 95 90 90 90 83 84 85

4 Conclusion

We consider longevity swaps assuming reasonable market risk premiums for longevity risk

and compare this with the cost of capital required if the risk is unhedged. We determine the

optimal term over which longevity risk should be hedged using swaps of different maturities

under solvency capital requirements in Solvency II. Longevity risk for ages above 85 to 90

are shown to be expensive to hedge relative to the saving they generate in terms of cost of

capital. The results are robust to variation in the market price of longevity risk and are not

specific to the use of the Solvency II standard formula7.

The main factor driving the results is that, as the term of the longevity swap increases,

its market price increases in line with the volatility of the underlying survivor index. On the

other hand, capital requirements increase in line with the change in the best estimate liabili-

ties under a stress scenario. As the volatility of the survivor index increases proportionately

more than the best estimate liabilities at higher ages, the hedge cost exceeds the reduction

7On average, Solvency II internal model results are very close to those derived by the Solvency II standard
formula [European Insurance and Occupational Pension Authority, 2011]. This is not surprising given the
Standard formula is designed to give comparable results to an internal model approach.
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in capital requirements it generates by the time the cohort is aged 85 to 90.

Long-term longevity-linked securities are not a cost-effective means of hedging longevity

risk at higher ages compared to the capital costs under Solvency II. Reinsurance can cost

less than market-based longevity-linked securities, as reinsurers benefit from diversification

by adding longevity risk to a portfolio containing mortality risk. Longevity risk can also

be managed through the design of the individual contracts by designing the payments to

depend upon the performance of the entire portfolio [Norberg, 2013]. Examples of contract

structures which reduce longevity risk are with-profits contracts and index-linked contracts

where payments depend on the actual mortality experience of the insured portfolio. For in-

force business contract design is not an option, so if cost-effective reinsurance is not available

and long-term swaps are costly then life insurers are likely to accumulate longevity risk on

their balance sheets. This incentive arises partly from solvency regulations, such as Solvency

II, that set capital requirements at a difference in best estimate liabilities under a ‘1 in 200

year’ shock.

In summary, while significant progress has been made on the design and pricing of longevity-

linked securities, these instruments are not a panacea for life insurers and annuity providers.

We conclude that, given current risk based solvency requirements, that longevity-linked

securities should be considered along with risk sharing product designs, especially for man-

agements of this risk at the oldest ages.
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