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Abstract

Existing longevity indices commonly use age–based mortality rates or period life
expectancy. We propose an alternative cohort–based value index for insurers and
pension funds to manage longevity risk. This index is an expected present value
of a longevity linked cash flow valued using a specified cohort mortality model
and a commonly used interest rate model. Since interest rate and longevity risk are
inherent with any longevity linked obligation and interest rate risk can be effectively
hedged, this index will provide a better measure of the longevity risk than current
indices. Current mortality models are largely age–period based, so we develop a
cohort based stochastic mortality model with age–dependent model parameters that
provides realistic cohort correlation structures as an underlying basis for the value
index. We show how the model improves fitting performance compared to other
cohort models, particularly for very old ages, and has a familiar model formulation
for financial market participants. We also demonstrate the hedge effectiveness of
the index.
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1 Introduction

1.1 Background and Motivation

For defined benefit (DB) pension plans and insurance companies with significant annu-
ity policies, uncertain future longevity improvement has become a risk that has to be
quantified and managed. For example it is estimated that the value of UK pension lia-
bilities increases by 3 to 4 percent with each additional year of life expectancy. Other
factors have contributed to the increasing importance of longevity risk, including lower
investment returns and regulatory changes (e.g. Solvency II capital requirement).

Longevity risk is now well recognized as a significant risk that has had limited suc-
cess in being transferred into financial markets using standardized contracts. Traditional
participants in the longevity market include DB pension funds, insurers and re–insurers.
Pension funds have a negative exposure to longevity risk because the value of their liabil-
ities increases with life expectancy. Life insurance companies with both life and annuity
business have relatively flat exposure to longevity risk, with annuity portfolios offsetting
insurance policies (Loeys et al. 2007). The market has overall negative exposure to
longevity improvements. Re–insurers have a limited capacity and willingness to accept
this risk (Wadsworth 2005). Capital markets have the depth, capacity and experience
in risk hedging to hedge longevity risk effectively (Blake et al. 2009). Financial mar-
kets have a long history in innovative financial products to manage risk including equity,
interest rate, credit and commodity risks.

Longevity risk management products have been developed by the capital markets since
20081, including customized, indemnity–based hedges and index–based hedges (e.g. q–
forward, s–forward, longevity swaps). Indemnity–based hedges, such as longevity swaps
offered by re–insurers, have been actively used by pension funds and life insurers. Basis
risk arises for index based contracts because of differences between the mortality of the
underlying lives being hedged and the index used for the hedge contract. This can result
from differences in geographic location, gender, age or socio–economic class for the lives
and the index. For indemnity–based hedges, the mortality experience of the lives is
transferred and basis risk is zero.

Financial market contracts are based on standardized indices and basis risk is an in-
herent factor to consider. Index–based hedging contracts using publicly available national
population data are suitable for financial market investors since this reduces the need for
investors to have detailed knowledge of the lives in pension funds or insurance compa-
nies. Information asymmetry where different parties involved in a transaction do not have
the same level of information, increases the effective costs and risk for an index–based
hedge. Index–based hedges have the advantage of increased liquidity and relative ease to
trade which can also reduce the hedging costs. Basis risk has been demonstrated to be
limited because of the similarity in the mortality improvements of different populations.
Coughlan et al. (2011), Cairns et al. (2014) show that despite differences in demo-
graphic profiles, basis risk is substantially reduced due to high correlations in mortality
improvements, particularly for a long hedge horizon, between the underlying lives and
the hedging population used for the index. Basis risk for longevity indices is also reduced
by using a range of indices for different country, gender, cohort and/or socio–economic

1The first index–based hedge, a q–forward based on the J.P. Morgan’s LifeMetrics longevity index,
was executed in January 2008 by the UK pension insurer Lucida. The first indemnity–based longevity
swap was entered in July 2008 by Canada Life with J.P. Morgan as the counterparty.
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class. Ngai and Sherris (2011) also show how static hedging with longevity bonds and
q–forwards based on Australian mortality can be effective for longevity risk for immediate
life annuities, but also highlight the impact of interest rate risk.

Two important longevity indices are J.P. Morgan’s LifeMetrics (launched in 2007
and transferred to Life and Longevity Markets Association in 2010) and Deutsche Börse
Xpect–Club Vita Index since 2010. LifeMetrics consists of three underlying components:
crude central mortality rates, graduated initial mortality rates and period life expectancy
levels (Coughlan et al. 2007). The index data are classified in terms of country, gender
and cohort. Deutsche Börse adds one more dimension to its Xpect Cohort index: the
pension amount received, which aims to capture the heterogeneity of socio–economic
classes within a particular population (Deutsche Börse 2012). The underlying component
of the Xpect Cohort index is the number of survivors for a defined cohort group. These
current longevity indices (i.e. LifeMetrics and Xpect–Club Vita Index) are based upon
the mortality experience of a given population. They aim to provide a basis for hedging
only mortality, or longevity, risk and to do this on a cash flow hedging basis by using the
index to match the liability cash flow being hedged. Our motivation is to develop a value
based longevity index, including a cohort based model of mortality for constructing the
index. Longevity risks reflect in changes in the present value of future longevity linked
payments. A value based index is an effective way to quantify longevity risk (Sherris and
Wills 2008). Cash–flow hedges aim to match the hedger’s liability cash flows and is suited
to a static hedging approach. A value based hedging approach can be used in a dynamic
approach to hedging. Value based hedging underlies the capital charge introduced by
Solvency II, which is based on the change in net asset value. Interest–rate risk is also
included in a value–based longevity index. Since interest rate risk is actively traded, this
can be readily taken into account in a value based longevity hedging strategy using the
value–based longevity index.

The paper is organized as follows. In Section 2 we outline the construction of the value
based longevity index. Section 3 presents an analysis of cohort mortality data as a basis
for the cohort mortality model proposed for the longevity index. We use Australian male
population data to illustrate the implementation of the value–based cohort longevity
index. Data for other countries and genders are available for many countries in the
Human Mortality Database and this allows the calibration of the proposed index for all
these countries. We then estimate and validate a cohort based mortality model in Section
4. This is used to estimate forecast survival probabilities up to the age of 120 for a cohort.
The model allows for cohort dependence and age based trends and volatilities allowing
consistent application to multiple cohorts. We also use a standard, well accepted model
for the term structure of interest rates and this is presented and calibrated in Section 5.
Section 6 presents an application of the value based cohort longevity index and shows its
hedge effectiveness in hedging longevity linked liabilities. Finally Section 7 concludes.

2 The Value Based Index

The value–based longevity index proposed is the expected present value of a standardized
annual payment of a unit of longevity indexed income to a group of lives currently 65–
years old payable at the end of each year. Payments are based on the expected survivors
in a cohort generated from a proposed stochastic cohort mortality model. The oldest age
is assumed to be 120.
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The index requires a model for mortality and interest rates to provide the expected
number of survivors and discount factors used to calculate the PV of the immediate
annuity as

PV 65
0 =

τ∑
i=1

niDFi, (1)

where the superscript refers to cohort aged 65 and τ = 55. ni is the expected number of
survivors in the annuitant group at the end of year i and DFi is the discount factor from
the term structure model.

The index can also include the values of deferred annuities for a cohort aged 65. For
example, PV 65

15 denotes the index value for a deferred annuity that starts 15 years later for
current 65–year olds. To compute these annuity values forward survival probabilities and
interest rates are used from the initial mortality and interest rate model. The value index
provides benchmark values of both an immediate annuity, as well as deferred annuities
for a cohort aged 65. Other ages can be used for cohorts in the index since the mortality
model used captures cohort dependence.

The value based index will also include interest rate risk. For longevity risk, interest
rate risk in the index must be hedged using a series of interest rate swaps (IRS) with
the notional amount adjusted each year according to a pre-specified schedule and fixed
rate. In the IRS, a fixed rate is received and the floating rate is paid. Fixed rates are
determined from the forward interest rates. This hedging leaves only longevity risk in
index values. For the first IRS entered at time zero, the notional amount is simply PV 65

0 .
For the remaining hedging dates the notional for the IRS at the beginning of year i is

Ni = Ni−1(1 + ki)− ni, ∀i ∈ [1, 2, ..., τ − 1], (2)

where N0 = PV 65
0 and ki is the fixed rate in the swap.

The index uses the well accepted Affine Term Structure Model (ATSM) (Duffie and
Kan 1996) as the basis for both mortality and interest rates. The ATSM provides analyt-
ical tractability, ease of implementation and the ability to determine forward mortality
rates and interest rates for valuation. Special cases of ATSM, such as Vasicek model
(Vasicek 1977) and Cox–Ingersoll–Ross (CIR) model (Cox et al. 1985), have analytical
solutions for zero–coupon bond prices. Also, these models are designed to capture the
time–series property of the term structures rather than the initial cross–sectional property
(Bolder 2001). It is assumed that mortality risk and interest rate risk are independent.
The index construction requires the calibration of the models to mortality and interest
rate data.

Most mortality models are based on age–period data and trends. The value–based
cohort index is based on a single cohort initially aged 65 and requires a cohort–based
model with stochastic mortality intensity. A number of continuous–time, affine stochastic
mortality models have been proposed for a single cohort, e.g. Dahl (2004), Biffis (2005),
Schrager (2006) and Luciano and Vigna (2008). Age–period affine mortality models such
as Blackburn and Sherris (2013) implicitly assume perfect correlations across multiple
cohorts. The value–based longevity index requires an analysis of cohort based data to
identify a suitable model for index construction. The main features of the cohort data of
relevance are mortality trends and volatility by initial age and cohort correlations.
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3 Analysis of Cohort Mortality Data

We use Australian male data from the Human Mortality Database (HMD) for the 1890,
1895, 1900 and 1905 cohorts and for ages 49 to 99. The trends and correlations structure
can be readily estimated for other countries data where sufficient cohort data is avail-
able. For each cohort, we estimate the continuous–time mortality intensity µ(t, x) for

an individual aged x at t with the crude death rate mc(t, x) = D(t,x)
E(t,x)

, where D(t, x) and

E(t, x) respectively represents the number of deaths and average population exposure
during calendar year t aged x last birthday. We consider mortality rates and changes in
mortality rates, defined as 4µ(t, x) = µ(t+ 1, x+ 1)− µ(t, x), giving 50 observations of
4µ(t, x) for each cohort. 4µ(t, x) is required to de–trend the mortality rates.

3.1 Mortality Trends by Cohort

Drift parameters of cohort mortality intensities are expected to vary by age and cohort.
To assess age dependence, we group the data into three age groups: 50–64, 65–84, 85–99.
This allows us to consider the effects at initial ages 50, 65, and 85. We determine the
average of 4µ(t, x) within each group.

Table 1: Drift of Mortality Intensity By Cohort

Initial Age 1890 1895 1900 1905
50 0.001425 0.001639 0.001977 0.001800
65 0.007501 0.005820 0.005335 0.005601
85 0.016177 0.017104 0.015258 0.017705
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Figure 1: Drift of Mortality Intensity By Cohort

Table 1 and Figure 1 clearly show the initial–age dependence of the drift by cohort.
Figure 1 plots the drift as a function of the initial age. The figure clearly shows that a
linear function of age for the drift fits the cohort data well. The functional form a + bx
is proposed for the initial–age dependent drift, where a and b are constants and x is the
initial age.
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3.2 Volatility of Mortality Intensity

For each cohort, we calculate the standard deviation of 4µ(t, x) within each age group to
approximate the continuous–time volatility of mortality intensity. Results summarized
in Table 2 show the dependence of volatility on the initial age. From Figure 2 we see
that the volatility increases approximately exponentially with age. The functional form
e(c+dx) is proposed to represent the age–dependent volatility, where c and d are constants.

Table 2: Volatility of Mortality Intensity By Cohort

Initial Age 1890 1895 1900 1905
50 0.001031 0.000965 0.001748 0.001343
65 0.007080 0.005082 0.007610 0.005494
85 0.030253 0.031574 0.033655 0.024272
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Figure 2: Volatility of Mortality Intensity By Cohort

3.3 Cohort Correlations

Cohort correlations are important in calibrating the model. We estimate correlations
of 4µ(t, x) across cohorts starting from the same calendar time over a 20 year period.
The correlation matrix estimates use a fixed calendar time and a fixed time horizon. We
estimate the correlation matrix using 4 different calendar times – 1955, 1960, 1965 and
1970. The correlation matrices are presented in Table 3.

We see that the correlations vary with the calendar time, suggesting that correlations
vary with the initial age of the cohort. Calculations can use different approaches with
one based on a common calendar time period and the other using a fixed initial age.
Empirically cohort correlations show dependence on the initial age.

From the analysis presented of the Australian mortality data we identify the need
for age dependent drifts by cohort, with a linear function of age proposed, volatility that
increases exponentially with age for any given cohort and correlations that vary by cohort.
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Table 3: 20–Year Cohort Correlations

Calendar Time 1955
Cohort 1890 1895 1900 1905
1890 1.0000
1895 0.6124 1.0000
1900 0.5157 0.4758 1.0000
1905 0.4271 0.1857 0.5568 1.0000

Calendar Time 1960
1890 1.0000
1895 0.4707 1.0000
1900 0.1489 0.2728 1.0000
1905 0.2103 0.1968 0.0949 1.0000

Calendar Time 1965
1890 1.0000
1895 0.6583 1.0000
1900 0.2881 0.4585 1.0000
1905 0.4376 0.4899 0.5200 1.0000

Calendar Time 1970
1890 1.0000
1895 0.4468 1.0000
1900 0.3600 0.4117 1.0000
1905 0.2401 0.7432 0.6260 1.0000

4 Cohort Based Mortality Model

This section presents details of the proposed mortality model for the value–based longevity
index including the parameter calibrations. The data exploration in Section 3 supports
the need for an age–dependent, cohort–based mortality model. Other model assumptions
are based on those often used for mortality models. A Gaussian factor model is chosen for
its analytical tractability and ease of implementation. The model is a two factor model2.
Although a negative mortality intensity is theoretically possible for Gaussian models, in
practice the probability is low (e.g. Brigo and Mercurio 2006).

Jevtic, Luciano and Vigna (2013) present a cohort–based affine mortality model with
cohort dependence. The model uses a two–factor Ornstein–Uhlenbeck process with a
common factor for all cohorts and a cohort–specific factor. An analysis of the model
calibration shows that the cohort correlations are very high. The model also assumes
that the correlations are constant and independent of the initial age. The calibrated
model has large out–of–sample forecasting errors for old ages (age 80 and beyond). The
drift and diffusion coefficients in the model are not age dependent. The common factor
and lack of age dependence of the parameters results in high dependence across cohorts.
The model does not satisfactorily fit observed survival probabilities over a long horizon
and for older ages. The cohort based mortality model that we propose addresses these
issues.

2We do so in order to keep the model tractable. Calibration results presented later show that the
two–factor model fits the observed survival probabilities well.
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4.1 Continuous Time Model

The continuous time model is developed for a probability space (Ω, F , Ft(t ≥ 0), P )
which satisfies the usual hypothesis that the filtration Ft(0 ≤ t ≤ T ) is right continuous
with left limits and P is the real–world probability measure. µi(t, x) is a predictable
process on this probability space and represents the mortality intensity for individuals
aged x at calendar time t of cohort i. Within cohort i, an individual’s death time is
the first jump time of a Cox process with intensity µi(t, x). The two factors of µi(t, x)
respectively follow the SDE’s

dµi1(t, x) = ψi1(t, x)µi1(t, x)dt+ σi1(t, x)dW i
1(t), (3)

dµi2(t, x) = ψi2µ
i
2(t, x)dt+ σi2dW

i
2(t), (4)

where
ψi1(t, x) = a+ bx, (5)

and
σi1(t, x) = e(c+dx). (6)

W i
1 and W i

2 are correlated Brownian motions on P and dW i
1dW

i
2 = ρidt. Via the

Cholesky decomposition of the correlation matrix of W i
1 and W i

2 we rewrite Eqn. (3) and
(4) as

dµi1(t, x) = ψi1(t, x)µi1(t, x)dt+ σi1(t, x)dZ1(t), (7)

dµi2(t, x) = ψi2µ
i
2(t, x)dt+ σi2ρ

idZ1(t) + σi2
√

1− (ρi)2dZ2(t). (8)

In Eqn. (7) and (8) Z1 and Z2 are two independent Brownian motions. Once the
cohort index i and initial age x are specified, calendar time t is determined by t = i+ x.
As a result, the functional forms of ψi1(t, x) in Eqn. (5) and σi1(t, x) in Eqn. (6) implicitly
capture dependence on t. ψi2, σ

i
2 and ρi are assumed to be constant for each cohort and

independent of the initial age. We then have the instantaneous mortality intensity of
each cohort as3

dµ(t, x) = dµ1(t, x) + dµ2(t, x)

= (ψ1(t, x)µ1 + ψ2µ2)dt+ (σ1(t, x) + σ2ρ)dZ1(t)

+ σ2
√

1− ρ2dZ2(t). (9)

We make the assumption that ψ1 and σ1 are piecewise constant with respect to each
age group and depend on the initial age of the group only. For instance, for the 50–64
age group, ψ1 = a + 50b and σ1 = e(c+50d). Hence within each age group of each cohort,
for each s > t, we let τ = s− t and integrate Eqn. (9) to get

µ(s, x+ τ) = µ1(t, x)eψ1(t,x)τ + µ2(t, x)eψ2τ + σ1(t, x)

∫ s

t

eψ1(t,x)(s−u) dZ1(u)

+ σ2ρ

∫ s

t

eψ2(s−u) dZ1(u) + σ2
√

1− ρ2
∫ s

t

eψ2(s−u) dZ2(u). (10)

3We drop the cohort index i to ease the exposition.
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The survival probability for an individual who is alive at t and aged x, from t to s, is
given by4

P (t, s) = E(e−
∫ s
t µ(u) d(u)|Ft)

= exp

[
1− eψ1(t,x)τ

ψ1(t, x)
· µ1(t, x) +

1− eψ2τ

ψ2

· µ2(t, x) +
1

2
V (τ)

]
, (11)

where

V (τ) =
σ2
1

ψ2
1

[
τ − 2

ψ1

eψ1τ +
e2ψ1τ

2ψ1

+
3

2ψ1

]
=
σ2
2

ψ2
2

[
τ − 2

ψ2

eψ2τ +
e2ψ2τ

2ψ2

+
3

2ψ2

]
= 2ρ

σ1σ2
ψ1ψ2

[
τ − eψ1τ − 1

ψ1

− eψ2τ − 1

ψ2

+
e(ψ1+ψ2)τ − 1

ψ1 + ψ2

]
. (12)

4.2 Calibration Method

We calibrate the model parameters by fitting the survival probabilities given by Eqn.
(11) to the empirical survival survival probabilities. Within each age group, the empirical
survival probability P̃ (t, s) is determined using

P̃ (t, s) =
τ∏
i=1

e−µ̃(t+i−1,x+i−1), (13)

where µ̃(·, ·) are mortality intensities approximated by the crude death rates mc(t, x). We
then minimize the sum of weighted squared errors between P (t, s) and P̃ (t, s) across all
4 cohorts and 3 age groups with τ = 15 for the 50–64 group and 85–99 group and τ = 20
for the 65–84 group. Parameters are selected to minimize the objective function

G =

√√√√ 200∑
j=1

Wj(Pj(t, s)− P̃j(t, s))2, (14)

where Wj is the weight assigned to the jth squared error term. We fit to 200 actual
survival probabilities in total. We use non–equal weights and assign highest weights to
the 50–64 group, medium weights to the 65–84 group and the lowest weights to the 85–99
group. We use lower weights as the initial age increases because the volatility of mortality
rates increases significantly with age, which can be seen from the data analysis in Section
3. An equal–weight calibration scheme will tend to over–fit the “noise”. To determine
the weights, we sum the inverse of the initial ages as

Sum =
1

50
× 15× 4 +

1

65
× 20× 4 +

1

85
× 15× 4. (15)

We then calculate each weight Wj as a proportion of this sum. For each age group
across all cohorts, the weight is constant at 1

initial age×Sum
. Hence

∑200
j=1Wj = 1.

The cohort specific parameters include ψi2, σ
i
2, ρ

i and initial values of the state vari-
ables µi1(t, x) and µi2(t, x). The parameters common to all cohorts are a, b, c and d. Since

4See Brigo and Mercurio (2006) for the detailed proof.
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we consider three different initial ages, in total there are 40 parameters to estimate. We
use nonlinear constrained optimization which is relatively computationally inexpensive.
The drawback is that the estimators are sensitive to the initial conditions used in the
optimization (see Cairns and Pritchard 2001). Therefore as the first step, we estimate
the initial conditions of the model parameters with the observed drifts and volatilities in
Section 3. The initial conditions for ψ1 and σ1 are a = −0.0205, b = 0.0004, c = −10.32
and d = 0.0801. The remaining initial conditions are presented in Table 4. We also
impose the constraint that −1 ≤ ρi ≤ 1.

Table 4: Initial Conditions for Optimisation

Cohort ψ2 σ2 ρ µ1(50) µ1(65) µ1(85) µ2(50) µ2(65) µ2(85)
1890 0.0032 0.0002 0.7660 0.0091 0.0305 0.1805 0.0091 0.0305 0.1805
1895 0.0011 -0.0001 0.9999 0.0080 0.0326 0.1490 0.0080 0.0326 0.1490
1900 0.0151 0.0017 0.9999 0.0079 0.0375 0.1442 0.0079 0.0375 0.1442
1905 0.0031 -0.0041 0.8377 0.0074 0.0344 0.1465 0.0074 0.0344 0.1465

4.3 Parameter Estimates

Parameter estimates for the age–dependent parameters are given in Table 5 and for the
cohort specific parameters in Table 6. The model fit to the observed survival probabilities

is measured by the absolute level of the percentage error
∣∣∣ P̃ (t,s)−P (t,s)

P̃ (t,s)

∣∣∣. Figures 3, 4 and

5 show the fitting errors for age groups.

Table 5: Initial Age Dependent Parameters

a b c d
0.2280 -0.0037 -10.3270 0.0343

Table 6: Cohort Parameters

Cohort ψ2 σ2 ρ µ1(50) µ1(65) µ1(85) µ2(50) µ2(65) µ2(85)
1890 0.0721 -0.0001 0.7306 -0.0068 -0.0145 0.0227 0.0157 0.0460 0.1528
1895 0.0632 -0.0073 0.8710 -0.0368 -0.0292 -0.0343 0.0444 0.0607 0.1844
1900 0.0598 0.0000 0.9767 -0.0241 -0.0045 -0.0255 0.0321 0.0449 0.1815
1905 0.0817 -0.0000 0.8482 -0.0072 0.0106 -0.0011 0.0146 0.0256 0.1409

We see that for the age group 50–64 and 65–84, the fitting errors in general are below
1%. For the very old age group 85–99, the largest fitting error is 11.30% and only 5
out of 60 errors are above 5%. Such error levels are in line with the 3–factor age–period
model results in Blackburn and Sherris (2013), who introduce a third factor to capture
the variation in the survival curve for ages over 85. The out–of–sample forecasting in
Jevtic et al. (2013) reports 26% fitting error at age 80 and sharp increases afterwards.
The fitting performance of our 2–factor Gaussian cohort model is improved by the use of
the age–dependent parameters based on the empirical data analysis. Both the drift and
volatility of mortality rate changes increase with age in the data. The model in Jevtic
et al. (2013) with constant parameters does not capture the dependence on initial age
and does not perform well particularly at the older ages.
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Figure 3: Fitting Error for the Age Group 50-64
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Figure 4: Fitting Error for the Age Group 65-84
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Figure 5: Fitting Error for the Age Group 85-99
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Using the parameter estimates in Table 5 and 6, we simulate mortality rates in order
to assess the model performances. There were no negative mortality rates in these simu-
lations, even though in the optimisation scheme no positivity constraints of the mortality
rates are imposed.

We compute the correlations from the simulated mortality rates and these are shown
in Table 7.

Table 7: Cohort Correlations with simulated mortality rates

Calendar Time 1955
Cohort 1890 1895 1900 1905
1890 1.0000
1895 0.4710 1.0000
1900 0.3427 0.4019 1.0000
1905 0.5471 0.6195 0.5193 1.0000

Calendar Time 1960
1890 1.0000
1895 -0.1862 1.0000
1900 0.3584 -0.1156 1.0000
1905 0.6125 -0.2554 0.5283 1.0000

Calendar Time 1965
1890 1.0000
1895 0.2348 1.0000
1900 0.6964 0.2709 1.0000
1905 0.8403 0.2587 0.7707 1.0000

Calendar Time 1970
1890 1.0000
1895 0.4367 1.0000
1900 0.7740 0.4174 1.0000
1905 0.9324 0.4593 0.8174 1.0000

The 20–year correlations between cohorts show similar features to the empirical data
using only a relatively small number of parameters. As noted already cohort correlations
are much lower than those given in Jevtic et al. (2013), which are close to positive perfect
correlations (i.e. 100%). The cohort mortality model generates a more realistic correlation
structure than previous models. We provide a statistical test to determine whether the
model correlations in Table 7 provide a good fit to the realized correlations in Table 3.
We measure the sum of the fitting errors by the loss function

L =
K∑
i=1

[
max (ρm − ρu, 0) + max (ρl − ρm, 0)

]2
, (16)

where K = 24 is the total number of correlations, ρm is the model correlation and (ρl, ρu)
is the 95% confidence interval of the realized correlation. The standard error for the

correlation estimate is σr =
√

1−r2
n−2

, where r is the estimated correlation and n = 20 is

the sample size. The test statistic t = r
σr

follows a t–distribution with n − 2 degrees of
freedom. Eqn. (16) assumes that if ρm falls within the 95% confidence interval, the error
is set to zero. Therefore we only have positive error terms if ρm is below the lower bound
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or above the upper bound of the interval, when we are 95% confident that the model
correlation is significantly different from the estimated realized correlation. The fitting
errors are shown in Table 8.

The total sum of fitting errors is 0.09 and the model fits 21 correlations. We measure
the relative performance of our model against a 95% constant correlation5. The results
show that our proposed model reduces the fitting errors by 85.05% from these much higher
correlations, demonstrating how a model with age–dependent parameters is required to
produce a good fit to the empirical correlations.

Table 8: Fitting Errors of the Model Correlations

Calendar Time 1955
Cohort 1890 1895 1900
1895 0
1900 0 0
1905 0 0 0

Calendar Time 1960
1895 0.0484
1900 0 0
1905 0 0 0

Calendar Time 1965
1895 0.0026
1900 0 0
1905 0 0 0

Calendar Time 1970
1895 0
1900 0 0.0391
1905 0 0 0

5 Interest Rate Model

5.1 Vasicek Model

We model interest rates with the Vasicek one–factor process with constant parameters.
This is a well accepted interest rate model suitable for valuation of interest rate term
structure based cash flows. Under the risk–neutral measure, the instantaneous spot rate
r(t) follows the SDE

dr(t) = k[θ − r(t)]dt+ σdW r(t), r(0) = r0, (17)

where k is the mean reversion speed, θ is the long term average rate, σ is the diffusion
coefficient and r(0) is the short rate at initiation. All parameters are positive constants.
The stochastic integral equation for r(t) is

r(t) = r(s)e−k(t−s) + θ
(
1− e−k(t−s)

)
+ σ

∫ t

s

e−k(t−u) dW r(u), s ≤ t. (18)

595% is the lowest correlation level calibrated by the 2–factor model of Jevtic et al. (2013). This
provides an approximate, but conservative, estimate of the fitting errors of the correlations resulting
from their model.
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Conditional upon information up to s, r(t) follows a normal distribution with mean

E(r(t)|Fs) = r(s)e−k(t−s) + θ
(
1− e−k(t−s)

)
, (19)

and variance

V ar(r(t)|Fs) = σ2

∫ t

s

e−2k(t−u) du =
σ2

2k

(
1− e−2k(t−s)) . (20)

The model also naturally fits into the ATSM framework, with the zero–coupon bond
price given by

P (t, T ) = A(t, T ) · e−B(t,T )r(t). (21)

A(t, T ) and B(t, T ) are respectively given by

A(t, T ) = exp

((
θ − σ2

2k2

)
(B(t, T )− T + t)− σ2

4k
B(t, T )2

)
, (22)

and

B(t, T ) =
1

k

(
1− e−k(T−t)

)
. (23)

This allows zero–coupon prices for computing the value based index to be efficiently
computed with analytical functions of the model parameters without the need for exten-
sive simulations that might be the case for more complex models.

5.2 Data and Calibration

We calibrate the interest rate model parameters with Australian zero–coupon discount
factors from the Reserve Bank of Australia (RBA). The discount factors are published by
RBA daily with maturities ranging from 3–month up to 10–years at 3 month maturity
intervals giving a discrete set of 40 maturities. We use a panel dataset from the 2nd of
August, 2004 to 31st of July, 2014 giving 2527 days in the sample and 40 discount factors
for each day. We then have 101,080 discount factors to fit with the model.

The model is calibrated by non–linear constrained optimisation, which minimizes the
mean squared error between the model discount factor P(r)(0, t) and the actual discount

factor P̃(r)(0, t). The objective function is

Gr =

√√√√ 1

N

2527∑
i=1

40∑
j=1

(P(r),i,j(0, t)− P̃(r),i,j(0, t))2, (24)

where N = 101, 080 is the total number of discount factors. The initial values of the
model parameters we use in the optimisation are estimated from the dataset. Firstly, the
mean reversion parameter k is estimated by the half–life of interest rates, which is the
time it takes for the interest rate to move half the distance from r(0) towards its long
term average θ (Guimaraes 2005). Suppose T (1

2
) is the half–life and we rearrange the

deterministic part of Eqn. (17) and obtain

dr(t)

θ − r(t)
= kdt. (25)
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Integrate both sides of Eqn. (25) we get∫ r(T ( 1
2
))

r(0)

dr(t)

θ − r(t)
=

∫ T ( 1
2
)

0

k dt, (26)

where r(T (1
2
))− θ = 1

2
(r(0)− θ). Straightforward calculations then result in

k =
ln(2)

T (1
2
)
. (27)

We then estimate k with Eqn. (27) and the sample data. We approximate the
short rate r(t) with the 3–month forward rate at t implied by the observed discount
factors. We then calculate the average r(t) for each maturity over the sample period. The
sample average r(T (1

2
)) is 5.05%, which corresponds to T (1

2
) = 5. Hence our estimated

k is ln(2)
5

= 0.1386, which we use as the initial condition for the optimisation. The
constraints we impose for the value of k in the optimisation are obtained by letting T (1

2
)

be respectively 0.25 and 10. We also estimate the initial conditions and constraints for θ
and σ from the sample data. The results are shown in Table 9.

Table 9: Inputs for the Interest Rate Model Calibration

Inputs k θ σ
Initial Value 0.1386 0.0542 0.0009
Upper Bound 2.7726 0.0660 0.0043
Lower Bound 0.0693 0.0375 0.0002

5.3 Calibration Results

The calibrated parameters are k = 0.1781, θ = 0.05 and σ = 0.0002. The % fitting errors

given by
∣∣∣ P̃r(0,t)−Pr(0,t)

P̃r(0,t)

∣∣∣ are shown in Figure 6 for the whole sample period, the period

before the Global Financial Crisis (GFC) and the post–GFC period.
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Figure 6: Fitting Errors of Interest Rate Model

We see from Figure 6 that the average fitting errors for each maturity are satisfactory,
with the error increasing monotonically from 0.04% to 4.61%. We obtain interesting
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findings when we split the sample period into two sub–periods. We choose 16/09/2008 as
the break date, which corresponds to the collapse of Lehman Brothers and is commonly
considered the peak of the GFC. The fitting errors are much smaller before the crisis than
after the crisis. Such results are not surprising given the post–GFC period is associated
with greater market volatility and uncertainty.

We also check whether the model produces any negative interest rates. The discount
curves constructed by the calibrated parameters on all sample days are monotonically
decreasing, which implies strictly positive interest rates. Thus although negative rates
are theoretically possible for Gaussian models, it is not a practical matter that would
create issues in the construction of the value–based longevity index.

6 The Value Based Cohort Index

In this section we use the calibrated mortality and interest rate models to compute the
value–based index for a 65 year old cohort for the Australian mortality data. The cohort
mortality model is used to determine expected future survival probabilities for the cohort.
These are combined with the term structure model to compute the index. To illustrate
the practical application of the value based cohort index we assess its hedge efficiency
using an index based mortality swap and s–forward contracts to hedge an immediate
annuity.

6.1 Illustrative Index Calculation

The mortality model is used to determine cohort 65 survival probabilities. We determine
expected survival probabilities from ages 65 to 120. These are shown in Figure 7. We
use the interest rate model to determine the forward interest rates. With the expected
survival probabilities and interest rates, we compute the PV for each index point. Figure
8 shows the value–based index for all future ages with PV0 equal to 12.67.
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Figure 7: Estimated Survival Probabilities for Cohort 65

Each cohort will have an index value in practice and then current mortality and
interest rate models are used to construct the index values. As a cohort ages the index
value decreases. The decrease reflects that expected for an annuity as individuals age.
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Figure 8: Value Index

At any given time cohorts differ by their current age and the index is constructed for
varying initial ages for these different cohorts.

6.2 Hedge Efficiency

To show an application of the value–based longevity index we use it to compare the
efficiency of two different hedge contracts in hedging an immediate life annuity portfolio.
We do this for differing numbers of annuitants who are Australian males initially aged 65.
The contracts used are an index based swap and an s–forward. For the swap the annuity
provider pays the index value and receives the realized value, transferring both systematic
longevity risk and interest rate risk. Idiosyncratic longevity risk reflecting differences
between the annuitant portfolio and the index is not hedged. For the survivor–forward
(LLMA 2010), or s-forward, the annuity provider pays the expected population survival
rate of the cohort 65 and receives the realized population survival rate. The s–forward
is also only designed to hedge the systematic longevity risk. However it will not hedge
interest rate risk nor idiosyncratic longevity risk.

When evaluating hedge efficiency, most existing research has assumed that interest
rates are constant or deterministic. This suggests that the hedge efficiency will be over-
estimated in studies such as Coughlan et al. 2011, Blackburn and Sherris (2014). Com-
bining models for both stochastic interest rates and mortality rates provides a broader
assessment of hedge performance.

Hedge efficiency is defined as

1− σh
σu
, (28)

where σh and σu are respectively the standard deviation of the unexpected PV of the
hedged position and the unhedged position.

We simulate the mortality rates and interest rates, and for each path m, the unex-
pected value (UV ) for the unhedged position is

UV m
u = PV0 − SV m, (29)

where SV m is the simulated PV of path m for the annuity portfolio. SV m is calculated
with the simulated survival probabilities of the portfolio. In order to generate idiosyn-
cratic longevity risk for the portfolio, we follow Blackburn, Hanewald, Sherris and Olivieri
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(2013) and determine the random death time for each individual in the portfolio by the
first time the mortality hazard rate exceeding %, an exponential random variable with
parameter 1. For each simulation path m, we keep track of the number of accumulated
deaths dmi at the end of each year i (i = 1, 2, ..., 36). If the initial number of annuitants
of the portfolio is n0, then the portfolio survival index at the end of each year i is

n0 − dmi
n0

. (30)

For the hedged position with the index swap, the annuity provider enters a single
swap and we assume the swap is collateralized and not subject to default risk. In the
index swap, the hedger pays the fixed index value PV0 and receives the realized value.
Then for each path m the UV is

UV m
hswap = SIV m − SV m, (31)

where SIV m is the simulated PV of pathm, based on the cohort 65 population experience.
We simulate the population survival index with the calibrated mortality model param-
eters, which reflects systematic longevity risk only. For a large portfolio, the portfolio
survival index should be close to the population survival index because the idiosyncratic
longevity risk will be low.

For the hedged position with the s–forward, the UV of each simulation path m is

UV m
hforward = PV0 − SV m + SIV m − SIV m

, (32)

where SIV
m

is the simulated PV at projected population survival probabilities. In general
SIV

m 6= PV0 because in the s–forward the interest rate risk is not hedged. Table 10 shows
the hedge efficiencies for these two hedging contracts. The portfolio size is varied to show
the effect of idiosyncratic longevity risk on hedge effectiveness.

Table 10: Hedge Efficiency

Portfolio Size 200 1000 10000
Index Swap 18.52% 73.99% 97.15%
s–forward 16.14% 59.31% 69.17%

As expected, hedge efficiency increases as portfolio size increases for both contracts.
We see that hedge efficiency improvement is significantly higher for the index swap than
for the s–forward. For a group of 10,000 annuitants, the hedge efficiency is more than
95% for the swap, while less than 70% for the s–forward. A major difference between
the index swap and the s–forward, is the hedging of interest rate risk in the index swap.
There is little difference for smaller portfolio sizes. In these cases idiosyncratic mortality
risk dominates.

7 Conclusion

Financial markets have been developing innovative approaches to manage longevity risk.
There is yet to be a well accepted longevity index used for financial market contracts. Ex-
isting longevity indices are largely based on age–based mortality rates or life expectancy.
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These indices are likely to be less effective in hedging longevity risk than a value–based
index.

We propose such a value–based longevity index and show how it can be a more
effective index for financial market participants since it is based on the present value of
a standardized longevity linked cash flow valued using models for mortality and interest
rates. This index combines both mortality risk and interest rate risk. The interest rate
risk can be readily eliminated from the index since interest rate markets are deeper than
longevity risk markets.

To support the value–based index we analyze cohort based mortality data and propose
a cohort–based stochastic mortality model that includes age–dependent parameters that
better capture trends, volatility and dependence between cohorts. Using Australian data
we show that the model fitting performance improves over currently proposed cohort
models, particularly at the older ages. We use the model along with a one–factor Vasicek
short rate model calibrated to Australian bond yields to construct a value–based longevity
index for this data.

We illustrate the effectiveness of the index by assessing the hedging of immediate
annuities to 65 year-olds with an index based swap on the value–based index as the
underlying compared to an s–forward, which hedges only systematic longevity risk based
on survival rates.

Much remains to be done in supporting the development of a traded market in
longevity risk. The long term nature of this risk requires new approaches and these
are expected to be based on hedging values rather than future cash flows. Our aim has
been to promote a different perspective on longevity risk hedging and to contribute a new
cohort mortality model that is suited to the construction of a better longevity index.
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