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Abstract

The phenomenon of the frequency basis (i.e. a spread applied to one leg of a
swap to exchange one floating interest rate for another of a different tenor in the
same currency) contradicts textbook no–arbitrage conditions and has become an
important feature of interest rate markets since the beginning of the Global Fi-
nancial Crisis (GFC) in 2008. Empirically, the basis spread cannot be explained
by transaction costs alone, and therefore must be due to a new perception by the
market of risks involved in the execution of textbook “arbitrage” strategies. This
has led practitioners to adopt a pragmatic “multi–curve” approach to interest rate
modelling, which leads to a proliferation of term structures, one for each tenor.
We take a more fundamental approach and explicitly model liquidity risk as the
driver of basis spreads, reducing the dimensionality of the market for the frequency
basis from observed spread term structures for every frequency pair down to term
structures of two factors characterising liquidity risk. To this end, we use an in-
tensity model to describe the arrival time of (possibly stochastic) liquidity shocks
with a Cox Process. The model parameters are calibrated to quoted market data
on basis spreads, and the improving stability of the calibration suggests that the
basis swap market has matured since the turmoil of the GFC.
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1. Introduction and Motivation

1.1 Basis Spreads in the Market

The Global Financial Crisis (GFC), which started from August 2007 and reached
its peak around the collapse of Lehman Brothers in September 2008, has caused a
number of changes in the behaviour of interest rate markets, in particular in over–
the–counter (OTC) interest rate derivatives. Many of the standard “textbook
arbitrage”1 relationships between spot, forward and swap markets no longer hold
even in approximation. Market instruments, such as single–currency interest rate
swaps and cross–currency swaps, have been quoted with substantially higher basis
spreads than before the GFC. Other changes include the emergence of large and
positive spreads between London Interbank Offered Rate (LIBOR)2 and Overnight
Index Swap (OIS)3 rate of the same maturity. Forward Rate Agreement (FRA)4

rates observed in the market also significantly diverge from the rates implied by
the replication via two deposits at spot LIBORs of different maturities.

We will focus on the phenomenon that floating rates, e.g. LIBOR, of different
tenor indices are quoted with varying magnitude of basis spreads in tenor swap
contracts (this is also called the “frequency basis”). A tenor swap exchanges two
floating rate payments of the same currency based on different tenor indices, such
as swapping the 3–month (3M) USD LIBOR and the 6–month (6M) USD LIBOR.
Only interest payments are exchanged and no notional is exchanged. A tenor
swap can be used to hedge basis risk, due to the widening or narrowing spread
between the two indices. According to the classic no–arbitrage pricing principle,
two floating rates of different tenors should trade flat in a swap contract because
floating–rate bonds are always worth the par value at initiation, regardless of the
tenor length (e.g. Hull 2008). Thus in this case the frequency basis spread al-
ways should be zero to avoid arbitrage profit. Before the crisis, a small spread (in
general several basis points) was usually added to the shorter tenor rate. After
controlling for transaction costs such as bid–ask spreads, such a small spread did
not constitute an opportunity for arbitrage profit.

1For examples of such relationships, see e.g. Hull 2008.
2LIBOR is a daily reference rate published by the British Banker Association (BBA) based on

the interest rates at which panel banks borrow unsecured funds from each other in the London
interbank market.

3An OIS is an interest rate swap where the floating leg of the swap is equal to the geometric
average of the overnight cash rate over the swap period. Overnight lending involves little default
or liquidity risk, hence the LIBOR–OIS spread is an important measure of risk factors in the
interbank market.

4A FRA is a contract which is initiated at current time t and allows the holder to exchange,
at maturity S, a fixed payment (based on the fixed rate K) for a floating payment based on the
spot rate L(T, S) resetting at T with maturity S, with t ≤ T ≤ S. The FRA rate is the value of
K which renders the contract value 0 (i.e. fair) at t. See e.g. Brigo and Mercurio (2006).
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Figure 1: USD tenor swap basis spread curves on 16/02/2009. (Data
source: Bloomberg )

After the crisis, tenor swaps have displayed a persistent and unambiguous pat-
tern. In general, the shorter tenor floating rate is quoted with a large and positive
spread in exchange for the longer tenor rate. The magnitude of the spread tends
to increase as the tenor difference increases. Figure 1 shows the USD frequency
basis spread curves as at 16th of February, 2009, corresponding to 1M, 3M, 6M
and 12M USD LIBOR. Swap maturity ranges from 1 year to 30 years. We see at
the 1–year (1Y) maturity end, the spread increased from 16 basis points (bps) for
1M vs 3M swaps to 65 bps for 3M vs 12M swaps.

The observed large spreads in tenor swaps would seem to present textbook arbi-
trage opportunities. However, since the crisis they have persisted, implying that
such opportunities have not been fully exploited. We present an arbitrage strat-
egy to exploit such large spreads. Assume that for a given currency, the current
market quote is 3M LIBOR + 50 bps exchanging 6M LIBOR flat for 6 months.
The notional amount is 1 unit and there are no transaction costs. An arbitrageur,
which we assume is a LIBOR counterparty, such as an AA–rated bank, can then
make arbitrage profit by,

(1) Enter the tenor swap in which the arbitrageur pays 6M LIBOR and receives
3M LIBOR + 50 bps.

(2) Roll over 3M borrowing at 3M LIBOR for 6 months, with unit notional.

(3) Deposit the notional at 6M LIBOR.

The net cash flows are summarised in Table 1. In Table 1, L3m(0) refers to the 3M
LIBOR fixed at time 0. L3m(0.25) is the 3M LIBOR fixed at the end of 3 months
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and 0.25 is the year fraction. L6m(0) refers to the 6M LIBOR fixed at time 0.

Table 1: Arbitrage Strategy for Tenor Swap Basis Spreads

Strategy t = 0 t = 0.25 t = 0.5

Loan 1 -L3m(0) · 0.25 -L3m(0.25) · 0.25− 1

Deposit -1 0 L6m(0) · 0.5 + 1

Swap 0 (L3m(0) + 50bps) · 0.25 (L3m(0.25)) + 50bps) · 0.25− L6m(0) · 0.5
Net Cash Flow 0 12.5 bps 12.5 bps

The notional is canceled by the loan and deposit at time 0 and at the end of 6
months. The floating payment of the loan is canceled by the receipt from the tenor
swap. The payment of 6M LIBOR in the tenor swap is financed by the interest
income of the deposit. All cash flows are netted out except the spread of the tenor
swap, which becomes the profit every 3 months. Because the arbitrageur has zero
initial cost, this is clearly an arbitrage.

If the arbitrage strategy in Table 1 is practical, we would expect that arbitrageurs
take large positions to make risk-less profit. The standard theory in finance, such
as Arbitrage Pricing Theory (Ross 1976), assumes that arbitrageurs exploit such
opportunities and no-arbitrage equilibria should be quickly restored. However,
during the crisis such large spreads persisted and apparent arbitrage opportunities
do not seem to be taken.

1.2 One Discount Curve, Multiple Forward Curves

In addition to the presence of textbook arbitrage opportunities, the aforemen-
tioned anomalies also have implications for the pricing methodology for interest–
rate derivative products, such as the ad–hoc modelling approach of “one discount
curve, multiple forward curves” adopted by practitioners. The price of interest
rate derivative products depends on the present value of future cash flows linked
to interest rates. For the pricing purpose, we need forward curves to generate
future cash flows and a yield curve to discount these cash flows.

Before the crisis, the standard market practice was to build a single curve to
both generate and discount cash flows. A set of the most liquid interest–rate in-
struments based upon underlying rates of different tenors (e.g. deposits on 1M
LIBOR, FRA or interest futures on 3M LIBOR and interest rate swaps on 6M
LIBOR) are selected to construct the yield curve. Discount factors off the yield
curve are used to calculate the forward rates (see e.g. Brigo and Mercurio 2006),

F (t;T1, T2) =
1

τ(T1, T2)

(
P (t, T1)

P (t, T2)
− 1

)
, t ≤ T1 ≤ T2, (1)
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where F (t;T1, T2) is the simple compounded forward rate contracted at t and appli-
cable between the year fraction of the time interval τ(T1, T2). P (t, T ), also known
as the discount factor, is the price at time t of a zero–coupon bond maturing at
T with face value of unity. The pre–crisis single curve approach ensures the no–
arbitrage relationship

P (t, T2) = P (t, T1)P (t;T1, T2), t ≤ T1 ≤ T2, (2)

where P (t;T1, T2) is the forward discount factor defined by F (t, T1, T2) and τ(T1, T2)
via,

P (t;T1, T2) =
1

1 + F (t;T1, T2)τ(T1, T2)
. (3)

We employ an arbitrage strategy in Table 2 to prove Eqn. (2).

Table 2: Arbitrage Strategy

Strategy t T1 T2

Buy 1 bond maturing T2 -P (t, T2) 1

Short P (t,T2)
P (t,T1)

bonds maturing T1 P (t, T2) - P (t,T2)
P (t,T1)

Borrow P (t,T2)
P (t,T1)

cash at F (t, T1, T2) P (t,T2)
P (t,T1)

- P (t,T2)
P (t,T1)

(1 + F (t;T1, T2)τ(T1, T2))

Net Cash Flow 0 0 0

Because the net cash flow is zero both at t and T1, to eliminate arbitrage oppor-
tunity we have to ensure

P (t, T2)

P (t, T1)
(1 + F (t;T1, T2)τ(T1, T2)) = 1. (4)

Eqn. (2) then is proved by putting together Eqns. (3) and (4). Eqn. (1) can
also be proved from Eqn. (4). Eqn. (2) basically states that for a cash flow at
T2, its present value at t must be unique. We can either discount the cash flow by
P (t, T2) in one step, or we can first discount from T2 to T1 by the forward discount
factor P (t;T1, T2), then discount from T1 to t by the discount factor P (t, T1). From
the way that the single yield curve is constructed before the crisis, we see that all
discount factors and forward rates are calculated from a unique curve, hence the
no–arbitrage relation is guaranteed.

Now if we consider a generic LIBOR L(T1, T2) which is simply compounded be-
tween T1 and T2. L(T1, T2) and the forward rate F (t;T1, T2) is related by,
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lim
T1→t

F (t;T1, T2) = L(T1, T2). (5)

It then follows from Eqn. (1) that

L(T1, T2) =
1

τ(T1, T2)

(
1

P (T1, T2)
− 1

)
. (6)

From the interest–rate derivative pricing perspective, forward rate F (t;T1, T2) is
the expectation of L(T1, T2) at t under the T2 forward measure (Geman et al.
1995), i.e.

ET2 [L(T1, T2) | Ft] = F (t;T1, T2), t ≤ T1 ≤ T2. (7)

Eqn. (7) is an important tool to price LIBOR–linked derivatives, such as interest
caps, floors and swaptions. It provides a link between LIBORs and forward rates,
hence we can express the expected LIBOR under the associated forward measure
by discount factors via Eqn. (1). Again, the internal consistency of the single
curve framework is crucial in no-arbitrage pricing of such derivatives.

A yield curve is supposed to produce interest rates as a smooth function of
any arbitrary time to maturity, hence a continuous function. However, in real
markets we only have a set of instruments of discrete maturities quoted, including
zero–coupon products such as deposits at LIBORs, and coupon–bearing products
such as interest rate swaps. For the short–end of this discrete set of points on the
yield curve, we compute the corresponding interest rates from the zero–coupon
instruments. Given these yields, the longer–maturity zero–coupon yields can be
recovered from the coupon–bond products by solving for them iteratively by for-
ward substitution. This process is the so called bootstrap method in constructing
yield curves. This discrete set of yields is calculated to eliminate arbitrage oppor-
tunities. For time points that fall between any two maturities in the discrete set,
some interpolation scheme has to be employed because no instrument is quoted
in the market corresponding to that maturity. Many arbitrary and different inter-
polation algorithms are used in practice (see Hagan and West 2006). Therefore,
together with bootstrapping, any particular choice of interpolation completes the
construction of yield curves.

As noted by Schlögl (2002) and subsequently Bianchetti (2010), such a yield curve
is not strictly guaranteed to be free of arbitrage because discount factors through
interpolation are not always consistent with those obtained by a stochastic interest
rate model which belongs to the no–arbitrage framework developed by Heath et
al. (1992). Researchers have extended arbitrage–free interpolation schemes from
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discrete to continuous settings (e.g. Schlögl 2002). In practice the transaction
costs in general cancel such arbitrage opportunities. Therefore, this drawback of
the single–currency–single–curve approach, as far as practitioners are concerned,
was of second–order importance.

After the crisis, the single–curve approach described above is not valid. The reason
is that the interest rate market is segmented and rates of different tenors display
distinct dynamics, reflected in the large spreads in tenor swaps, as well in LI-
BOR vs. OIS of a given currency. Such “segmentation” reflects varying levels of
risk premia driving rates of different tenors. The pre–crisis single–curve approach,
which mixes instruments of different tenors of underlying rates characterised by
significantly different risk premia, would result in inconsistencies across market
segments. To consistently account for the market segmentation, as well as explain
the reason that textbook arbitrage opportunities are not exploited, approaches
based on explanatory factors are required. Recent studies generally attribute such
market anomalies to default risk and liquidity risk, but acknowledge that a consis-
tent framework incorporating these risks is not easy to construct (see, for example,
Bianchetti (2010) and Mercurio (2010)) .

Bypassing a consistent framework, practitioners have tackled this issue by con-
structing multiple forward curves based on the length of the tenor to forecast
future cash flows (i.e. 1M, 3M, 6M, 12M forward curves). Each forward curve is
built with vanilla instruments homogeneous in the underlying rate tenor. For ex-
ample, the 1M USD forward curve is bootstrapped with instruments on 1M USD
LIBOR only. On the other hand, the curve for discounting has to be unique to
preclude arbitrages. By the “Law of One Price”, two identical future cash flows
must have same present value. The unique discount curve is constructed with the
pre–crisis approach, which mixes instruments on rates of different tenors.

The current practice of “one discount curve, multiple forward curves” contradicts
the single curve approach which precludes arbitrage. Forward rates of a particular
tenor are calculated from the corresponding forward curve, whereas the discount
factors are from the discount curve. A natural consequence of this approach is
that if we calculate the forward discount factor P (t;T1, T2) from Eqn. (3), each
curve would give us a different result. The present value of a particular cash flow
is no longer unique. If we only use P (t;T1, T2) off the discount curve, then the
relationship defined by Eqn. (3) is immediately invalidated. Consequently, this
created a clear need for a unified, consistent framework to reconcile inconsistencies
and simplify the pricing methodologies of interest rate derivatives.

1.5. Motivation

We examine the issues existing in the tenor swap market. Based upon recent
empirical studies, we propose a consistent framework to reconcile the differences
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between the classic “single curve” approach and practitioners’ “multiple curve”
approach. The remainder of this study is organised as follows. Section 2 reviews
relevant literature. Section 3 sets up the model framework and Section 4 presents
the empirical results. Based upon Section 4, Section 5 proposes a parametrically
parsimonious model. Finally Section 6 concludes.

2. Literature Review

In this section we review studies which aim to explain and/or model the observed
large spreads in the interest rate market. We separate these studies into two
broad categories: the ad–hoc modelling approach and the fundamental approach,
depending upon whether fundamental factors which drive market anomalies are
explicitly examined.

2.1. Ad–Hoc Approach

The first approach is mainly adopted by quantitative practitioners to extend the
existing interest rate derivative pricing models, such as the LIBOR Market Model
(LMM) (e.g., Miltersen et al. (1997) and Brace et al. (1997)).

The classic LMM models the joint evolution of a set of consecutive forward LI-
BORs. Mercurio (2010) points out that two complications arise when we move to
a multi–curve setting. The first is the co–existence of several yield curves. The sec-
ond is that forward LIBORs are no longer equal to the corresponding ones defined
by the discount curve. Mercurio addresses the first issue by adding extra dimen-
sions to the vector of modelled rates and suitably modelling their instantaneous
covariance structure. For the second issue, Mercurio models the joint evolution
of forward rates calculated from the OIS discount curve5 and the spread between
OIS forward rates and forward LIBORs. For a given tenor, forward OIS rates are
defined as

Fk(t) = FD(t;Tk−1, Tk) =
1

τk

(
PD(t, Tk−1)

PD(t, Tk)
− 1

)
, t ≤ Tk−1 ≤ Tk, (8)

where the subscript D refers to the discount curve built with the OIS rates, which
are considered effective risk–free rates since the GFC. There are two reasons for
directly modelling OIS forward rates. First, as in Kijima et al. (2009), which pro-
poses a three yield–curve model (discount curve, LIBOR curve and government
bond curve), the pricing measures in Mercurio (2010) (including the spot LIBOR
measure Qτ

D and the forward measure QTk
D ) are associated with the OIS discount

5Because OIS swap rates are perceived as entailing little default or liquidity risk, since the crisis
market participants increasingly construct OIS–based discount curve to discount collateralised
contracts.
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curve. Secondly, forward swap rate depends on the OIS discount factors. The
spread between forward LIBOR and forward OIS rate is defined as

Sk(t) = Lk(t)− Fk(t), (9)

where Lk(t) is the forward LIBOR for the given tenor. By construction, both Lk(t)
and Fk(t) are martingales under the forward measure QTk

D with the zero–coupon
bond P Tk

D as the numeraire. Therefore Sk(t) is also a martingale under QTk
D . Sk(t)

is modelled with a continuous and positive martingale which is independent of the
OIS forward rate. The model is calibrated to the market caplet smile and model
volatilities fit the market almost perfectly, though the sample size is small.

Bianchetti (2010) incorporates the forward basis to recover the no–arbitrage rela-
tionship between forward curves and the discount curve. The no–arbitrage rela-
tionship between two curves is expressed as

Ff (t;T1, T2)τf (T1, T2) = Fd(t;T1, T2)τd(T1, T2)BAfd(t;T1, T2), (10)

where the subscripts f and d denote forward curves and the discount curve from
which forward rates (or discount factors) are extracted and obviously τf (T1, T2)
= τd(T1, T2). The multiplicative forward basis BAfd(t;T1, T2) is the ratio between
forward rates (or equivalently in terms of discount factors) from forward curves
and from the discount curve

BAfd(t;T1, T2) =
Ff (t;T1, T2)τf (T1, T2)

Fd(t;T1, T2)τd(T1, T2)
=
Pd(t, T2)

Pf (t, T2)

Pf (t, T1)− Pf (t, T2)
Pd(t, T1)− Pd(t, T2)

. (11)

Eqn. (11) can be easily derived from Eqn. (1). Hence the forward basis is a
measure of the difference between the forward rates from the forward curve and
forward rates from the discount curve. Alternatively, the additive forward basis
BA′fd(t;T1, T2) is defined as

BA′fd(t;T1, T2) = Fd(t;T1, T2)[BAfd(t;T1, T2)− 1]. (12)

In the single curve setting, the basis should be zero because there is only one
curve, hence we expect BAfd(t;T1, T2) = 1 and BA′fd(t;T1, T2) = 0. Bianchetti
(2010) then constructs the forward basis curve through bootstrapping. The finding
is that the short–term forward basis is wide ranging, with the multiplicative for-
ward basis ranging from 0.7 (12M tenor forward curve versus the discount curve) to
1.3 (1M tenor forward curve versus the discount curve). However, the longer term
(up to 30 years maturity) forward basis tends to 1 (resp. 0) for the multiplicative
case (resp. additive case). It is important to note that the term structure of the
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forward basis curve as constructed by Bianchetti (2010) oscillates. The oscillations
are demonstrated especially in the longer term forward basis curve. This suggests
that there may be some over–fitting in the bootstrap curve construction.

In Bianchetti (2010), the discount curve is built with the traditional “pre–crisis”
approach. The instruments include liquid deposits, FRAs on 3M EURIBOR6

and swaps on 6M EURIBOR. On the other hand, forward curves are constructed
from instruments with homogeneous underlying tenor. For instance, 3M forward
curve was based upon instruments linked to 3M EURIBOR. Hence the discount
curve mixes rates of different underlying tenors with distinct dynamics, whereas a
forward curve corresponds to one particular underlying tenor. Bianchetti (2010)
therefore attributes oscillations in the forward basis curve to the amplification of
small local differences between the two curves. The author also suggests to use
the forward basis term structure as a tool to assess the distinct risk dynamics in
the interest rate market because it provides a sensitive indicator of the tiny, but
observable statical differences between different interest rate market sub–areas in
the post GFC world.

As a sequel of Henrard (2007), Henrard (2010) proposes a framework to price
interest rate derivatives based on different LIBOR tenors by introducing a de-
terministic, and maturity dependent, spread between the forward curve and the
discount curve. In Henrard (2007) the spread is assumed to be constant across
maturities. Hence this extension is a natural adaptation to the post–crisis market
reality. Henrard (2010) assumes that the discount curve is given and proceeded to
construct the forward curves based on the spreads. Simple vanilla instruments are
selected to achieve this purpose, including FRA, futures and interest rate swaps.
Henrard then proposes to extend this framework to cross–currency products and
the object to be modelled is the cross–currency basis, which had also become sub-
stantially higher since the crisis.

Fujii et al. (2009) proposes a Heath–Jarrow–Morton (HJM, see Heath et al.
(1992)) model framework to adapt to new developments in the interest rate mar-
kets: large spreads in LIBOR vs. OIS and widespread use of collateral. The
underlying quantities in the model are the instantaneous forward OIS rate and
the spread, which measures the difference between the forward LIBOR under the
collateralised forward measure and the OIS forward rate. The model is set up as
follows,

dc(t, s) = σc(t, s) ·
(∫ s

t

σc(t, u) du

)
dt+ σc(t, s) · dWQ(t), (13)

dB(t, T ; τ)

B(t, T ; τ)
= σB(t, T ; τ) ·

(∫ s

t

σc(t, s) ds

)
dt+ σB(t, T ; τ) · dWQ(t), (14)

6EURIBOR is the reference rate of unsecured borrowing of EUR between European prime
banks within the euro zone.
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where c(t, T ) is the instantaneous forward collateral rate and in Eqn. (13) the
standard arbitrage–free HJM dynamics applies under the risk-neutral measure Q.
B(t, T ; τ) is the spread and by construction a martingale under the collateralised
forward measure τ c. τ stands for a particular LIBOR tenor. The stochastic dif-
ferential equation is written as

dB(t, T ; τ)

B(t, T ; τ)
= σB(t, T ; τ) · dW τc(t). (15)

The Brownian motion W τc(t) under the measure τ c is related to WQ(t) by the
the Girsanov theorem (Girsanov 1960),

dW τc(t) =

(∫ s

t

σc(t, s) ds

)
dt+ dWQ(t). (16)

The details of the volatility processes σc(t, s) and σB(t, T ; τ) are not specified
in Fujii et al. (2009). It is also clear from Eqn. (14) that σB(t, T ; τ) needs to be
specified for all relevant LIBOR tenors (i.e. 1M, 3M, 6M and 12M), hence this is
a high–dimensional approach.

These papers endeavour to reconcile inconsistencies caused by the multi–curve
framework used by practitioners. They appear promising in fitting model prices
to market prices by incorporating the spreads of LIBORs of different tenors. The
drawback of this approach is that it does not relate the spreads to more funda-
mental risks, and thus does not attempt to explain why the textbook arbitrage
opportunities seemingly created by the presence of these spreads are not exploited.
Furthermore, one quickly ends with a multitude of basis spread dynamics, which
should be related at a fundamental level. However, these relationships are not
addressed by this ad–hoc approach.

2.2 Fundamental Approach

Different from the ad–hoc modelling approach, the fundamental approach aims
to identify the risk factors causing market anomalies. Although market anomalies
are commonly considered entailing default and liquidity risk premiums, empirical
evidence shows that liquidity risk plays a more significant role.

2.2.1 Default Risk

Morini (2009) examines two particular instruments in interest rate markets: FRA
and tenor swaps. Before the crisis, the market FRA rate was well approximated
by the LIBOR–based replication. After the crisis, the LIBOR–based replication of
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the FRA rate has been persistently higher than the market quotes of FRA rates.
Morini uses two different discount curves, the LIBOR–based curve and the OIS
curve to bridge the gap between the market FRA and the replicated FRA by incor-
porating the basis spreads of LIBORs of different tenors. Therefore, two issues are
reduced to one: why has the basis attached to the leg of the shorter–tenor LIBOR
been persistently large and positive? Morini explicitly assumes an unexplained ax-
iom proposed by Tuckman and Porfirio (2003) that lending at longer–tenor LIBOR
involves higher counterparty default risk and liquidity risk than rolling lending at
shorter–tenor LIBORs. Morini proposes that it is difficult to separate default risk
and liquidity risk because the two risks are highly correlated. Hence Morini uses
default risk only to approach the question. Morini conjectures that a LIBOR–panel
bank today may not be a LIBOR bank in the future, due to its worsening credit
rating. For example, the roll–over lender at 6M LIBOR can reassess the credit
quality of the borrowing bank and may choose to replace with a counterparty that
remains to be a LIBOR bank. There is a cap to how much the credit standing of
a current LIBOR bank can worsen before it is excluded from the LIBOR Panel.
This conjecture motivates Morini to model the spread of a generic LIBOR LX

0

over the market OIS rate EM between time α and 2α as

SX
0

(α, 2α) = LX
0

(α, 2α)− EM(α, 2α), (17)

where SX
0
(α, 2α) is the spread, X0 denotes a generic LIBOR panel bank and the

subscript M refers to market rate. The forward spread at time t ≤ α is then the
spread between the forward rate FStd replicated by LIBORs and the forward rate
EStd replicated by OIS rates, i.e.

SX
0

(t;α, 2α) = FStd(t;α, 2α)− EStd(t;α, 2α). (18)

A particular LIBOR counterparty is excluded from the LIBOR panel if

SX
0

(α, 2α) > SX
0

(t;α, 2α). (19)

The interpretation of the inequality in (19) is that a current counterparty de-
faults if its LIBOR–OIS spread at α exceeds a pre–specified level. The spread thus
is reduced to a call option with the strike SX

0
(t;α, 2α). Morini further assumes

that the spread evolves as a driftless geometric Brownian motion and prices the
option with the standard Black–Scholes formula (Black and Scholes 1973). The
formula is calibrated to market quotes of basis of EURIBORs and results closely
track the shape of the traded 6M/12M basis from July 2008 to May 2009, though
there are discrepancies in levels. Morini attributes level discrepancies to a lack of
more appropriate volatility inputs during the sample period.
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Taylor and Williams (2009) use a no–arbitrage model of term structure to ex-
amine the effect of default risk and liquidity risk on 3M LIBOR–OIS spread. They
consider a range of possible measures of default risk, such as the credit default
swap (CDS) premium, TIBOR–LIBOR spread7 and asset–backed commercial pa-
per spread. The effect of liquidity risk is measured by a dummy variable, Term
Auction Facility (TAF). TAF was provided by the US Federal Reserve to inject
liquidity into financial institutions. Results find that default risk measures explain
most of the variations of LIBOR–OIS spread. The TAF dummy variable is either
statistically insignificant or of the wrong sign8.

2.2.2 Liquidity Risk

Brunnermeier and Pedersen (2009) develop a theoretical liquidity risk model in
which market liquidity and funding liquidity reinforce each other. Market liquid-
ity is defined as the ease of trading securities, including low bid–ask spread, market
depth and market resilience. On the other hand, funding liquidity is the ease of
raising funds, with own capital or loans. During the financial crisis, initial losses
in the sub–prime mortgage market forced financial institutions to exit positions
in other asset classes (e.g. stocks) to meet margin calls and other funding needs.
Funding constraints prompted traders to sell securities at “fire sale” prices, which
resulted in even larger losses. In such volatile market conditions, market liquidity
also deteriorated and positions in illiquid assets (e.g. structured products due to
highly customised nature and held–to–maturity investment strategy) were particu-
larly difficult to unwind. Selling such assets meant even greater losses than selling
in a liquid market. Both market liquidity and funding liquidity disappeared and
banks faced a double jeopardy: they found it difficult to sell assets to raise funds
exactly at a time it was difficult to borrow. The double “liquidity shock” forced
them to hoard cash and other liquid instruments which they might otherwise have
lent to others. They were reluctant to make lending to inter–bank counterparties
for longer than three months (see Mollenkamp and Whitehouse (2008)). Brunner-
meier (2009) identifies liquidity risk, lending channel, bank run and network effects
as main amplification mechanisms through which a relatively small shock in the
mortgage market transmitted to other asset classes and resulted in a full–blown
financial crisis.

Ivashina and Scharfstein (2010) and Cornett et al. (2011) identify three factors
which led banks to manage liquidity and reduce lending during the crisis. Firstly,
the extent to which a bank is financed by short–term debt, as opposed to insured
deposits. Short–term debts are subject to rollover risks9. On the other hand,

7TIBOR is the reference rate of unsecured lending of JPY to Japanese prime banks in the
Tokyo interbank market. Taylor and Williams argue that because Japanese banks were less
affected by the financial crisis than US banks, TIBOR–LIBOR spread reflected default risk
differential between two markets.

8TAF announcements are supposed to decrease the level of LIBOR–OIS spread, hence the
sign is expected to be negative.

9Rollover risk is associated with debt refinancing. It arises when existing debt is about to
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insured deposits are a more stable source of capital. Before the crisis, financial
institutions relied heavily on short–term funding, such as Asset–Backed Commer-
cial Papers and Repurchase (Repo) Agreements, to finance their long–term assets.
The average maturity of such instruments ranges from overnight to 90 days. After
initial losses in mortgage securities, investors refused to roll over and banks had to
refinance from other sources. The second factor is banks’ exposure to credit–line
draw downs. Ivashina and Scharfstein (2010) show that during the crisis firms
drew on their credit lines primarily because of concerns about the ability of banks
to fund these commitments, as well as due to firms’ desire to enhance their own
liquidity10. Lastly, on the asset side, banks holding illiquid loans and securities
tended to increase holdings of liquid assets and decreased new lending.

In contrast to Taylor and Williams (2009), McAndrews et al. (2008) find that
TAF announcements and operations significantly reduced the 3M LIBOR–OIS
spread, which points to the importance of the liquidity risk premium. The authors
argue that in order to test the effect of the TAF dummy variable, the dependent
variable should be the change, not the level of the LIBOR–OIS spread. The use
of the spread level as the dependent variable, as in Taylor and Williams (2009), is
only valid under the assumption that the effect of TAF auction disappears immedi-
ately after the auction. If the liquidity risk premium stays low over days after the
auction, the coefficient of the TAF dummy cannot be interpreted as the TAF effect.

Michaud and Upper (2008) aim to identify the drivers of the increase of the 3M
LIBOR–OIS spread. Acknowledging that it is difficult to disentangle default risk
and funding liquidity risk, as well as the measurement problem of bank–specific
funding liquidity, Michaud and Upper examine only the effect of default risk and
market liquidity risk. Funding liquidity is treated as an unobserved variable whose
effects will appear as a residual once the impact of all other variables has been
taken into account. The default risk is measured by the spread between the un-
secured and secured interbank rate, as well as the CDS premia. The measures of
market liquidity are number of trades, volume, bid–ask spreads and price impact
of trades. The finding is that while default risk plays a role, the significance is
stronger in market liquidity measures. Furthermore, due to potential positive cor-
relation between default risk and funding liquidity risk, the effect of default risk
may have been overestimated.

Acharya and Merrouche (2013) examine the UK interbank market during the crisis

mature and needs to be rolled over into new debt and interest rates increase. The debt issuer
hence needs to refinance at a higher interest rate and incur more interest payments in the future.
Recent studies on rollover risk during the GFC include Acharya et al. (2011) and He and Wei
(2012).

10For example, FairPoint Communications drew down 200 million from the committed credit
line supplied by Lehman Brothers as the lead bank on September 15th, 2008. In the SEC filing,
the company “believes that these actions were necessary to preserve its access to capital due to
Lehman Brothers’ level of participation in the company’s debt facilities and the uncertainties
surrounding both that firm and the financial markets in general”.
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and empirical results are in favor of precautionary liquidity hoarding over default
risk in explaining the increase of the 3M LIBOR–OIS spread. They find that liq-
uidity hoarding substantially increased after structural breaks (e.g. BNP Paribas
froze withdrawals on 08/09/2007, Bear Stearns in March 2008). Secondly, the
hoarding of liquidity by banks was precautionary in nature, especially for banks
with large losses in sub–prime mortgage securities. Thirdly, liquidity hoarding
drove up interbank lending rates, both secured and unsecured. The effect of liq-
uidity hoarding is to raise overnight inter–bank rates after the crisis. In contrast,
before the crisis an increase in the overnight liquidity buffer was associated with a
decline in overnight spreads. This confirms the authors’ hypothesis that in stressed
conditions banks only release liquidity at a premium that exceeds the direct cost
of using the emergency lending facility offered by the central bank and the indirect
stigma cost (e.g. bank run, credit line draw downs). The fact that the effects on
rates are similar for secured and unsecured inter–bank rates implies that the mar-
ket stresses were not per se due to default risk concerns. Instead, the stresses were
most likely due to each bank engaging in liquidity hoarding as the precautionary
response to its own heightened funding risk.

Schwarz (2010) is the first paper, to our best knowledge, to deliberately separate
the effect of default risk and liquidity risk on LIBOR–OIS spread. Researchers
commonly agree that it is difficult to disentangle default risk and funding liquidity
risk, e.g. Michaud and Upper (2008) and Morini (2009). A bank with a funding
shortage is more likely to default than a bank with ample funding. On the other
hand, if a bank’s credit rating worsens, it becomes more difficult to secure exter-
nal funding. In fact, initial losses in the sub–prime mortgage market may have
increased both default risk and funding liquidity risk. Hence, these two risk factors
are highly interrelated. Schwarz measures market liquidity with the yield spread
between German government bonds and KfW agency bonds. KfW bonds are fully
guaranteed by the German government hence entail no default risk, but are less
liquid in the bond market than the government bonds. The measure of default
risk is the dispersion of borrowing rates of banks with different credit standings.
Schwarz argues that a market–wide liquidity shock should have similar effect on
banks’ borrowing rates, hence the dispersion is relatively unchanged. On the other
hand, a market-wide credit shock affects banks with bad credit rating more than
banks with good credit, hence the dispersion increases. The correlation between
the two risk measures is 0.07 and Schwarz claims that the regression results show
the “clean” (i.e. independent) effect of each risk. The finding is that, though both
risks are significant, nearly 70% of the increase of the 3M LIBOR–OIS spread and
nearly 90% of the sovereign bond spread (Italy–Germany ten–year spread) increase
can be explained by the market liquidity measure.
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3. Model Set-up and Implementation

3.1 Liquidity risk, Basis Spreads and Limits to Arbitrage

We propose that liquidity risk is the fundamental factor that led to anomalies
in the tenor swap market, as well as prevented arbitrage opportunities from being
fully exploited. We choose a liquidity based model for observed basis spreads for
two reasons. Firstly, liquidity is the factor which empirically seems to be driving
the spreads in the market. Secondly, there is a need to reduce dimensionality from
having a separate basis spread term structure for each tenor pair, which is the case
in the “multiple curve” modelling approach. To illustrate the effect of liquidity
risk, we revisit the arbitrage strategy in Table 1.

During the crisis, suppose a lender in the interbank (i.e. LIBOR) market rolls
over two consecutive 3M lending. At the end of 3 months if there is funding short-
age, the lender can choose not to make the second lending. In contrast, if the
lender makes a 6M lending, there is no such flexibility. Ceteris paribus, because
the 6M lending involves higher liquidity risk than the 3M roll–over lending, 6M
LIBOR should entail a liquidity premium over the 3M LIBOR. As the crisis devel-
oped and intensified, liquidity risk was amplified, which led to large liquidity risk
premium for longer term loans over the short term ones.

However, since the GFC tenor swaps are “almost” free of counterparty credit risk
due to the widespread use of collateral. Johannes and Sundaresan (2007) find that
due to collateral, market participants commonly view swaps as risk–free instru-
ments and the cash flows should be discounted at the risk–free rate. Bianchetti
(2010), Mercurio (2010) and Piterbarg (2010) also note that it makes sense to dis-
count collateralised cash flows by the OIS rate, which is regarded as the best proxy
for the risk–free rate. It is hence incorrect to compensate the party receiving 6M
LIBOR with the liquidity premium in a tenor swap. To make the contract fair, a
positive spread equal to the liquidity premium should be added to the 3M LIBOR.
We propose that this is the reason the spread is always added to the shorter tenor
rate. Large liquidity risk premium during the crisis hence also explains the large
spreads quoted in tenor swaps.

In the arbitrage strategy proposed in Table 1, if a liquidity shock arrives between
initiation and the end of 3 months, the lender may refuse to roll over the loan to
the arbitrageur. Because the arbitrageur is committed to the 6M lending, he/she
has to refinance in a stressed market. The potential loss due to refinancing (i.e. at
a higher rate than L3m(0.25)) could offset or even exceed the gain from the spreads
in the swap. Therefore, although the market may appear rife with arbitrage op-
portunities, the strategy may break down.
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3.2 Model and Implementation

We use an intensity model to describe the arrival time of liquidity shocks with a
time-inhomogeneous Poisson process N(t), with deterministic intensity λ(t). The
basic idea of intensity models is to describe the shock time τ as the first jump
time of a Poisson process. Although shocks are not induced by observed market
information or economic fundamentals, by formulation intensity models are suited
to model credit spreads and calibrate to CDS data (see e.g. Brigo and Mercurio
(2006)). In this study we adopt this technique and propose an intensity model for
basis spreads in tenor swaps and calibrate to market data.

We consider a N -year maturity TS which exchanges the i–th tenor LIBOR plus a
spread Bi,j,N for the the j–th tenor LIBOR, where i < j and Bi,j,N > 0. N , i and
j are expressed in terms of year fractions. We assume that an arbitrageur follows
the arbitrage strategy in Table 1. The arbitrageur gains Bi,j,N ∗i at the end of each
i–th tenor. We propose that the expected loss due to refinancing given a liquidity
shock explains why the arbitrage strategy breaks down. Hence we impose the “fair
pricing” condition that the expected loss offsets the expected gain. To gain more
model tractability, we make several simplifying assumptions,

1) The tenor swap is perfectly collateralised with zero threshold, which means
the posted collateral must be 100% of the contract’s mark–to–market value. The
amount of collateral is continuously adjusted with zero minimum transfer amount
(MTA)11. Because daily margin call is quite common in the market, continuous
adjustment should reasonably well approximate the actual practice (see Fujii et
al. 2009).

2) The first jump of the Poisson process can occur within any shorter tenor of
the swap and there can be at most one jump within each shorter tenor. Upon the
first liquidity shock, the arbitrageur is unable to roll over the shorter tenor loan and
has to refinance until the end of the associated longer tenor. The instantaneous
loss rate due to refinancing is π(t). The arbitrageur then shuts down the borrow-
ing and lending in the arbitrage strategy at the end of the longer tenor within
which the first jump occurs. To illustrate this assumption, suppose we have a 3M
vs 12M tenor swap for 12 months, and in a purported arbitrage strategy against
this swap we are borrowing at the shorter tenor and lending at the longer tenor.
If the first liquidity shock occurs between initiation and 3 months, the borrowing
and lending can only be shut down at the end of 12 months, due to the 12M lending.

3) We assume remaining risks are negligible for the arbitrageur, including the
default risk of the longer tenor lending and the mark–to–market value of the tenor
swap.

11MTA is the smallest amount of value that is allowable for transfer as collateral. This is the
lower threshold below which the collateral transfer is more costly than the benefits.
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Based on such simplifying assumptions, we calculate the present value (PV) of
the expected gain and of the expected loss of the arbitrage strategy. We firstly
examine the distribution of the first jump time τ . We assume that τ can occur
within any shorter tenor. However, if τ arrives within the last shorter tenor for
a given longer tenor, it is irrelevant because the arbitrageur can shut down the
strategy at the end of the longer tenor without refinancing. Hence total number of
relevant shorter tenors within which τ occurs is N

j
∗ ( j

i
−1) and the PV of expected

loss is expressed as

PVLoss =
K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)
PQ(Tk−1 < τ ≤ Tk)D

OIS(T0, Tη(k)) (20)

=
K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)(
e−

∫ Tk−1
0 λ(u) du − e−

∫ Tk
0 λ(u) du

)
DOIS(T0, Tη(k)),

where PQ denotes the probability under the risk-neutral measure Q, DOIS(·, ·) is
the discount factor from the OIS curve. K = N

i
is the total number of shorter

tenors until maturity and Tk = k · i. ηk is expressed as

ηk = min (m |Tk ≤ Tm·n) · n, (21)

where n = j
i
. On the other hand, the PV of expected gain is

PVGain =
K∑
k=1

(Bi,j,N · i)DOIS(T0, Tk). (22)

The no–arbitrage condition is hence

K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)(
e−

∫ Tk−1
0 λ(u) du − e−

∫ Tk
0 λ(u) du

)
DOIS(T0, Tη(k))

=
K∑
k=1

(Bi,j,N ∗ i)DOIS(T0, Tk). (23)

Given the OIS discount curve, we can use Eqn. (23) to calibrate the loss rate
π(t) and intensity function λ(t) to the selected set of tenor swaps. In credit risk
literature (e.g. Schönbucher (2003)) where the intensity model is used to calibrate
credit spreads, joint calibration of the recovery rate and the deterministic intensity
functions often produces unstable results. Hence the recovery rate, comparable to
π(t), is often made constant and estimated separately. We adopt this technique to
estimate a constant loss rate π and λ(t).
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To obtain an estimate of π, as the first step we assume λ(t) = λ, where λ is
a constant and jointly calibrate π and λ. To do this we use the mean–squared
deviation function to obtain the optimal fit by minimizing the function by varying
π and λ:

N∑
i=1

(
PV i

Loss(π, λ)

PV i
Gain

− 1

)2

, (24)

where N is the number of tenor swaps used for the calibration. This measure
uses relative deviations and hence is independent of the scale of individual present
values.

In the second step, we use the estimated π from step 1 as the input and calibrate
time–dependent and piecewise constant λ(t) to the same set of selected swaps. To
achieve a perfect fit and impose minimal structure on the intensity curve, we use
the bootstrap method to strip λ(t) from observed spreads. The bootstrap proce-
dure is as follows,

1) Tenor swaps are ordered in the appropriate order12.

2) λ(t) is piecewise constant. We first find λ1 such that

PV 1
Loss(π, λ1) = PV 1

Gain. (25)

We then work iteratively to evolve the intensity curve. Eventually, given λ1, ...,
λN−1 we find λN such that

PV N
Loss(π, λ1, ..., λN−1;λN) = PV N

Gain. (26)

4. Data, Methodologies and Results

Because the set–up and implementation of the intensity model is currency in-
dependent, we collect USD data only. The calibration procedure is identical for
currencies other than USD.

4.1 Construction of OIS Discount Factors

We use the standard bootstrap with interpolation method to construct the USD
OIS discount factors required for both sides of Eqn. (23). To this end, we collect

12See details in Table 4 of Section 4.
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USD OIS rates available from Bloomberg. Maturities include 1–week (1W), 2W,
1M, 2M, 3M, 4M, 5M, 6M, 7M, 8M, 9M, 10M, 11M, 1Y, 15M, 18M, 21M, 2Y, 3Y,
4Y, 5Y and 10Y. The sample period starts from July 28th, 2008, since when the
10Y OIS rates are available, and ends at April 2nd, 2013. OIS rates beyond the
10Y maturity are only quoted from September 27th, 2011.

In order to extend the OIS curve to 30Y maturity, we use the USD Fed Funds
(FF) basis swap quotes to approximate OIS rates (see, for example, Bloomberg
2011). FF basis swaps exchange the non–compounded daily weighted average of
the overnight FF effective rate13 for a 90–day period plus a spread and 3M USD
LIBOR flat, with quarterly payment frequency. On the other hand, two parties in
an OIS agree to exchange the difference between interest accrued at the fixed rate
and interest accrued at the daily compounded FF effective rate, with annual pay-
ment frequency. Although having different payment frequency and compounding
conventions, both OIS and FF basis swaps are defined in terms of the daily reset
FF effective rate, hence they are observables of the same underlying security.

By ignoring minor discrepancies such as compounding for weekends and holidays,
Bloomberg (2011) proposes a quick approximation of OIS rates with IRS rates and
FF basis swap spreads. Firstly, a fixed–floating FF swap can be set up by simulta-
neously entering an interest rate swap and an FF basis swap. In the interest rate
swap, the fixed rate is received and the 3M LIBOR is paid. In the FF basis swap,
the 3M LIBOR is received and FF rate plus the spread is paid. The net position
is therefore interest rate swap fixed rate vs daily average FF rate plus the spread.
Based upon this setup, let SN and FFN denote the N–year IRS fixed rate and FF
basis swp spread, the OIS rate OIStN can be approximated as

OIStN =

(1 +
ÔIStN

360

)90

− 1

× 4, (27)

where

ÔIStN =

(
1 +

rQ − FFN
4

)4

− 1, (28)

and

rQ =

((
1 +

SN × 360
365

2

) 2
4

− 1

)
× 4, (29)

13FF rate is the interest rate at which depository institutions trade funds held at the U.S.
Federal Reserve with each other. The weighted average of FF rate across all transactions is the
FF effective rate.
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where Eqn. (29) converts the semiannually paid interest rate swap rate to quar-

terly paid (i.e. 3M LIBOR) rate and ÔIStN annualises the quarterly paid FF
effective rate. OIStN then is the OIS rate with the daily compounding adjustment.

We then collect the interest rate swap rates and FF basis spreads with correspond-
ing maturities to approximate 12Y, 15Y, 20Y, 25Y and 30Y OIS rates. These ma-
turities are chosen because they started to be quoted from September 27th, 2011.
Because FF basis swaps are quoted from September 22nd, 2008, we approximate
OIS rates from September 22nd, 2008 to September 26th, 2011. To evaluate how
well this method performs, we compare actual quotes of OIS rates and approxi-
mated OIS rates from September 27th, 2011 to April 2nd, 2013. Table 3 shows
that the approximated rates track the actual rates reasonably well.

Table 3: Average OIS Rate Approximation Errors

Maturity 12-year 15-year 20-year 25-year 30-year

Basis Points 0.71 0.94 1.17 0.98 0.70

Percentage 0.37% 0.43% 0.51% 0.40% 0.28%

We therefore have OIS rates with maturities from 1 week up to 30 years. Since
OIS swaps have annual payment frequency, there is only one exchange of payments
up to 1 year. Therefore to bootstrap the OIS curve up to 1 year, OIS rates are
treated as deposit rates. With the day count convention of Actual/365, the OIS
discount factors are calculated as

DOIS(ti) =
1

1 + τi ·OIS(ti)
, (30)

where τi is the year fraction of maturity ti. Similar to using interest rate swap rates
to construct the LIBOR discount curve, OIS discount curves from 1Y to 30Y are
extracted from par OIS rates with the standard bootstrap method. Eqns. (31),
(32) and (33) summarise this method:

OIS(tN) ·
N∑
i=1

DOIS
ti

+DOIS
tN

= 1, (31)

where N is the total number of payments. Discount factors DOIS
tN

are iteratively
obtained with

DOIS
tN

=
1−OIS(tN) ·

∑N−1
i=1 DOIS

ti

1 +OIS(tN)
, (32)

and for maturities not quoted from Bloomberg, OIS rates are linearly interpolated
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with available quotes:

OISt = OISti +

(
t− ti
ti+1 − ti

)
× (OISti+1

−OISti), ti < t < ti+1. (33)

4.2 Bootstrap Liquidity Spreads

We bootstrap piecewise constant intensity λt to achieve perfect fits without im-
posing any functional form. We collect available tenor swap data from Bloomberg,
including 1M vs 3M, 3M vs 6M and 3M vs 12M swaps. We aim to include all tenor
swap instruments in order to capture as much market information as possible and
evolve maturities up to 30 years. To illustrate our bootstrap approach, consider
the 1M vs 3M swap with 3M maturity. Based upon the model assumptions, the
first liquidity shock can arrive between 0 and 1 month, 1 and 2 months or 2 and 3
months. However, if the shock is between 2 and 3 months, it is irrelevant because
the arbitrageur shuts down the strategy at the end of 3 months and does not need
to refinance. Therefore, we assume a constant intensity between 0 and 2 months
and use the 1M vs 3M swap with 3M maturity to calculate the intensity λ1 with
Eqn. (23). With λ1, we are then able to calculate the constant intensity λ2 be-
tween 2 and 3 months, by using the 3M vs 6M swap with 6M maturity. With this
approach, we establish 36 piecewise constant intensities, which are summarised in
Table 4.

In the bootstrap procedure, we exclude 3M v 12M tenor swaps for two reasons.
Firstly, 3M v 12M quotes are only available from August 6th, 2009. Secondly,
in our approach to extending bootstrap intervals, 3M v 12M tenor swaps are re-
dundant once we have used 3M v 6M swaps. Because 3M v 6M swaps have been
quoted for a much longer period, we propose the quotes should be more consis-
tent and reliable. Having established the bootstrap procedure, we use Eqn. (23)
to calculate piecewise constant intensities. We start from the 1M v 3M with 3M
maturity swap to calculate λ1, then work iteratively to find λ2, λ3, ..., λ36.

The bootstrap results demonstrate two problems. Firstly, the term structure of
calibrated intensities severely oscillates. Secondly, many of the intensities are neg-
ative. Severe oscillations are an undesirable property for the term structure of
intensities. Even worse, negative intensities invalidate the fundamental model as-
sumption because λ(t) is a positively valued function. To illustrate, Figure 2 shows
the bootstrap results on Oct 10th, 2008, with π = 0.1 which minimises the de-
viation function in Eqn. (24). The order of intensities in Figure 2 follows the
sequence of intensities constructed in Table 4.
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Table 4: Bootstrap Piecewise Constant Intensities

Piecewise Constant λt Bootstrap Interval Tenor Swap
λ1 0-2 months 1v3 3-month
λ2 2-3 months 3v6 6-month
λ3 3-5 months 1v3 6-month
λ4 5-8 months 1v3 9-month
λ5 8-9 months 3v6 1-year
λ6 9-11 months 1v3 1-year
λ7 11-15 months 3v6 18-month
λ8 15-17 months 1v3 18-month
λ9 17-21 months 3v6 2-year
λ10 21-23 months 1v3 2-year
λ11 23-33 months 3v6 3-year
λ12 33-35 months 1v3 3-year
λ13 35-45 months 3v6 4-year
λ14 45-47 months 1v3 4-year
λ15 47-57 months 3v6 5-year
λ16 57-59 months 1v3 5-year
λ17 59-69 months 3v6 6-year
λ18 69-71 months 1v3 6-year
λ19 71-81 months 3v6 7-year
λ20 81-83 months 1v3 7-year
λ21 83-93 months 3v6 8-year
λ22 93-95 months 1v3 8-year
λ23 95-105 months 3v6 9-year
λ24 105-107 months 1v3 9-year
λ25 107-117 months 3v6 10-year
λ26 117-119 months 1v3 10-year
λ27 119-141 months 3v6 12-year
λ28 141-143 months 1v3 12-year
λ29 143-177 months 3v6 15-year
λ30 177-179 months 1v3 15-year
λ31 179-237 months 3v6 20-year
λ32 237-239 months 1v3 20-year
λ33 239-297 months 3v6 25-year
λ34 297-299 months 1v3 25-year
λ35 299-357 months 3v6 30-year
λ36 357-359 months 1v3 30-year
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Figure 2: Bootstrapped Piecewise Constant Intensities as at 10/10/2008.
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4.3 Analytical Analyses

To understand the cause of the problems shown in the bootstrap results, we per-
form an analytical analysis of the sample data. We conjecture that the oscillations
and negative intensities result from the data. In the standard bootstrap of interest
rate term structure with LIBORs, in general the shape of the curve is monotonic
or humped, without oscillations. The positivity of the curve is also almost always
guaranteed. Compared to interest rate swaps, tenor swaps, especially those of
longer maturities, are only recently quoted. Table 5 summarises the starting year
of interest rate swaps (IRS) and tenor swaps of various maturities,

Table 5: Starting Year of Swap Quotes from Bloomberg

Maturity 1-yr 5-yr 10-yr 15-yr 20-yr 25-yr 30-yr

IRS 1996 1988 1988 1994 1994 1999 1994

1M v 3M TS 1997 1997 1997 2008 2007 2008 2007

3M v 6M TS 1997 1997 1997 2008 2008 2008 2008

We find from Table 5 that tenor swaps beyond 10Y maturity have been quoted for
a much shorter period of time, compared to corresponding interest rate swaps. In
addition, since these instruments were introduced, financial markets have experi-
enced turmoils such as the GFC and European sovereign–debt crisis. We hence
suspect that the tenor swap market is much less mature and consistent than the
interest rate swap market and the quotes may have caused the problems in the
bootstrap results. To find out whether this is the case, we analyze respectively
the shape of the term structure of the quoted spreads of 1M v 3M swaps and 3M
v 6M swaps. To control for transaction costs, we also consider the bid–ask spread
of the quotes. The analysis takes the following steps,

1) For each sample date, we extract the bid rate and the ask rate of the basis
spread for each swap and list them in two rows. The ask rates are in the upper
row and bid rates in the lower row. For each row, we order the rates in the as-
cending order of swap maturity. Hence a matrix S of 2 rows and 19 columns is
formed for 1M v 3M swaps (17 columns for 3M v 6M swaps). Matrix elements are
denoted as Si,j, where i is the row index and j is the column index.

3) For 1M v 3M swaps, a matrix R of 2 rows and 19 columns (17 columns for
3M v 6M swaps) is used to record the results of the analysis. We initialise R by
setting R1,1 = S1,1 and R2,1 = S2,1. For i = 1, we evolve the matrix R along the
columns as follows,

If Ri,j ≥ Si,j+1 ≥ Si+1,j+1, then Ri,j+1 = Si,j+1;
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If Si+1,j+1 < Ri,j < Si,j+1, then Ri,j+1 = Ri,j;

Else, Ri,j+1 = Si+1,j+1.

For i = 2, the algorithm is,

If Ri,j ≥ Si−1,j+1 ≥ Si,j+1, then Ri,j+1 = Si−1,j+1;

If Si,j+1 < Ri,j < Si−1,j+1, then Ri,j+1 = Ri,j;

Else, Ri,j+1 = Si,j+1.

The above algorithm is designed such that potential oscillations in the term struc-
ture of spreads are minimised. The rationale is that the actual transacted spread
should always be bounded by the bid and the ask rate. Hence, in evolving the
spread curve, we set the spread that spans a particular interval at the rate which
minimises the change from the previous spread, with the constraint that the rate
must be within the bid-ask bounds. As a result, for 1M v 3M swaps, we have two
term structures of spreads on each sample date, one consists of R1,1, R1,2, ..., R1,19

and the other consists of R2,1, R2,2, ..., R2,19.

We then examine the shape of the spread curves resulting from the algorithm.
If both term structures oscillate, we conclude that even after considering the bid-
ask spread, the oscillations still persist on that sample date. By this criteria, we
identify 90 days which shows oscillations for the 1M v 3M swaps and 68 days for
the 3M v 6M swaps. After counting for overlapping days, there are 142 distinct
days of oscillations. Table 6 shows a breakdown of these days by years.

Table 6: Days of Oscillations by Year

Year 2008 2009 2010 2011 2012 2013

Days 33 11 22 62 12 2

It is worth noting that the sample period is from September 22nd, 2008 to April
2nd, 2013. Hence for 2008 and 2013 we do not have a full year. However we can
observe that a large number of oscillation days occurred in the last three months
of 2008. The number of such days dropped significantly during 2009, but started
to pick up in 2010 and intensified in 2011. Since 2012 such anomalies have sta-
bilised and only occurred infrequently. Such an observation broadly corresponds
to major financial market developments during the sample period. The late 2008
marked the peak the GFC. The European sovereign debt–crisis emerged in early
2010, intensified during 2011 and started to stabilise since mid–2012.
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This finding lends support to our conjecture that during market turbulence, the
quotes of tenor swaps are inconsistent and the shape of the spread curve is not
well–behaved. This could potentially be explained by the observation that tenor
swap market is less mature and developed, a problem that could be amplified dur-
ing stressed market conditions.

The other analysis we perform on the sample data is related to the negative quotes.
Because we propose that the transacted spread should be bounded by the bid and
the ask rate, if the ask rate is negative, a negative transacted spread is necessarily
implied. In principle, the arbitrage strategy in Table 1 can be reversed14 to exploit
the negative basis spread attached to the shorter tenor LIBOR. However, based on
the model setup, a negative spread would imply a negative intensity or a negative
loss rate or both. Hence model assumptions are violated. There are 74 days in our
sample on which negative ask rates are quoted. The distribution of these days are
as follows,

Table 7: Days of Negative Spreads

Year 2008 2009 2010 2011 2012 2013

Days 39 29 6 0 0 0

From Table 7 we observe that the days with negative spreads are concentrated
around the peak of the GFC. We surmise that inconsistent and less meaningful
quotes may have resulted from large volatility and uncertainty associated with the
market stresses. Taking into account overlapping days, we identify 192 distinct
days with oscillations and/or negative spreads. In our subsequent analysis, we
decide to exclude these days from the sample because these data lack meaning-
ful behaviour and/or conflict with the proposed model, and we justify this choice
by the above argument that these days represent anomalies due to an immature
market, which seem to be disappearing as the tenor swap market matures. As a
result, the final sample period includes 787 trading days.

4.4 Global Optimisation

Recognizing the problems with the bootstrap results and data issues, we instead
calibrate model parameters with global optimisation. By optimisation, structures
and constraints can be imposed to avoid oscillations and negative intensities. To
achieve best fits, both intensities and loss rates are made time–dependent and
piecewise constant.

14By reversing the strategy, the arbitrageur should borrow at 6M LIBOR and lend at 3M
LIBOR. In the tenor swap, the arbitrageur receives 6M LIBOR and pays the 3M LIBOR plus
the negative spread.
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The global optimisation is implemented as follows. We denote PVGainBid and
PVGainAsk respectively as the PV of the gains based on the bid rate and the ask
rate of the tenor swaps spread. To fully take account of transaction costs in the
arbitrage strategy proposed in Table 1, we subtract the LIBOR–LIBID15 spread
(assumed to be fixed at 12.5 bps, see Coyle (2001)) from the bid rate of basis
spread to calculate PVGainBid. This is appropriate because when the arbitrageur
lends funds, the deposit rate is the LIBID rate. Therefore the lower bound of the
arbitrage profit is PVGainBid. We then minimise the loss function G:

G =
N∑
i=1

[max (PV i
Loss − PV i

GainAsk, 0) + max (PV i
GainBid − PV i

Loss, 0)]2, (34)

where N = 36 is the number of swaps used in the global optimisation. The loss
function is chosen such that for a given set of parameters πi and λi, the optimisa-
tion error is zero if the following condition is satisfied,

PV i
GainBid ≤ PV i

Loss ≤ PV i
GainAsk. (35)

In (35) we set PV i
GainBid as the lower bound and PV i

GainAsk as the upper bound for
PV i

Loss. If PV i
Loss based upon the calibrated parameters falls within the bounds,

we assume that the PVGain based on the actual transacted rate is matched and
the error is set to zero. Therefore we only have positive error terms if PV i

Loss is
below the lower bound or above the upper bound.

In order to obtain sensible fits and avoid severe oscillations, we also impose a
measure of smoothness on the optimisation. We use the following smooth measure
to penalise large oscillations of the intensities,

Smoothλ =
N−2∑
i=1

[(λi+2 − λi+1)− (λi+1 − λi)]2

=
N−2∑
i=1

(λi+2 + λi − 2λi+1)
2. (36)

We therefore minimise the objective function, i.e. the weighted sum of the loss
function and the smoothness measure:

Scaleloss ·G+ Scalesmooth · Smoothλ, (37)

15London Interbank Bid Rate is a bid rate at which a bank is willing to borrow from other
banks, while LIBOR is the ask rate.
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where Scaleloss is the damping factor on the loss function and Scalesmooth is the
damping factor on the smoothness measure. The damping factors can be adjusted,
depending on the main objective of the optimisation. If the dominating objective
is to minimise the fitting errors, Scaleloss should be assigned a higher weight than
Scaleλ. On the other hand, if the main objective is to have a smooth term struc-
ture of intensities without large fluctuations, Scaleλ should be assigned a higher
weight than Scaleloss.

To implement the global optimisation scheme, we set initial conditions for in-
tensities as

λi = e(−0.1Ti) · Spread1
100

, ∀i ∈ [1, 2, ..., N ], (38)

and apply the constraint

0.00001 < λi < 0.99999, ∀i ∈ [1, 2, ..., N ]. (39)

The time-decay function in Eqn. (38) is chosen because based upon the analy-
sis of the sample data, the shape of the spread curve is monotonically decreasing
on most of the trading days. Ti stands for the maturity of each bootstrap interval
end. The weight factor of the decay function Spread1

100
is used to assign different

sets of initial intensities for each sample date, based upon the spread level of 1M
v 3M tenor swaps with 3M matutiry on that day. Eqn. (38) is used to both avoid
oscillations and ensure smoothness of the calibrated intensities. The constraint
in Eqn. (39) is imposed to guarantee positivity of intensities, as well as prevent
unusually high values.

We also set initial conditions for the loss rates. As we have no view on the shape
of the loss rates, a constant is chosen as initial inputs for the optimisation:

πi = 0.01, ∀i ∈ [1, 2, ..., N ], (40)

Similarly, positive bounds are imposed:

0.0001 < πi < 0.1, ∀i ∈ [1, 2, ..., N ]. (41)

4.5 Optimisation Results

We have three key results from the proposed global optimisation scheme, in rela-
tion to the fitting errors, intensities and loss rates.
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1) For all sample dates the fitting error is zero, i.e. the loss function G in Eqn.
(34) is zero and the condition in (35) is satisfied. The perfect fits are not sur-
prising given that we make both intensities and loss rates deterministic, step–wise
constant functions of time, hence 72 degrees of freedom. The bounds we set for
the intensities and the loss rates are satisfied for all sample days.

2) The term structure of the calibrated intensities displays well–behaved shape
on most of the sample days. Table 8 summarises the various shapes of the inten-
sity curves, where Inc & Hump (resp. Dec & Hump) refers to the humped shape
that firstly increases (resp. decreases) then decreases (resp. increases). Given
the initial condition we set for intensities in Eqn. (38), it is expected that most
intensity curves monotonically decrease. Humped shapes, though not many, are
also produced by the optimisation scheme. While monotonic and humped shapes
are common in observed term structures, oscillations are not desirable. However,
for all these 15 days, the curve only oscillates once. On the other hand, the boot-
strapped intensity curve in Figure 2 oscillates repeatedly.

Table 8: Shapes of Intensity Curve

Shape Decrease Inc & Hump Dec & Hump Oscillate

Days 734 26 12 15

3) The loss rate curve oscillates on 522 sample days.

Figures 3, 4 and 5 are used to illustrate the optimisation results. We show respec-
tively the fits, intensity curve and loss rate curve produced by global optimisation
on Oct 10th, 2008. In Figure 3 we observe that for all tenor swaps included in the
sample, the PV of loss based on the calibrated intensities and loss rates is bounded
by the PV of gains based on the bid rate of the spread (lower bound) and the ask
rate of the spread (upper bound). Hence the fitting error is zero. In Figure 4
we see the calibrated piecewise constant intensities are monotonically decreasing.
However, the loss rate curve in Figure 5 repeatedly oscillates.

5. Parsimonious Modelling of Intensity and Loss Rate

5.1 Introduction

Our optimisation results in Subsection 4.5 show symptoms of overparameterisa-
tion. Firstly, the perfect fits are expected because both intensities and loss rates
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Figure 5: Global optimisation Loss Rate Curve as at 10/10/2008.

are made piecewise constant, deterministic functions of time, resulting in 72 de-
grees of freedom. Secondly, though we impose the initial condition in Eqn. (38)
which decays exponentially, humped shapes and oscillations are generated by the
optimisation. We therefore suspect that the monotonically decreasing initial con-
dition is too restrictive and not flexible enough to capture a richer dynamic of the
intensities. Lastly, the loss rate curves show a lack of structure through repeated
oscillations.

A model with a large number of parameters, such as the one used in our opti-
misation, is able to perfectly fit the observed data. However, it is less likely to
explain well than a parsimonious model which assumes more smoothness. Further-
more, the fitting errors of the parsimonious model may represent an opportunity
to study the systematic and idiosyncratic features of the data that the model fails
to capture (see, for example, Nelson and Siegel (1987)).

We are thus motivated to propose a parametrically parsimonious model for both
intensities and loss rates, which allows us to capture a family of curve shapes.
Nelson and Siegel (1987) proposed a model to fit the term structure of interest
rates. The Nelson–Siegel model is consistent with a level–slope–curvature factor
interpretation of the term structure (see e.g. Litterman and Scheinkman (1991))
and widely used in academia and practice. Nelson and Siegel (1987) models the
instantaneous forward rate f(τ) as

f(τ) = β0 + β1e
(−τ/s) + β2(τ/s)e

(−τ/s), (42)

where τ is time to maturity and β0, β1, β2 and s are constants to be estimated.
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The model hence consists of three factors: the constant β0 represents the long term
interest level, the exponential decay function β1e

(−τ/s) and a Laguerre function in
the form of xe−x. The role of the factors can be seen by examining the limiting
behavior of time to maturity. If we let τ → ∞, the second and the third factor
vanish and the long-term forward rate converges to β0. As τ → 0, the Laguerre
function vanishes and the forward rate converges to β0 + β1. Hence −β1 measures
the slope of the yield curve, where a positive (negative) β1 represents a downward
(upward) slope. Lastly, the Laguerre function represents the curvature of the yield
curve and the shape parameter s > 0 determines the rate at which the slope and
the curvature decay to zero. The location of the maximum (minimum) value of
the curvature is determined by the value of s. Small (large) values of s correspond
to rapid (slow) decay and therefore suitable for fitting curvatures at low (longer)
maturities.

By pre–specifying a grid of shape parameters, Nelson and Siegel (1987) transformed
the non–linear model in Eqn. (42) to a linear model and performed ordinary least
squares (OLS) regressions for 37 data sets. The regression results explained a large
fraction of the variations in the yields of treasury bills, with a median R2 of 96%.
Although the best–fitting shape parameter s varies for different data sets, by fixing
s at its median value for all data sets only resulted in little loss of explanatory
power. An important observation in Nelson and Siegel (1987) is that by plotting
the time series of the estimated parameters, a breaking point October 1982 was
identified, after which the importance of the curvature factor was evidently less.
Since October 1982, both the magnitudes and variations of estimated β1 and β2
became much smaller and the yield curve shapes became simpler and more stable.
The authors attributed such a structural break to the change of Federal Reserve
monetary policy in October 1982, a switch from stabilising the monetary aggre-
gates to stabilising interest rates. Nelson and Siegel argued that the market quotes
may have become more accurate with more certainty in interest rates and resulted
in simpler, lower–order yield curves. Such a structural break effect is particularly
relevant with our study. It would be interesting to see if the intensity and loss rate
curves become more stable during more recent periods than during the crises.

Therefore, in this section we employ a Nelson–Siegel type model, which allows
us to parsimoniously describe intensities and loss rates of the liquidity shock. To
account for randomness, we also propose a preliminary stochastic model for these
two parameters.

5.2 Model Set-up

We propose a Nelson–Siegel type model for both the intensity λ(t) and the in-
stantaneous loss rates π(t):

λ(τ) = λ0 + λ1e
(−τ/S1) + λ2(τ/S1)e

(−τ/S1), (43)
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π(τ) = π0 + π1e
(−τ/S2) + π2(τ/S2)e

(−τ/S2), (44)

where τ is time to maturity. λ0, λ1, λ2 (π0, π1, π2) are respectively coefficient
for the level, slope and curvature factor of the intensity (loss rate) and S1 (S2)
is the shape parameter for the intensity (loss rate). Hence for each sample trad-
ing day there are 8 parameters to estimate, a drastic reduction compared to the
global optimisation. In general researchers fix the shape parameter and estimate
the linearised version of the Nelson–Siegel model parameters. However, the lin-
ear regression method has been reported to behave erratically over time and have
large variances. Annaert et al. (2012) showed that these problems result from
multi–collinearity. Alternatively, nonlinear optimisation techniques can be used
to estimate model parameters. The drawback of this approach is that the esti-
mators are sensitive to the initial values used in the optimisation (see Cairns and
Pritchard (2001)). In the global optimisation scheme of Section 4 we deliberately
account for transaction costs and fit the PV of losses with respect to two bounds;
and in the present context we will also follow the optimisation approach and the
associated conditions of Eqn. (34) and (35).

We integrate λ(τ) and π(τ) specified by Eqn. (43) and (44). The “fair value”
condition in Eqn. (23) then becomes

K∑
k=1

(eA − 1)(e−B − e−C)DOIS(T0, Tη(k)) =
K∑
k=1

(Bi,j,N · i)DOIS(T0, Tk), (45)

where A, B and C are respectively:

A =

∫ Tη(k)

Tk

π(u) du

= (Tη(k) − Tk)π0 − π1S2

(
e
(−Tη(k)/S2) − e(−Tk/S2)

)
− π2

(
e
(−Tη(k)/S2)(Tη(k) + S2)− e(−Tk/S2)(Tk + S2)

)
, (46)

B =

∫ Tk−1

0

λ(u) du

= Tk−1λ0 + (λ1 + λ2)S1(1− e(−Tk−1/S1))− λ2Tk−1e(−Tk−1/S1), (47)

C =

∫ Tk

0

λ(u) du

= Tkλ0 + (λ1 + λ2)S1(1− e(−Tk/S1))− λ2Tke(−Tk/S1). (48)

34



Eqn. (45) is then used in the optimisation to calibrate the parameters for λ(τ)
and π(τ).

5.3 Optimisation Scheme

We establish the constraints and initial values for the optimisation, which is used
to calibrate parameters of λ and π.

5.3.1 Optimisation Constraints

We establish parameter constraints for the nonlinear optimisation scheme. For the
intensity parameters, because λ0 is the long–term level of intensity, we require that

0.00001 ≤ λ0 ≤ 0.22872, (49)

where the lower bound (resp. upper bound) is the minimum (resp. maximum) λ0
calculated from the global optimisation results in Section 4. The shape parameter
S1 is bounded by the maturities of tenor swaps data and as such

0 ≤ S1 ≤ 30. (50)

The constraints for λ1 and λ2 are derived from the positivity of the model in
Eqn. (43). Take the first derivative of Eqn. (43) with respect to τ we have

λτ =
−λ1
S1

e(−τ/S1) − λ2
S1

(τ/S1)e
(−τ/S1) +

λ2
S1

e(τ/S1). (51)

Letting (51) equal to 0, we obtain

τ =

(
λ2 − λ1
λ2

)
S1. (52)

The second derivative of (51) with respect to τ is

λττ =
1

S2
1

(
λ1 − 2λ2 +

λ2τ

S1

)
e(−τ/S1). (53)

Substitute (52) into (53), the second derivative becomes
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λττ = −λ2
S2
1

e

(
λ1−λ2
λ2

)
. (54)

Therefore the second derivative is positive if λ2 < 0. It follows that the func-
tion λ(τ) has the local minimum at τ = (λ2−λ1

λ2
)S1 and the function value is

λ(τ) = λ0 + λ2e

(
λ1−λ2
λ2

)
. (55)

To ensure the positivity of the minimum, we examine the location of critical value
of τ in (52). If τ = (λ2−λ1

λ2
)S1 < 0, because λ2 < 0, we must have λ2 > λ1. Then all

is required is that λ(0) = λ0 + λ1 > 0, which ensures that λ(τ) > 0 for all positive
maturities. Therefore, in this case the constraints are

λ2 < 0, λ2 > λ1, λ0 + λ1 > 0. (56)

On the other hand, if τ = (λ2−λ1
λ2

)S1 ≥ 0, then λ1 ≥ λ2. We require that

λ0+λ2e

(
λ1−λ2
λ2

)
> 0, which leads to λ2 >

−λ0

e
(λ1−λ2λ2

)
. Therefore the constraint for λ2 is

λ2 < λ1,
−λ0

e

(
λ1−λ2
λ2

) < λ2 < 0. (57)

In a parallel fashion, the constraints of the loss rate parameters are set as fol-
lows:

0.0001 ≤ π0 ≤ 0.02, (58)

and

0 ≤ S2 ≤ 30, (59)

The constraints for π1 and π2 are

π2 < 0, π2 > π1, π0 + π1 > 0, (60)

or

π2 < π1,
−π0

e

(
π1−π2
π2

) < π2 < 0. (61)
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5.3.2 Initial Values

To promote stability and smoothness in the estimated parameters, we use the
estimated parameters on one day as the initial values for the next day. For the
first sample date, 03/03/2009, the initial values are chosen and listed in Table 9.

Table 9: Initial Values for Optimisation as at 03/03/2009

Parameter λ0 λ1 λ2 S1 π0 π1 π2 S2

Value 0.1789 0.6406 -0.35 2 0.01 0.0702 -0.06 2

Based upon the global optimisation results in Section 4, we fix he value of λ0 by the
30Y intensity. We then approximate λ(0) = λ0 + λ1 by the 2M intensity. Taking
the difference of λ(0) and λ0, we obtain the initial value of λ1. Initial values of π0
and π1 are chosen with the same procedure. We set the shape parameters S1 and
S2 to be 2, which means at such initial values the location of the hump or trough
of the Laguerre function β2(

τ
s
)e(−

τ
s
) is at τ = 2. Finally, we search over a grid of

values for λ2 and π2 and choose the set of values, which in conjunction with other
initial values, produces the least optimisation error.

5.4 Results

The calibration results of the model parameters are presented in Figures 6 and
7. In Figure 6 we observe that, except for the initial sample period when the mar-
ket was still experiencing turmoils, the intensity parameters, λ0, λ1, λ2 and S1,
show little time variations. In Figure 7 we have similar findings for the loss rate
parameters π2 and S2. On the other hand, π0 and π1 exhibit significant time varia-
tions. Different from the estimation of default risk, where the standard calibration
to market instruments (e.g. CDS spreads) normally assumes a constant recovery
rate and calibrates time–varying default intensities, our optimisation jointly cali-
brates loss rates and intensities. We therefore propose that the time variations of
liquidity risk in our model are mainly captured by the loss rate parameters.

The calibrated model parameters fit 504 sample days perfectly, or a proportion
of 64% of the whole sample period. It needs to be pointed out that, it is not
the objective of the Nelson–Siegel type model to achieve perfect fits. Instead, we
aim to identify the underlying structure of the model fitted to the data. Fitting
errors may present an opportunity to examine the systematic and idiosyncratic
features of the sample data. To this end, we study the distribution of the fitting
errors across the sample period. Table 10 presents the distribution of the largest
20% fitting errors. The sample mean and standard deviation of fitting errors are
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summarised in Table 11.

Table 10: Distribution of the Largest 20% Fitting Errors

Year 2009 2010 2011 2012 2013

Days 114 19 14 8 3

Table 11: Sample Mean and Standard Deviations of Fitting Errors

Year 2009 2010 2011 2012 2013

mean 9.12E-08 3.24E-10 1.73E-09 3.90E-11 6.51E-11

standard deviation 3.44E-07 1.89E-09 9.81E-09 2.40E-10 1.23E-10

We see from Table 10 that the large fitting errors are highly concentrated around
the early sample period. Table 11 shows that the fitting errors of the more recent
sample period (2012 and 2013) are characterised by both lower level and volatility
of the fitting errors, which lends support for our conjecture that the consistency
of tenor swap market has improved since the crisis and liquidity risk priced into
the market for basis swaps has gradually stabilised.

We also examine shapes of the intensity curve and the loss rate curve. As ex-
pected, both curves are well behaved without oscillations. On all sample days,
the intensity curve firstly decreases then increases. The loss curves either mono-
tonically increase or initially decrease then increase. Figures 8 illustrates possible
shapes of these curves.

Lastly, in Figure 7 we find that the upper bound (2%) of π0 imposed for the op-
timisation is binding and hit on 24 sample days. We therefore increase the upper
bound (to 3% and 4% respectively) and re–optimise. The results are summarised
in Figures 9 and 10 (for 3%) and Figures 11 and 12 (for 4%). We see that the
upper bound is only hit on 5 days (for 3%) and 1 day (for 4%) and such days all fall
at the very beginning the sample period. We conclude that the boundary hitting
is due to the heightened market stress and there is no need to further increase the
upper bound of the long–term loss rate. The distribution of the fitting errors and
curve shapes of intensity and loss rate are virtually unchanged after increasing the
upper bound for π0.
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Figure 6: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(43). Parameters include λ0, λ1, λ2 and S1. The upper bound of π0 is
0.02.
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Figure 7: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(44). Parameters include π0, π1, π2 and S2. The upper bound of π0 is
0.02.
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Figure 8: Shapes of the calibrated intensity curve and loss rate curves.
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Figure 9: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(43). Parameters include λ0, λ1, λ2 and S1. The upper bound of π0 is
0.03.
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Figure 10: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(44). Parameters include π0, π1, π2 and S2. The upper bound of π0 is
0.03.
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Figure 11: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(43). Parameters include λ0, λ1, λ2 and S1. The upper bound of π0 is
0.04.
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Figure 12: Calibrated parameters of the Nelson-Siegel type model in Eqn.
(44). Parameters include π0, π1, π2 and S2. The upper bound of π0 is
0.04.
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5.5 A Stochastic Model

We have thus far modelled time–dependent, deterministic intensity and loss rate.
To account for potential randomness, we set up a preliminary stochastic model for
these two parameters.

As in Section 3, we assume that when a liquidity shock occurs, the arbitrageur
is unable to roll over the shorter tenor loan and has to refinance until the end
of the associated longer tenor, shutting down the borrowing and lending in the
arbitrage strategy at the end of the longer tenor within which the first jump oc-
curs. However suppose now that the liquidity shock is triggered by a Cox process
(Cox 1955) with stochastic intensity λ. Assume that this process is independent
of any interest rate dynamics and is given by a sum of d independent factors yi, i.e.

λ(t) =
d∑
i=1

yi(t), (62)

where the yi follows the Cox–Ingersoll–Ross (CIR) dynamics (Cox et al. 1985)
under the pricing measure, i.e.

dyi(t) = (θi − aiyi(t))dt+ σi
√
yi(t)dW

λ
i (t), (63)

where dW λ
i (t) (i = 1, · · · , d) are independent Wiener processes. The CIR–type

model is chosen for its analytical tractability, as well as the guaranteed positivity
of the modelled object, with the condition which ensures that the origin is inac-
cessible. In order to keep the model analytically tractable we do not allow for
time–dependent coefficients at this stage. Since each of the factors follow indepen-
dent CIR–type dynamics, the sufficient condition for each factor to remain positive
is 2θi > σ2

i , ∀i, as discussed for the one–factor case in Cox et al. (1985).

For stochastic intensity λ, the LHS of the “fair value” condition proposed in Eqn.
(23) becomes

K∑
k=1

(
e
∫ Tη(k)
Tk

π(u) du − 1

)
(
E
[
e−

∫ Tk−1
0 λ(u) du

]
− E

[
e−

∫ Tk
0 λ(u) du

])
DOIS(T0, Tη(k)). (64)

The expectations under the pricing measure can be evaluated in the same manner
as the multi–factor CIR zero coupon bond price given in Chen and Scott (1995), i.e.

E
[
e−

∫ T
t λ(u) du

∣∣∣Ft] = A(t, T ) · e−B(t,T )y(t), (65)
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with

y(t) =

y1(t)...
yd(t)

 ,

and B(t, T ) similarly a vector with components

Bi(t, T ) = 2wi
(
eci(T−t) − 1

)
. (66)

Furthermore,

A(t, T ) =
d∏
i=1

Ai(t, T ), (67)

with

Ai(t, T ) =
(

2ciwie
1
2
(ci+ai)(T−t)

)(2θi/σ2
i )

. (68)

The coefficients ci and wi are given by

wi =
(
(ci + ai)e

ci(T−t) + ci − ai
)−1

, (69)

ci =
√
a2i + 2σ2

i . (70)

Similarly, in addition we may assume stochastic dynamics for the refinancing loss
rate as well by setting π as a sum of d̃ independent factors zi:

π(t) =
d̃∑
i=1

zi(t), (71)

with the stochastic process independent of interest rates and λ and is given by

dzi(t) = (ξi − bizi(t))dt+ γi
√
zi(t)dW

π
i (t), (72)

where dW π
i (t) (i = 1, · · · , d̃) are independent Wiener processes. We interpret the

stochastic π as the instantaneous spread representing the cost of refinancing after
a liquidity shock, meaning that if a liquidity shock occurs at time τ between Tk−1
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and Tk, the actual refinancing cost is represented by an implicit term structure of
refinancing spreads. Denote this actual refinancing spread cost for the period from
Tk to Tη(k) by π̃(τ), which is a continuously compounded, per annum rate. Then
we model this by,

e
π̃(τ)(Tη(k)−Tk) =

E
[
e−

∫ Tk
τ π(s) ds

∣∣∣Fτ]
E

[
e−

∫ Tη(k)
τ π(s) ds

∣∣∣∣Fτ] . (73)

Thus quantity with a direct economic interpretation is π̃(τ), observable at the
time τ of the liquidity shock, while the modelling of π as a multi–factor CIR–type
process serves to endow the π̃(τ) with a tractable stochastic dynamic; i.e. the term
structure of incremental refinancing costs a the τ is given by the “discount factors”:

E
[
e−

∫ T
τ π(s) ds

∣∣∣Fτ] = Ã(τ, T ) · e−B̃(τ,T )z(τ), (74)

with

z(τ) =

z1(τ)
...

zd̃(τ)

 ,

and B̃(τ, T ) similarly a vector with components:

B̃(τ, T ) = 2w̃i
(
ec̃i(T−τ) − 1

)
. (75)

Furthermore,

Ã(τ, T ) =
d̃∏
i=1

Ãi(τ, T ), (76)

with

Ãi(τ, T ) =
(

2c̃iw̃ie
1
2
(c̃i+bi)(T−τ)

)(2ξi/γ2i )
. (77)

The coefficients c̃i and w̃i are given by,

w̃i =
(
(c̃i + bi)e

c̃i(T−τ) + c̃i − bi
)−1

, (78)
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c̃i =
√
b2i + 2γ2i . (79)

Under the present independence assumptions, it therefore remains to calculate

E
[
e
π̃(τ)(Tη(k)−Tk)

]
=

Ã(τ, Tk)

Ã(τ, Tη(k))
E
[
e
(B̃(τ,Tη(k) )−B̃(τ,Tk))z(τ)

]
=

Ã(τ, Tk)

Ã(τ, Tη(k))

d̃∏
i=1

E
[
e
(B̃i(τ,Tη(k) )−B̃i(τ,Tk))zi(τ)

]
. (80)

If B̃i(τ, Tη(k)) − B̃i(τ, Tk) <
1
2
, we can apply Lemma 2.5 in Schlögl and Schlögl

(2000) to obtain

E
[
e
(B̃i(τ,Tη(k) )−B̃i(τ,Tk))zi(τ)

]
=

e(ζL/(1−2L))

(1− 2L)δ/2−1
, (81)

with

L = B̃i(τ, Tη(k))− B̃i(τ, Tk), (82)

ζ =
4bie

−bi(τ−T0)

γ2i (1− e−bi(τ−T0))
zi(T0), (83)

and

δ =
4ξi
γ2i
, (84)

where δ and ζ are respectively the degrees of freedom and the non–centrality
parameter for the non–central chi–squared distribution function χ2(·, δ, ζ). The
density function of χ2(·, δ, ζ) has the following representation (see, for example,
Johnson and Kotz (1970)):

pχ2(δ,ζ)(x) =
e(−

1
2
(ζ+x))

2δ/2

∞∑
j=0

ζj

22jj!Γ( δ
2

+ j)
x(δ/2+j−1). (85)

The density function of z is

pz(x) = cpχ2(δ,ζ)(cx), (86)

49



where

c =
4bi

γ2i (1− e−bi(τ−T0))
. (87)

If B̃i(τ, Tη(k)) − B̃i(τ, Tk) ≥ 1
2
, the calculation of this expectation is less tractable

and we resort to numerical integration techniques.

We therefore propose that the stochastic models of λ and π can be used to es-
timate the parameters in Eqn. (63) an (72), with observed spreads in the tenor
swap market.

6. Conclusion

In this study we focus on the high–dimensional modelling problem existing in the
single–currency tenor swap market. Based on recent empirical studies, we propose
an intensity–based model to describe the arrival time of liquidity shocks in the
interbank market. With the no–arbitrage argument and non–linear constrained
optimisations, we calibrate the model parameters to quoted basis spreads in tenor
swaps. Our model reduces the dimensionality of the problem down to two factors:
the intensity and the loss rate characterising the driving liquidity risk. In contrast
to the approach prevalent in the credit risk literature, the intensities and loss rates
are calibrated simultaneously and results show that loss rates display more vari-
ations than intensities. Another advantage of our modelling approach, compared
to the ad–hoc modelling approach typically adopted by practitioners, is that our
model is motivated by the driving risk of market anomalies. It is hence more ex-
planatory and consistent with market fundamentals. The results also demonstrate
that since the turmoil of the GFC, the tenor swap market is in the process of
maturing and stabilising.

In order to account for potential randomness, as a preliminary step, we also set up
stochastic CIR–type models for the intensity and the loss rate. We show that un-
der certain conditions closed form solutions exist, which can be used to tractably
estimate the model parameters. The parameters of the stochastic model developed
in this study can be estimated, with either closed form solutions or numerical tech-
niques, in order to examine its ability to fit observed basis spreads — this is a topic
of ongoing research.
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