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Abstract

Stochastic mortality models have been developed for a range of appli-
cations from demographic projections to financial management. Financial
risk based models build on methods used for interest rates and apply these to
mortality rates. They have the advantage of being applied to financial pricing
and the management of longevity risk. Olivier and Jeffery (2004) and Smith
(2005) proposed a model based on a forward-rate mortality framework with
stochastic factors driven by univariate gamma random variables irrespective
of age or duration. We assess and further develop this model. We generalize
random shocks from a univariate gamma to a univariate Tweedie distribution
and allow for the distributions to vary by age. Furthermore, since dependence
between ages is an observed characteristic of mortality rate improvements, we
formulate a multivariate framework using copulas. We find that dependence
increases with age and introduce a suitable covariance structure, one that is
related to the notion of a minimum. The resulting model provides a more
realistic basis for capturing the risk of mortality improvements and serves to
enhance longevity risk management for pension and insurance funds.

Keywords: longevity risk, Olivier-Smith model, forward-rate mortality frame-
work, minimum covariance pattern, copulas

1d.h.alai@kent.ac.uk
2k.ignatieva@unsw.edu.au
3m.sherris@unsw.edu.au



1 Introduction

A variety of empirical studies across many developed nations show that mortality
trends have been improving stochastically; see e.g. CMI (2005), Luciano and Vigna
(2005), Blake et al. (2006), Liu (2008), and Blackburn and Sherris (2012). Numerous
stochastic mortality models proposed in the literature apply extensions of interest
rate term structure modelling, known as short-rate models. In particular, the Cox-
Ingersoll-Ross (CIR) model, Cox et al. (1985), has been adapted in Luciano and
Vigna (2005), who use a time inhomogeneous version of the process to model the
mortality dynamics. Furthermore, Biffis (2005), Russo et al. (2010), and Blackburn
and Sherris (2012) develop a variety of affine frameworks extended from interest
rate term structure modelling. Blake et al. (2006), Cairns et al. (2006), Bauer
(2006) and Bauer and Ruß (2006) demonstrate that if mortality risk can be traded
through securities such as longevity bonds and swaps, then the techniques developed
in financial markets for pricing bonds and swaps can be adapted for mortality risk.
Such models have the advantage of being able to incorporate a price of longevity
risk and have applications to the valuation of mortality linked contracts, which can
be used to mitigate longevity risk on life insurance products, including annuities. A
typical underlying assumption in these models is that mortality rates are Gaussian.

An alternative to short-rate models is provided by forward-rate approaches that
model forward forces of mortality and forward survival probabilities. Olivier and
Jeffery (2004) and Smith (2005) apply a forward-rate mortality framework with
stochastic factors driven by univariate gamma random variables irrespective of age
or duration. Although the model is conceptually interesting, not much has been
done to assess the validity of the model assumptions. In addition to restricting the
stochastic factors to identical gamma distributions, another critical assumption is
that of independence amongst these factors across age. We examine these assump-
tions using England and Wales female mortality data for 1960 to 2009; a dataset
used in Cairns (2007).

Based on the empirical analysis, we generalize the Olivier-Smith model in order
to provide a more realistic basis for capturing the risk of mortality improvements.
Previous studies, e.g. Wills and Sherris (2010) and Jevtić et al. (2013), have veri-
fied that dependence plays a critical role in mortality modelling. A more realistic
risk factor structure that captures such features of mortality data has the poten-
tial to provide enhanced risk management techniques for mitigating the longevity
risk faced by pension funds and annuity providers. We assume random shocks are
driven by non-identical univariate Tweedie random variables. We, thereby, allow
the stochastic components to originate from distributions with varying levels of
volatility. Our empirical investigations show this to be highly desirable. Further-
more, by specifying the Tweedie distribution, we can readily incorporate a relevant
set of marginal distributions. We test both the Gaussian and gamma distributions
and provide evidence that the gamma is the more suitable of the two. Since depen-
dence between ages is an observed characteristic of mortality rate improvements,
we further generalize the model by formulating a multivariate distribution that in-
corporates age dependence using copulas. In order to accomplish this we introduce
a new covariance pattern, one that is governed by the minimum of the two age
covariates. That is, the correlation between mortality rates of two ages depends
only on the least of the two; this notion is applied to the age range 49-99.
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Organization of the paper: In Section 2 we introduce the necessary notation
for the forward-rate mortality framework and describe the Olivier-Smith model.
We assess the model using data from England and Wales in Section 3. In Section
4 we introduce a univariate Tweedie generalization and in Section 5 consider a
multivariate framework using copulas. Section 6 concludes the paper.

2 The Olivier-Smith Model

Let rt denote the short rate at time t, and let Bt be the cash account defined as

Bt = exp

∫ t

0

rsds.

Let µ(t, x + t) denote the force of mortality at time t for age x + t. This implies
that x is the age at time zero. The age-specific survivor index is given by

S(t, x) = exp

∫ t

0

−µ(s, x+ s)ds.

The survivor index S(t, x) is the probability an individual aged x at time zero
survives to time t. Notice the similarities of the cash account and the survivor index.
Both are based on an instantaneous process. In the case of the cash account, the
short rate; in the case of the survivor index, the force of mortality. However, unlike
the short rate, the force of mortality also includes an age component. Clearly,
B0 = S(0, x) = 1; with the restriction of negative interest rates and forces of
mortality, we have that the cash account increases and the survivor index decreases.

Consider an asset, call it a zero-coupon longevity bond, that pays BTS(T, x)
at maturity T . Let L(t, T, x) denote its price at time t. Given that the pay-off is
tied to the cash account, it has no market interest rate risk. The longevity bond is
strictly exposed to longevity risk. Under the traditional risk neutral measure Q we
have that

L(t, T, x) = BtEQ

[
B−1T

(
BTS(T, x)

)∣∣∣Ft],
where Ft is the filtration representing the evolution of interest rates and mortality
up to an including time t. It is clear that this result depends on the existence of an
arbitrage-free market, which is clearly not the case. Therefore, as pointed out in
Norberg (2010), the application of risk-neutral pricing could be called into question.
It is not our intention to enter this debate, rather to demonstrate the results under
these principles and further encourage the emergence of a longevity bond market.

Therefore, we assume there exists probability measure Q such that the dis-
counted prices of longevity bonds are Q-martingales. We do not assume a unique
martingale measure. For model assessment purposes, see Section 3, we work with
the historical measure. This is appropriate since we are most interested in volatility
and correlation. We have

L(t, T, x) = BtEQ[S(T, x)|Ft]

= Bt S(t, x)EQ

[
exp

∫ T

t

−µ(s, x+ s)ds
∣∣∣Ft]

= Bt S(t, x) p(t, t, T, x),
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where, p is the mortality forward-rate defined, in general, as

p(t, T1, T2, x) = EQ

[
exp

∫ T2

T1

−µ(s, x+ s)ds
∣∣∣Ft].

Therefore, p(t, T1, T2, x) is the probability an individual age x at time zero survives
to time T2 given survival to time T1, based on available information Ft. For clarity,
we describe the indices of p in greater detail:

• t is current time,

• T1 is the forward-time, that is, the time to which survival is conditioned from
time zero,

• T2 the maturity-time, that is, the time to which survival is measured from
time zero; a result is that T2−T1 is the time-horizon of the forward mortality
rate,

• and x is the age at time zero, which implies that x+ T1 is the effective age of
the forward mortality rate, we refer to this age as the forward-age.

The martingale property implies

p(t, t, T, x) = EQ[p(t+ 1, t, T, x)|Ft]. (1)

The Olivier-Smith model is given below; see Olivier and Jeffery (2004), Smith
(2005).

Model. For all ages x and forward-times T = t, t+ 1, . . .

p(t+ 1, T, T + 1, x) = p(t, T, T + 1, x)b(t,T,T+1,x)G(t+1),

where G(1), G(2), . . . are independent and identically distributed gamma random
variables with shape and rate parameter α, such that EQ[G(t)] = 1 and V arQ(G(t)) =
1/α. Furthermore, the b(t, T, T + 1, x) are Ft-measurable bias correction functions
given by

b(t, T, T + 1, x) = −αp(t, t, T, x)−1/α(p(t, T, T + 1, x)−1/α − 1)

ln p(t, T, T + 1, x)
.

For an arbitrage-free market, we require the martingale property, that is, equa-
tion (1) to be satisfied. Consequently, we obtain

p(t, t, T, x) =
αα

(α−
∑T−1

u=t b(t, u, u+ 1, x) ln p(t, u, u+ 1, x))α
;

see e.g. Cairns (2007) for the details of this derivation, which rests on standard
properties of the gamma distribution and the use of moment generating functions.

The model restricts the stochastic nature of mortality evolution by imposing
gamma, Γ(α, α), random variables. Henceforth, we generalize this stochastic com-
ponent and make use of the notation Z(t+ 1, T, T + 1, x), where

Z(t+ 1, T, T + 1, x) =
ln p(t+ 1, T, T + 1, x)

ln p(t, T, T + 1, x)
.
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3 Model Assessment

The Olivier-Smith model makes three assumptions regarding the stochastic mortal-
ity component. The first is that of a gamma distribution. The second is that the
distribution that generates the components does not depend on time t, forward-
time T , or age at time zero x; that is, that mortality components are identically
distributed. Lastly, that the components are mutually independent. We presently
investigate the validity of these assumptions using real data. We assume b = 1 and
treat population mortality rates as risk neutral.

In a risk neutral framework with constant annual forces of mortality and one-
year forward rates, we have, for all t, all x, and T = t− 1, . . . , ω − 1− x,

p(t, T, T + 1, x) = exp{−µ(t, x+ T )},

where ω is the maximum attainable age. Notice that the above formulation of the
forward rate does not include any imposed improvement trend. That is, the forward
mortality probability for an individual aged x in T years is taken from an individual
presently aged x + T . The reason for this is that any inclusion of trend must
necessarily be a part of bias correction functions b. Since it is our aim to isolate the
random component in this empirical analysis, considering an improvement trend
would have no added benefit, it would merely augment b, leaving the stochastic
mortality component Z unchanged.

We define for all t, all x, and T = t, . . . , ω − 1− x,

Z(t+ 1, T, T + 1, x) =
ln p(t+ 1, T, T + 1, x)

ln p(t, T, T + 1, x)
=
µ(t+ 1, x+ T )

µ(t, x+ T )
. (2)

We use female central mortality rates from the Human Mortality Database (2013)
for England and Wales Total Population for the period 1960-2009, and ages 0-105
(ω = 106). We extract observations of Z(t+ 1, T, T + 1, x) from the data. England
and Wales data was selected since it is a commonly used benchmark dataset.

3.1 Independent Distributions

In this section, we investigate whether the stochastic components are independent.
We address this in two ways: by considering the linear correlation structure between
appropriately selected sub-samples, and applying a principal component analysis.

Correlation Analysis

We explore the correlation structure between the stochastic mortality components
over time and forward-age. Figure 1 suggests no particular dependence pattern
over time; roughly 90% of the correlations have absolute value less than 0.35. That
is, the collection of observations of the stochastic component from calendar year s
appear uncorrelated with the collection from calendar year t 6= s. This is evidence
of independence over the time dimension.

Figure 2 provides contour plots of correlation between the stochastic compo-
nents over forward-age. In contrast to the contour plots over time, we do notice
varying levels of correlation over forward-age, especially amongst the older ages.
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Figure 1: Correlations of Z(s+ 1, s, s+ 1, x) and Z(t+ 1, t, t+ 1, x)

The correlation appears very volatile for the younger forward-ages. This is a tech-
nical consequence of having comparatively smaller sample sizes for forward-ages
0-48. Furthermore, correlation patterns are difficult to discern when centenarians
are included. This is related to the high volatility of mortality data for centenari-
ans. Consequently, we provide the contour plot for ages 49-99 in the second panel
of Figure 2. Lighter shades of gray indicate higher positive correlation; the plot
provides clear evidence that correlation increases with forward-age.

Principal Component Analysis

In the previous section we found evidence that the stochastic mortality components
are correlated by forward-age, especially pronounced for the older ages. In order
to further investigate this form of dependence we perform a principal component
analysis (PCA) for the random components taken with respect to different forward-
ages. We focus on forward-ages 49-99; represented in the second panel of Figure 2.
Therefore, with 49 years of observations, we obtain a 51 by 49 matrix of stochastic
components by forward-age and time.

PCA is applied to multivariate data in order to take advantage of possible redun-
dancy due to dependence. By using linear combinations of the original variables,
we transform the 51 correlated variables (stochastic components by forward-ages)
into uncorrelated ones of a lower dimension. In general, PCA may either be applied
to the covariance, or correlation matrix. PCA applied to the correlation matrix is
typically used when variables are measured in different units. Since this is not the
case in our data, we elect to apply PCA to the covariance matrix. In addition,
standardising produces data with the same variation. This is not desirable since we
want to preserve differences in variation by forward-age.
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Figure 2: Correlations of Z(t+ 1, t, t+ 1, x− t) and Z(t+ 1, t, t+ 1, y − t)
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Table 1: PCA Results

Eigenvalue Individual Variance Cumulative Variance
λ1 0.2818 0.2818
λ2 0.2096 0.4915
λ3 0.1416 0.6331
λ4 0.1028 0.7359
λ5 0.0434 0.7793
λ6 0.0312 0.8104
λ7 0.0214 0.8319
λ8 0.0167 0.8485
λ9 0.0156 0.8641
λ10 0.0138 0.8779
λ11 0.0122 0.8901
λ12 0.0112 0.9013
λ13 0.0103 0.9116
λ14 0.0096 0.9213
λ15 0.0074 0.9287
λ15 0.0068 0.9355

Table 1 summarises the results of the PCA applied to the covariance matrix.
Note that as a criteria for deciding on the number of components, one typically
chooses the number of components that cumulatively account for a meaningful
percentage of the variance (typically around 70%). We select the first 4 components
since they account for approximately 74% of the variance; see Table 1.

Figure 3 shows the top 4 principal components. They represent key movement
in the random component by forward-age. We observe that some factors affect the
stochastic components irrespective of forward-age, while others affect stochastic
components from younger and older forward-ages quite differently. For example,
the first principal component, which explains approximately 28% of the variation,
exhibits a clear upward trend. This indicates that stochastic components from older
forward-ages are more influenced than those from lower forward-ages. This confirms
the result from Figure 2 that correlation increases by forward-age. Although the
third and fourth principal components exhibit a downward trend, they are of less
significance since they collectively account for less than 25% of the variance.

Finally, the biplots in Figure 4 show the magnitude and sign of each variable’s
contribution to the first two (upper panel) or three (lower panel) principal compo-
nents, and how each observation is represented in terms of those components. The
axes in the plot represent the principal components, the coefficients of the vari-
ables (forward-ages) on the principal components are represented as vectors, and
the points are the scores of the observations (years) on the principal components.

Both the empirical investigation and the PCA provide evidence of correlation
between the stochastic mortality components, especially among the older ages. The
assumption of independent distributions for the stochastic mortality component is
therefore violated.
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Figure 3: Top 4 Principal Components

3.2 Identical Distributions

In this section, we investigate whether the stochastic mortality components come
from identical distributions. Although we have identified potential dependence
over forward-age, it is not conclusive, and therefore, we also investigate plots of the
stochastic component over this dimension.

Figure 5 shows the observations of Z over time t for various fixed combinations
of T and x. Over time t, the Z resemble a random sample. However, the underlying
distribution changes with respect to the forward-age, x + T , of the mortality com-
ponents. The scale of the first plot is roughly five times larger than the others. This
implies that the first plot demonstrates very high volatility, which is not surprising
given that this plot represents a forward-age of 105.

Figure 6 shows the observations of Z over age x for various fixed t. Recall that
we have no observations of Z for T < t; for T > t, we obtain a similar plot as
that of T = t, where the only difference is a shift in the x-axis, representative of
a translation of the forward-age. We present the plots for T = t as they are most
informative. Figure 6 reinforces what is observed in Figure 5. The volatility of
the stochastic component clearly varies with age. The forward-ages 0-40 and 90
plus generally exhibiting high volatility, with the remaining forward-ages, 40-90,
exhibiting comparatively lower volatility.

In Figure 7 we fix the year-of-birth and plot over time, which is representative
of tracking a single cohort. We notice that volatility varies with forward-age, which
is visible to a greater or lesser extent depending on which forward-age-range the co-
hort traverses; notice the different scales of the plots in this figure. However, given
the contour plots in Section 3.1, the samples in Figure 7 most likely violate the
independence assumption. Therefore, caution must be exercised when interpret-
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Figure 4: Biplots of the Principal Components
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Figure 5: The Stochastic Mortality Component over Time t for Fixed x

Figure 6: The Stochastic Mortality Component over Age x for Fixed t

11



Figure 7: The Stochastic Mortality Component for Fixed Year-of-Birth

ing these plots. Figures 6-7 provide evidence that the volatility of the stochastic
component are not homogeneous over forward-ages. The assumption of identical
distributions for the stochastic mortality component is therefore violated.

3.3 Appropriate Parametric Distribution

From the data shown in Figures 5, 6, and 7, it is difficult to conclude whether the
gamma distribution provides a good fit to the data. Fitting the data presumes in-
dependent and identically distributed observations, both of which may be violated.

However, we present quantile-to-quantile (QQ) plots and formal distributional
(goodness-of-fit) tests to investigate the suitability of the gamma distribution. Fig-
ures 8, 9, and 10 show the QQ plots corresponding to Figures 5, 6, and 7, respec-
tively. They contrast the quantiles of the empirical distribution with those from
the estimated gamma distribution. A deviation from the 45 degree line indicates a
departure from the assumed distribution. The results indicate the gamma distribu-
tion provides a reasonable fit for the stochastic mortality component over time t;
see Figure 8. 9 and 10 are less relevant, since they represent fitting the distribution
over age and year-of-birth, respectively, where we have evidence that the indepen-
dent and identical distribution assumption is violated. This means the lack in fit is
not very informative.

We apply the goodness-of-fit tests suggested in D’Agostino and Stephens (1986)
and Stephens (1974). We test the null hypothesis that the data belongs to the
theoretical (hypothesized) gamma distribution, that is, H0 : F̂n(x) = Fn(x), where
F̂n(x) represents the empirical cumulative distribution function (cdf) and Fn(x), the
theoretical cdf with estimated parameters obtained from maximum likelihood. Let
the xi be ordered observations, and zi = Fn(xi), the resulting estimated quantiles.
We consider the following test statistics:
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Figure 8: The Stochastic Mortality Component over Time t for Fixed x;
QQ plot corresponding to Figure 5

Figure 9: The Stochastic Mortality Component over Age x for Fixed t;
QQ plot corresponding to Figure 6
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Figure 10: The Stochastic Mortality Component for Fixed Year-of-Birth;
QQ plot corresponding to Figure 7

1. The Anderson-Darling statistic A2, given by

A2 = −n− 1/n
n∑
i=1

(2i− 1)(ln(zi) + ln(1− zn+1−i)).

2. The Kolmogorov statistic D, given by D = max(D+, D−), where

D+ = max
1≤i≤n

[(i/n)− zi],

D− = max
1≤i≤n

[zi − (i− 1)/n].

The modified form statistic proposed in Stephens (1974) together with the
critical values corresponds to D(

√
n+ 0.12 + 0.11/

√
n).

3. The Cramér-von Mises statistic W 2, given by

W 2 = 1/12n+
n∑
i=1

(zi − (2i− 1)/2n)2.

The modified form statistic reported in Stephens (1974) is given by (W 2 −
0.4/n+ 0.6/n2)(1 + 1/n).

The critical values for the above tests are specified in Table 2, as provided in
D’Agostino and Stephens (1986) and Stephens (1974).
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Table 2: Critical Values for the Goodness-of-Fit Tests

Stat. Crit.5% Crit.1%
A2 2.492 3.857
D 1.358 1.628
W 2 0.461 0.743

Table 3: Distributional Test Results

α β A2 D W 2

Panel A: The Stochastic Mortality Component over Time t for Fixed x
Z(t+1,T=2009,x=56) 12.943646 12.624253 0.2181661∗∗ 0.5312711∗∗ 0.1075524∗∗

Z(t+1,T=2009,x=36) 415.72498 421.08874 0.2475575∗∗ 0.5700078∗∗ 0.1057159∗∗

Z(t+1,T=2009,x=16) 452.03843 458.56811 0.4509184∗∗ 0.6866471∗∗ 0.1270422∗∗

Z(t+1,T=2005,x=0) 331.04846 335.43804 0.6111859∗∗ 0.7313687∗∗ 0.1552846∗∗

Panel B: The Stochastic Mortality Component over Age x for Fixed t
Z(t+1=1961,T=1960,x) 71.337103 69.005897 3.843054∗ 1.571849∗ 0.7661192
Z(t+1=1967,T=1966,x) 127.56511 132.22064 2.624833∗ 1.256487∗∗ 0.5699055∗∗

Z(t+1=2000,T=1999,x) 312.29324 325.31700 2.905791∗ 1.167076∗∗ 0.5625603∗

Z(t+1=2009,T=2008,x) 297.92308 317.92973 1.075193∗∗ 1.010486∗∗ 0.2789330∗∗

Panel C: The Stochastic Mortality Component for Fixed Year-of-Birth
Z(t+1,t,t+1,56) 497.3803 502.4013 0.8524845∗∗ 0.9784892∗∗ 0.2081623∗∗

Z(t+1,t,t+1,36) 444.92502 454.13746 0.5299603∗∗ 0.5954966∗∗ 0.1529977∗∗

Z(t+1,t,t+1,16) 107.80345 109.21021 1.463862∗∗ 1.020509∗∗ 0.332074∗∗

Z(t+1,t,t+1,1) 53.05649 53.04923 2.440254∗ 1.390677∗ 0.520064∗

Table 3 summarizes the results for the goodness-of-fit tests; ∗ and ∗∗ indicate the
gamma assumption is not rejected at a 5% and 1% significance level, respectively,
where the gamma density is given by

f(x) =
βα

Γ(α)
xα−1e−βx.

The distributional tests confirm the results observed from the QQ plots. The gamma
distribution is not rejected at either significance level for the observations of stochas-
tic mortality component over time (Panel A). The results for stochastic mortality
component over age for fixed calendar year (Panel B) and over time for fixed year-
of-birth (Panel C) are mixed. Again, the mixed results in Panel B and C are likely
due to the violation of the independent and identical distribution assumption of
these samples. Finally, note from Table 3 that the estimates of the shape and rate
parameters, α and β, are approximately equal, which confirms the assumption that
the expected value of the stochastic component is one.

4 Univariate Tweedie Generalization

We briefly introduce the Tweedie distribution, first formulated in Tweedie (1984);
also see McCullagh and Nelder (1989). For applications to actuarial science, see
e.g. Aalen (1992), Jørgensen and De Souza (1994), Smyth and Jørgensen (2002),
Furman and Landsman (2010).

Let X ∼ ED (θ, λ) denote a random variable belonging to the additive exponen-
tial dispersion family (EDF) with probability measure Pθ,λ, absolutely continuous
with respect to Qλ,

dPθ,λ(x) = e[θx−λκ(θ)]dQλ(x),
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where κ (θ) is called the cumulant; see Jørgensen (1997), Section 3.1. The param-
eters θ and λ are called the canonical and dispersion parameter, respectively, κ (θ)
is a twice differentiable function, and the expectation of X is given by

µ = λκ′(θ).

Furthermore, κ′(θ) is a one-to-one map and there exists an inverse function

θ = θ(µ) = (κ′)−1(µ).

The function V (µ) = κ′′(θ(µ)) is called the unit variance function. The Tweedie
subclass is the class of EDF with power unit variance function

V (µ) = µp,

where p is called the power parameter. The values p = 0, 1, 2, 3 correspond to
the normal, over-dispersed Poisson, gamma, and inverse Gaussian distributions,
respectively. The cumulant κp(θ) = κ(θ) for the Tweedie subclass has the form

κ(θ) =


eθ, p = 1,
− ln(−θ), p = 2,
α−1
α

( θ
α−1)α, p 6= 1, 2,

where α = (p− 2)/(p− 1). Let X ∼ Twp (θ, λ) denote a random variable belonging
to the additive Tweedie family.

Model. For all ages x and forward-times T = t, t+ 1, . . .

p(t+ 1, T, T + 1, x) = p(t, T, T + 1, x)b(t,T,T+1,x)Z(t+1),

where Z(1), Z(2), . . . are independent and identically distributed Tweedie random
variables, Twp(θ, λ) with EQ[Z] = λκ′p(θ) and V arQ(Z) = λκ′′p(θ). Furthermore,
the b(t, T, T + 1, x) are Ft-measurable bias correction functions given by

b(t, T, T + 1, x)

=
κ−1p (ln p(t, t, T + 1, x)/λ+ κp(θ))− κ−1p (ln p(t, t, T, x)/λ+ κp(θ))

ln p(t, T, T + 1, x)
.

For an arbitrage-free market, we require the martingale property, that is, equa-
tion (1) to be satisfied. Consequently, we obtain

p(t, t, T, x) = EQ[p(t+ 1, t, T, x)|Ft]

= EQ

[T−1∏
u=t

p(t+ 1, u, u+ 1, x)
∣∣∣Ft]

= EQ

[T−1∏
u=t

p(t, u, u+ 1, x)b(t,u,u+1,x)Z(t+1)
∣∣∣Ft]

= EQ

[
exp
{
Z(t+ 1)

T−1∑
u=t

b(t, u, u+ 1, x) ln p(t, u, u+ 1, x)
}∣∣∣Ft]

= MZ|Ft

(
T−1∑
u=t

b(t, u, u+ 1, x) ln p(t, u, u+ 1, x)

)
,
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where
MZ|Ft(y) = EQ[eZy|Ft] = exp{λ(κp(θ + y)− κp(θ))},

is the moment generating function of Z ∼ Twp(θ, λ). This reduces to the Olivier-
Smith model if we select p = 2, λ = α, and θ = −α.

The b functions are derived following a recursive procedure as shown in Cairns
(2007). First, we investigate the case with a maturity of t+ 1. From the above, we
have

p(t, t, t+ 1, x) = MZ|Ft(b(t, t, t+ 1, x) ln p(t, t, t+ 1, x)),

which yields

b(t, t, t+ 1, x) =
κ−1p (ln p(t, t, t+ 1, x)/λ+ κp(θ))− θ

ln p(t, t, t+ 1, x)
.

From this it is clear that
T∑

u=t

b(t, u, u+ 1, x) ln p(t, u, u+ 1, x) = κ−1
p (ln p(t, t, T + 1, x)/λ+ κp(θ))− θ

T−1∑
u=t

b(t, u, u+ 1, x) ln p(t, u, u+ 1, x) = κ−1
p (ln p(t, t, T, x)/λ+ κp(θ))− θ.

Substracting the two equations from one another leaves

b(t, T, T + 1, x)

=
κ−1p (ln p(t, t, T + 1, x)/λ+ κp(θ))− κ−1p (ln p(t, t, T, x)/λ+ κp(θ))

ln p(t, T, T + 1, x)
.

Note that ln p(t, t, t, x) = 0, consequently, the expression above holds for the case
with maturity t + 1. Therefore, this is the general expression and we no longer
require the recursive argument.

The variance of the forward rates is given by

V arQ(p(t+ 1, T, T + 1, x)|Ft)
= MZ|Ft(2b(t, T, T + 1, x) ln p(t, T, T + 1, x))

−MZ|Ft(b(t, T, T + 1, x) ln p(t, T, T + 1, x))2.

5 Multivariate Generalization

We begin by formulating the most general model.

Model. For all ages x and forward-times T = t, t+ 1, . . .

p(t+ 1, T, T + 1, x) = p(t, T, T + 1, x)b(t,T,T+1,x)Z(t+1,T,T+1,x),

where the Z follow a multivariate distribution. The b(t, T, T + 1, x) are some Ft-
measurable bias correction functions.

To preserve the martingale property, we have

p(t, t, T, x) = EQ[p(t+ 1, t, T, x)|Ft]

= EQ

[
exp
{T−1∑
u=t

Z(t+ 1, u, u+ 1, x)b(t, u, u+ 1, x) ln p(t, u, u+ 1, x)
}∣∣∣Ft].
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To proceed further, a multivariate distribution must be specified for the Z. We
do so using copulas. Copulas provide the means to effectively study any form of
dependence; see e.g. Embrechts et al. (2002), Breymann et al. (2003), and McNeil
et al. (2005). We focus on the use of the elliptical family. Previous work modelling
dependence using the elliptical family include Hult and Lindskog (2002), Fang et al.
(2002), and Frahm et al. (2003). Figure 2 suggests that the correlation between any
pair of stochastic components depends on the smallest of the two associated forward-
ages. This produces the “L” shapes intersecting the diagonal of the plot; see Figure
2 above and Figures 12 and 13 below. To accommodate this form of dependence,
we introduce the minimum covariance pattern.

Minimum Covariance Pattern

The minimum covariance pattern makes the assumption that the correlation be-
tween any pair of responses is determined solely by the minimum value of the cor-
responding covariate; in this case, forward-age. That is, Corr(Zi,j, Zi,k) = ρmin(j,k).
Note that this results in n− 1 correlation parameters.

Corr(Zi) =



1 ρ1 ρ1 . . . ρ1 ρ1
ρ1 1 ρ2 . . . ρ2 ρ2
ρ1 ρ2 1 . . . ρ3 ρ3
...

...
...

. . .
...

...
ρ1 ρ2 ρ3 . . . 1 ρn−1
ρ1 ρ2 ρ3 . . . ρn−1 1


.

5.1 Capturing Dependence with Copulas

Copulas are multivariate distribution functions relating d one-dimensional standard
uniform marginals to a joint distribution. If F is a d-dimensional distribution
function with marginals F1 . . . , Fd, then, for every x1, . . . , xd ∈ R, there exists a
copula C with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}.

Equivalently, if C is a copula and F1, . . . , Fd are distribution functions, then the
function F defined above is a joint distribution function with marginals F1, . . . , Fd.
If F1, . . . , Fd are continuous, then C is unique. Thus, if X = (X1, . . . , Xd)

> is a
random vector with distribution X ∼ FX and continuous marginals Xj ∼ FXj

(j =
1, . . . d), then the copula of X is the distribution function CX of u = (u1, . . . , ud)

> ∈
[0, 1]d, where uj = FXj

(xj):

CX(u1, . . . , ud) = FX{F−1X1
(u1), . . . , F

−1
Xd

(ud)}.

The above formulation is found in Sklar’s Theorem; see Joe (1997) for a proof.
Two scatter-plots shown in Figure 11 highlight the different levels of dependence

between observations from younger versus older forward-ages. We investigated the
scatter-plots originating from observations of all possible pairs of forward-ages and
found no evidence of non-standard types of dependence. Therefore, we consider
the Gaussian copula. In order to allow for the presence of tail-dependence, we also
consider the Student’s t copula.
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Figure 11: Scatter Plots for Observations by Forward-Age
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With respect to the marginals, we consider both the gamma and the Gaussian
distributions. The gamma distribution because it was originally considered in the
Olivier-Smith model; we choose to compare it with the Gaussian distribution since
it is the most widely used member of the Tweedie family. The Gaussian distribution
was also considered in Olivier and Jeffery (2004). They claimed results similar to
the gamma distribution, although no formal analysis was provided.

The literature suggests various approaches to estimate copulas; see e.g. Joe
(1997) and Cherubini et al. (2004). We make use of the so-called inference for
marginals (IFM) method, which is a sequential two-step maximum likelihood ap-
proach. First, one estimates the marginal parameters, subsequently, the copula to
obtain the pseudo log-likelihood function, which is then maximized with respect to
the copula dependence parameter. For details on the IFM and alternative estima-
tion techniques see McLeish and Small (1988) and Joe (1997).

The minimum covariance pattern described above is not implemented in any
statistical packages we are aware of. Therefore, we fit the Gaussian and Student’s
t copulas with an unstructured correlation matrix; given below.

Corr(Zi) =



1 ρ1,2 ρ1,3 . . . ρ1,n−1 ρ1,n
ρ1,2 1 ρ2,3 . . . ρ2,n−1 ρ2,n
ρ1,3 ρ2,3 1 . . . ρ3,n−1 ρ3,n

...
...

...
. . .

...
...

ρ1,n−1 ρ2,n−1 ρ3,n−1 . . . 1 ρn−1,n
ρ1,n ρ2,n ρ3,n . . . ρn−1,n 1


.

Using the output, ρ̂j,k, we construct the parameter estimates from the minimum
covariance pattern as follows:

ρ̂j =
1

n− j

n∑
k=j+1

ρ̂j,k, j ∈ {1, n− 1}.

The ability to specify the minimum covariance pattern would enhance estimation.
Figure 12 shows the estimation of the correlation parameters for the Gaussian copula
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with gamma marginal distributions in the unstructured and minimum covariance
patterns. The similarities between the two contour plots confirms that the minimum
covariance pattern is suitable in this case. Figure 13 shows the equivalent using the
Student’s t copula.

Figure 12: Contour Plots for the Gaussian Copula
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Figure 13: Contour Plots for the Student’s t Copula
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Figure 14 shows the estimated variance of the gamma marginal distributions by
forward-age. A very similar result is produced under the assumption of Gaussian
marginals. The fluctuations in the variance clearly demonstrates that the marginal
distributions vary by forward-age.

To produce the contour plots and the variance plot (Figures 12–14), we make
use of the inversion of Kendall’s tau method developed in Joe (1990). This was done
because likelihood-based methods cannot readily estimate 51-dimensional copulas.

Finally, to examine the performance of the considered copula models, we use
the Akaike Information Criterion (AIC) introduced in Akaike (1974):

AIC = −2l(α;x1, . . . , xT ) + 2q,
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Figure 14: Variance Estimation
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where l(α;x1, . . . , xT ) denotes the maximized value of the log-likelihood and q the
number of estimated parameters. Smaller values of AIC indicate a better fit.

We compute the AIC for groups of forward-ages, as summarized in the first
column of Table 4. We split the sample into 5 sub-samples of 11 forward-ages in
order to overcome the dimensionality issue arising when fitting a 51-dimensional
copula using the likelihood-based IFM method. The Gaussian copula outperforms
the Student’s t copula for forward-ages up to 79, and under-performs for forward-
ages above 79. This provides evidence of tail-dependence at the older forward-ages.
With respect to the marginal distributions, the gamma consistently outperforms the
Gaussian distribution. Since many models rely on Gaussian marginals, the result
that the gamma outperforms the Gaussian distribution is rather significant. The
fact that the modelling framework advocated in this paper allows for this added
flexibility in the choice of marginal distributions is shown to be a very desirable
attribute.

Table 4: Model Comparison (AIC)

Gaussian Copula Student’s t Copula
Forward-Ages Gaussian Gamma Gaussian Gamma

49-59 -5.95 -7.29 -3.93 -5.26
59-69 -23.45 -27.46 -21.44 -25.43
69-79 -145.26 -154.93 -143.23 -152.91
79-89 -223.68 -241.29 -246.88 -266.26
89-99 -403.88 -410.02 -405.27 -410.61

6 Conclusion

We investigate the Olivier-Smith model and show that, using population mortality
data for England and Wales, the model requires a more general framework, with
additional emphasis on age dependence and marginal distributions that vary by
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forward-age. The gamma distribution provides a reasonable fit, but is a restric-
tive assumption. We improve the model by specifying a more general distribution,
namely the Tweedie class of the exponential dispersion family. In addition to al-
lowing the distribution to vary by forward-age, we also incorporate dependence be-
tween forward-ages using copulas. To accommodate the nature of the dependence,
we specify a new covariance pattern related to the notion of minimum.
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