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Abstract

Pension funds and life insurers offering annuities hold long term liabilities linked
to longevity. Risk management of life annuity portfolios aims to immunize or hedge
both interest rate and mortality risks. Standard fixed interest duration-convexity
hedging must be adapted to allow for both interest rate and longevity risk. We
develop an immunization approach along with a delta-gamma based approach al-
lowing for both risks incorporating models for mortality and interest rate risk. The
immunization and hedge effectiveness of fixed-income coupon bonds, annuity bonds,
as well as longevity bonds, is compared and assessed using simulations of portfolio
surplus outcomes for an annuity portfolio. Fixed-income annuity bonds can more
effectively match cash flows and provide additional hedge effectiveness over coupon
bonds. Longevity bonds, including deferred longevity bonds, reduce risk signifi-
cantly compared to coupon and annuity bonds, reflecting the long duration of the
typical life annuity and the exposure to longevity risk. Longevity bonds are shown
to be effective in immunizing surplus over short and long horizons. Delta gamma
hedging is shown to only be effective over short horizons.
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1 Introduction

Interest rate risk immunization has a long tradition in the optimal selection of portfolios of
bonds to match insurance liabilities in both the actuarial and the financial literature. The
classical approach to interest rate immunization of an insurer’s liabilities is Redington’s
theory of immunization which is based on a deterministic shock to a flat yield curve
(Redington, 1952). Fisher and Weil (1971) extended the analysis to a non-flat yield
curve. Extensions of interest rate immunization to multiple liabilities and non-constant
shocks as well as the application of linear programming techniques to select immunized
bond portfolios are presented in Shiu (1987, 1988, 1990).

Immunization has been applied to mortality risk. Tsai and Chung (2013) and Lin and
Tsai (2013) derive duration and convexities for a range of life annuity and life insur-
ance product portfolios. They then construct portfolios of life annuity and life insurance
products that immunize mortality risk, a form of natural hedging. They consider alterna-
tive duration and convexity matching strategies with differing assumptions for mortality
shocks. Lin and Tsai (2013) use Value-at-Risk measures for the time zero surplus and the
Lee-Carter model to assess the effectiveness of the immunization strategies. They con-
sider instantaneous proportional and parallel shifts in the one-year survival probability
(px) and the one-year death probability (qx). Tsai and Chung (2013) apply a linear haz-
ard transformation to mortality immunization allowing a proportional and parallel shift
in mortality rates. Only mortality shocks and portfolios of life annuity and life insurance
products are considered.

Luciano et al. (2012) develop delta-gamma hedging for annuity providers allowing for both
stochastic interest rates and stochastic mortality rates. They use zero coupon bonds and
zero coupon survival bonds as the assets in the hedging strategies and pure endowment
contracts as the liability. Using delta and gamma risk measures based on their stochastic
interest rate and mortality models, they select portfolios that have zero delta and zero
gamma for both mortality and financial risk.

We consider the immunization of a life annuity portfolio and the extension of linear pro-
gramming approaches to the selection of fixed-income and longevity bonds. Both duration
and convexity matching approaches as well as delta-gamma hedging with stochastic in-
terest rate and mortality models are considered and compared. We consider traditional
immunization approaches using duration and convexity and delta-gamma hedging when
both interest rate and longevity risk are to be hedged. We use simulation and value-at-risk
for the portfolio surplus to evaluate the effectiveness of the immunization and hedging
strategies. We implement immunization and delta-gamma hedging for an asset portfolio
consisting of fixed-income coupon and annuity bonds as well as longevity linked bonds.

The main results are that longevity bonds are very effective in immunizing longevity risk.
Only a small number of both short and long maturity longevity bonds are required to
immunize life annuity liabilities. Annuity bonds better match the expected cash flows
of life annuity liabilities over coupon bonds, but longevity bonds better manage the risk.
Over short horizons both immunization and delta-gamma hedging are effective in selecting
bond portfolios for life annuities. Over longer horizons, immunization is more effective.
Delta-gamma hedging is based on stochastic models for both interest rate and mortality
risk and is less robust to these underlying risks over longer horizons as compared to
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immunization.

This paper is structured as follows: Section 2 describes the modelling framework for the
underlying mortality model and interest rate model respectively. Section 3 outlines the
construction of portfolios including derivation of pricing, delta, gamma, duration and con-
vexity results. Section 4 provides details of the bond portfolios used in the immunization
and hedging based on both available and hypothetical bonds. Section 5 presents the linear
program used for selecting the immunization bond portfolios and compares the cash flows
of the annuity liability with the bond portfolios. Section 6 presents the linear program
used for the delta-gamma hedging strategies and compares the cash flows for the bond
portfolios with the annuity liability. Section 7 uses the stochastic models to compare the
hedge performance of the immunization and hedging bond portfolios. Section 8 concludes
the paper.

2 Stochastic Models and Calibration

Traditional immunization approaches are based on deterministic shocks to yield curves.
Delta-gamma hedging takes into account the stochastic nature of the underlying risks. In
order to evaluate these different approaches, we use stochastic mortality and interest rate
models. The models are used to derive pricing formulae as well as to quantify measures
of mortality and interest rate risk for a life annuity portfolio. They allow us to compare
delta-gamma hedging strategies with immunization strategies. We use the models to
compare the hedge effectiveness by simulating the surplus of a life annuity fund with
asset portfolios selected using both immunization and delta-gamma hedging.

The risk factors in the interest rate model are assumed to be independent of those in
the mortality model. We use Australian mortality and interest rate data to calibrate
the models. Australian mortality and interest rate experience is representative of many
developed economics. Australia has a well developed bond market including coupon bonds
and annuity bonds.

2.1 Mortality Model

The mortality model is a two-factor Gaussian stochastic Makeham model based on Schrager
(2006). This has been used in a number of studies of longevity risk. The model is affine
and gives closed form solutions for survival probabilities. The mortality intensity is given
by:

µx(t) = Y1(t) + Y2(t)cx (2.1)

where Y1(t) and Y2(t) are the base and age-dependent mortality risk factors respectively.
The stochastic differential equations for the mortality risk factors are:

dYi(t) = −aiYi(t)dt+ σidW
Q
i (t) , for i = 1, 2 (2.2)

where Yi(0) = Ȳi for i = 1, 2; ai > 0 and σi ≥ 0; dWQ
1 (t)dWQ

2 (t) = 0 and we assume
the two mortality factors are independent, consistent with the assumption made in Biffis
(2005), Blackburn and Sherris (2013) and Wong et al. (2013).

3



Pricing longevity bonds and life annuities requires the mortality dynamics under a risk-
neutral measure Q. The longevity risk market is not liquid enough to calibrate risk
premiums so these are assumed zero and we use the real world measure P for pricing and
risk measures. This is the assumption made by others including Luciano et al. (2012).

Based on the affine framework, the forward survival probability is

S(x, t, T ) = EQt [e−
∫ T
t µx(u)du] = eC(x,t,T )−D1(x,t,T )Y1(t)−D2(x,t,T )Y2(t) (2.3)

where C(x, t, T ), D1(x, t, T ) and D2(x, t, T ) are of the forms:

C(x, t, T ) =
σ2

1

2a3
1

[
a1(T − t)− 2(1− e−a1(T−t)) +

1

2
(1− e−2a1(T−t))

]
+

σ2
2c

2(x+t)

2(a2 − log(c))3

×
[
(a2 − log(c))(T − t)− 2(1− e−(a2−log(c))(T−t)) +

1

2
(1− e−2(a2−log(c))(T−t))

]
(2.4)

D1(x, t, T ) =
1− e−a1(T−t)

a1

(2.5)

D2(x, t, T ) =cx+t1− e−(a2−log(c))(T−t)

a2 − log(c)
(2.6)

with boundary conditions C(x, T, T ) = 0, D1(x, T, T ) = 0 and D2(x, T, T ) = 0.

The mortality model is calibrated to Australian Mortality Data for males aged 50− 100
and years 1960 − 2009 obtained from the Human Mortality Database (2014). We used
the estimation methods in Koopman and Durbin (2000) and Wong et al. (2013) based on
the Kalman filter. The calibrated parameters for the mortality model are shown in Table
2.1.

Figure 2.1 shows the historical mortality rate with the projected mortality rates from the
calibrated model. Mean absolute relative error (MARE) range between 4% and 18% for
the fitted ages from 50 to 100, similar to Schrager’s results when calibrated to Dutch
mortality data.

Table 2.1: Parameters of the Calibrated Mortality Model - Australian Population Males
Aged 50 to 100 for years 1960 to 2009

Parameter Estimate Standard Error

a1 0.00621 1.48e-04
a2 0.000742 1.93e-05
σ1 0.000204 5.92e-07
σ2 0.0000148 7.79e-09
c 1.092 6.19e-06
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Figure 2.1: Historical (1960 − 2009) and Projected (2010 − 2050) Mortality Rates for
Australian Population Males Aged 50− 100

2.2 Interest Rate Model

The instantaneous interest rate r(t) is modelled as a single-factor Cox-Ingersoll-Ross
(CIR) process with its dynamics under the risk neutral Q measure given by:

dr(t) = κr(θr − r(t))dt+ σr
√
r(t)dWQ

r (t) (2.7)

where κr > 0 is the speed of mean reversion of r(t), θr > 0 is the long-run mean of r(t),
σr ≥ 0 is the volatility of the short rate process, and 2κrθr ≥ σ2

r needs to be satisfied to
ensure the process is positive (Cox et al., 1985).

The dynamics of the interest rate under the P measure is given by:

dr(t) = κr(θr − r(t))dt+ σr
√
r(t)dWr(t) (2.8)

= κr(θr − r(t))dt+ σr
√
r(t)

(
dWQ

r (t)− λr(t, r(t))dt
)

(2.9)

where

λ′r =
σrλr(t, r(t))√

r(t)
(2.10)

κr = κr + λ′r (2.11)

θr =
κrθr

κr + λ′r
(2.12)

λr(t, r(t)) is the market premium of interest rate risk and we assume λr(t, r(t)) to be a
function of

√
r(t) so that λ′r is a constant.

The forward zero coupon bond price is given by:

B(t, T ) = EQt [e−
∫ T
t r(u)du] = eCr(t,T )−Dr(t,T )r(t) (2.13)
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where Cr(t, T ) and Dr(t, T ) are given by:

Cr(t, T ) =
2κrθr
σ2
r

log

[
2γre

(γr+κr)(T−t)
2

(γr + κr)(eγr(T−t) − 1) + 2γr

]
(2.14)

Dr(t, T ) =
2(eγr(T−t) − 1)

(γr + κr)(eγr(T−t) − 1) + 2γr
(2.15)

with

γr =
√
κr2 + 2σ2

r (2.16)

with boundary conditions Cr(T, T ) = 0 and Dr(T, T ) = 0.

The CIR interest model parameters are estimated from zero-coupon bond yield data for
40 different maturities (3, 6, 9, . . . , 117, 120 months) using daily data from 4 January
1993 to 31 July 2014 along with daily short rate data. The zero-coupon bond yield and
short rate data were obtained from the Reserve Bank of Australia.

The estimation technique is adopted from Rogers and Stummer (2000) and Kladıvko
(2007). It uses the General Method of Moments (GMM) approach with M + 2 moment
conditions. M is the number of different maturities for the zero coupon bond data, in our
case M = 40. The first M moments fit the yield curve allowing estimation of the implied
market interest rate risk premium. The last 2 moments fit the time series data of short
rates and match the mean and variance of the real world CIR interest rate process. This
calibration method estimates the model parameters as well as the market risk premium
using both yield curve and short rate data. The parameter estimates are consistent when
we fit the model to data for different time periods using the GMM. Fitting the model
only to the yield curve data results in unreasonable estimates for the parameters.

The calibrated parameters of the interest model are shown in Table 2.2.

Table 2.2: Parameters of the Calibrated Interest Rate Model - Australian Interest Rate
Data 4 January 1993 to 31 July 2014

Parameter1 Estimate Standard Error

κr 0.445 0.0022

θr 0.0523 0.0012
σr 0.0414 0.0013
λr -0.111 0.0022

The model parameters imply an Australian long-term interest rate of approximately 5.2%.
The parameters under the Q measure are κr = 0.334 and θr = 0.0697. The standard errors
for the parameter estimates are derived using numerical approximation of the asymptotic
variance matrix as in Mátyás (1999).

Figure 2.2 shows the 50-year yield curve used for product pricing.

1κr and θr are parameters under P measure.
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Figure 2.2: Yield Curve for 50 years as at 30 June 2014

3 Life Annuity Immunization

We consider the immunization and hedging strategy from the perspective of an annuity
provider issuing whole-life annuities with level monthly payments to males aged 65 at 30
June 2014. All life annuities are single premium and the insurer invests these premiums
into fixed-income securities and longevity-linked securities. Our focus is on interest rate
and longevity risk and we do not include idiosyncratic mortality risk or basis risk.

We use linear programming to solve for the optimal bond portfolio allocation. The linear
programming approach of Shiu (1988) and Panjer et al. (1997) is extended by considering
both interest rate and mortality risk. We take into consideration a wide range of different
fixed-income securities and select the optimal portfolios from these. We select portfolios
from more than 60 coupon bonds and annuity bonds, including maturities and securities
available in the market, along with hypothetical longevity bonds. The details of the bonds
are covered in Section 4. We assume all securities are non-callable, and default free.
Credit risk is assumed fully hedged and does not impact the interest rate or longevity risk
analysis.

The initial number of policyholders is 100, the coupon bonds have a face value of 100 and
the payment amount for the annuity bonds and the longevity bonds is $1. These values
are used for convenience and are in effect arbitrary. The important determinant of the
bond portfolios selected is the weights in each of the assets.

3.1 Duration, Convexity, Delta and Gamma

For the immunization we adapt the Fisher-Weil cash flow duration and Fisher-Weil con-
vexity measures to longevity linked cash flows. We also use delta and gamma. These are
defined in Tables 3.1, 3.2 and 3.3 for the asset and liability cash flows. Table 3.1 gives the
Fisher-Weil duration and convexity measures along with the delta and gamma definitions
used for the assets.
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Table 3.1: Fisher-Weil Duration and Convexity, Delta and Gamma

D̃ = D
P

∆̃Y1(t) =
∆Y1(t)

P
∆̃Y2(t) =

∆Y2(t)

P
∆̃r(t) =

∆r(t)

P

C̃ = C
P

Γ̃Y1(t) =
ΓY1(t)
P

Γ̃Y2(t) =
ΓY2(t)
P

Γ̃r(t) =
Γr(t)
P

Table 3.2 gives the formulae used for cash flow prices, dollar duration and dollar convexity
of assets and liabilities used in Table 3.1. To indicate whether we use interest only bond
cash flows or mortality dependent cash flows we use the index k for fixed-income securities
and j for longevity-linked securities.

Table 3.2: Fisher-Weil Dollar Duration and Convexity for Asset and Liability Cash Flows

Fixed-income Securities (k) Longevity-linked Securities (j) Liabilities

ak =
∑

t≥1Ak,t ·B(0, t) aj =
∑

t≥1Aj,t · Sx(0, t)B(0, t) l =
∑

t≥1 Lt · Sx(0, t)B(0, t)

D[ak] =
∑

t≥1Ak,t · t ·B(0, t) D[aj] =
∑

t≥1Aj,t · t · Sx(0, t)B(0, t) D[l] =
∑

t≥1 Lt · t · Sx(0, t)B(0, t)

C[ak] =
∑

t≥1Ak,t · t2 ·B(0, t) C[aj] =
∑

t≥1Aj,t · t2 · Sx(0, t)B(0, t) C[l] =
∑

t≥1 Lt · t2 · Sx(0, t)B(0, t)

B(0, t) denotes the time−0 zero coupon bond price with maturity value of 1 at time t,
and Sx(0, t) the risk-neutral survival probability for a cohort age x to survive t years from
time−0. Ak,t is the cash flow at time t for a fixed-income cash flow. Aj,t is the cash flow
at time t for a survival dependent cash flow. Lt is the liability cash flow at time t.

Table 3.3 gives the delta and gamma sensitivities for the factors in the stochastic mortality
and interest rate models. There are two factors in the mortality model and hence a delta
and gamma for each factor is required.

Table 3.3: Delta and Gamma for Asset and Liability Cash Flows

Fixed-income Securities (k) Longevity-linked Securities (j) Liabilities

ak =
∑

t≥1Ak,t ·B(0, t) aj =
∑

t≥1Aj,t · Sx(0, t)B(0, t) l =
∑

t≥1 Lt · Sx(0, t)B(0, t)

∆r(t)[ak] =
∂[
∑
t≥1 Ak,t·B(0,t)]

∂r(t)
∆r(t)[aj] =

∂[
∑
t≥1 Aj,t·Sx(0,t)B(0,t)]

∂r(t)
∆r(t)[l] =

∂[
∑
t≥1 Lt·Sx(0,t)B(0,t)]

∂r(t)

Γr(t)[ak] =
∂2[

∑
t≥1 Ak,t·B(0,t)]

∂(r(t))2
Γr(t)[aj] =

∂2[
∑
t≥1 Aj,t·Sx(0,t)B(0,t)]

∂(r(t))2
Γr(t)[l] =

∂2[
∑
t≥1 Lt·Sx(0,t)B(0,t)]

∂(r(t))2

- ∆Y1(t)[aj] =
∂[
∑
t≥1 Aj,t·Sx(0,t)B(0,t)]

∂Y1(t)
∆Y1(t)[l] =

∂[
∑
t≥1 Lt·Sx(0,t)B(0,t)]

∂Y1(t)

- ΓY1(t)[aj] =
∂2[

∑
t≥1 Aj,t·Sx(0,t)B(0,t)]

∂(Y1(t))2
ΓY1(t)[l] =

∂2[
∑
t≥1 Lt·Sx(0,t)B(0,t)]

∂(Y1(t))2

- ∆Y2(t)[aj] =
∂[
∑
t≥1 Aj,t·Sx(0,t)B(0,t)]

∂Y2(t)
∆Y2(t)[l] =

∂[
∑
t≥1 Lt·Sx(0,t)B(0,t)]

∂Y2(t)

- ΓY2(t)[aj] =
∂2[

∑
t≥1 Aj,t·Sx(0,t)B(0,t)]

∂(Y2(t))2
ΓY2(t)[l] =

∂2[
∑
t≥1 Lt·Sx(0,t)B(0,t)]

∂(Y2(t))2

8



3.2 Whole-life Annuities

To consider the life annuity, the time−t value of a whole-life annuity is denoted by
WAx(t,∞, r, µx). We can write its value as the sum of a series of pure endowments
PEx(t, Ti, r, µx) with maturities from t + 1 to ∞. The value of the whole-life annuity at
time−t can be expressed as:

WAx(t,∞, r, µx) =1τ≥t

∞∑
Ti=t+1

PEx(t, Ti, r, µx) (3.1)

=1τ≥tEQt
[ ∞∑
Ti=t+1

LTi × e−
∫ Ti
t (r(u)+µx(u))du

]
(3.2)

=1τ≥t

∞∑
Ti=t+1

LTi × eC(x,t,Ti)−D1(x,t,Ti)Y1(t)−D2(x,t,Ti)Y2(t) × eCr(t,Ti)−Dr(t,Ti)r(t)

(3.3)

where 1τ≥t is an indicator function for the alive status of the policyholder, and τ is the
time of death.

The Fisher-Weil dollar duration and convexity of WAx(t,∞, r, µx) are then given by:

D[WAx(t,∞, r, µx)] =
∞∑

Ti=t+1

(Ti − t)× PEx(t, Ti, r, µx) (3.4)

C[WAx(t,∞, r, µx)] =
∞∑

Ti=t+1

(Ti − t)2 × PEx(t, Ti, r, µx) (3.5)

The delta and gamma of WAx(t,∞, r, µx) with respect to the mortality factors Y1(t) and
Y2(t) and the interest rate r(t) are given by:

∆Y1(t)[WAx(t,∞, r, µx)] = −
∞∑

Ti=t+1

D1(x, t, Ti)× PEx(t, Ti, r, µx) (3.6)

∆Y2(t)[WAx(t,∞, r, µx)] = −
∞∑

Ti=t+1

D2(x, t, Ti)× PEx(t, Ti, r, µx) (3.7)

∆r(t)[WAx(t,∞, r, µx)] = −
∞∑

Ti=t+1

Dr(t, Ti)× PEx(t, Ti, r, µx) (3.8)

ΓY1(t)[WAx(t,∞, r, µx)] =
∞∑

Ti=t+1

(D1(x, t, Ti))
2 × PEx(t, Ti, r, µx) (3.9)

ΓY2(t)[WAx(t,∞, r, µx)] =
∞∑

Ti=t+1

(D2(x, t, Ti))
2 × PEx(t, Ti, r, µx) (3.10)

Γr(t)[WAx(t,∞, r, µx)] =
∞∑

Ti=t+1

(Dr(t, Ti))
2 × PEx(t, Ti, r, µx) (3.11)
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3.3 Fixed-income Securities: Coupon Bonds and Annuity Bonds

A fixed-income coupon bond with price CB(t, T, Tm, r) consists of a sum of zero coupon
bonds with prices ZCB(t, Ti, r) and maturities from T to Tm. The time−t price is:

CB(t, T, Tm, r) = EQ
[ Tm∑
Ti=T

ATi × e−
∫ Ti
t r(u)du

]
(3.12)

=
Tm∑
Ti=T

ATi × eCr(t,Ti)−Dr(t,Ti)r(t) =
Tm∑
Ti=T

ZCB(t, Ti, r) (3.13)

The Fisher-Weil dollar duration and convexity are:

D[CB(t, T, Tm, r)] =
Tm∑
Ti=T

(Ti − t)× ZCB(t, Ti, r) (3.14)

C[CB(t, T, Tm, r)] =
Tm∑
Ti=T

(Ti − t)2 × ZCB(t, Ti, r) (3.15)

The delta and gamma for the risk factors are:

∆r(t)[CB(t, T, Tm, r)] = −
Tm∑
Ti=T

Dr(t, Ti)× ZCB(t, Ti, r) (3.16)

∆Y1(t)[CB(t, T, Tm, r)] = ∆Y2(t)[CB(t, T, Tm, r)] = 0 (3.17)

Γr(t)[CB(t, T, Tm, r)] =
Tm∑
Ti=T

(Dr(t, Ti))
2 × ZCB(t, Ti, r) (3.18)

ΓY1(t)[CB(t, T, Tm, r)] = ΓY2(t)[CB(t, T, Tm, r)] = 0 (3.19)

D[CB(t, T, Tm, r)] =
Tm∑
Ti=T

(Ti − t)× ZCB(t, Ti, r) (3.20)

C[CB(t, T, Tm, r)] =
Tm∑
Ti=T

(Ti − t)2 × ZCB(t, Ti, r) (3.21)

For the annuity bond value, AB(t, T, Tm, r), Fisher-Weil dollar duration, convexity, delta
and gamma, the cash flow at time t, ATi , is adjusted. For coupon bonds the cash flows are
the coupon payments before maturity and a coupon payment and the principal repayment
at maturity. For the annuity bond, each cash flow is a level amount. The two types of
bond have quite different cash flow profiles as well as duration and convexity.

3.4 Longevity-linked Securities: Longevity Bonds

For the longevity bonds, LBx(t, T, Tm, r, µx) is used to denote the time−t value of a
longevity bond consisting of a series of zero coupon longevity bonds with values ZCLBx(t, Ti, r, νx)
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for maturities from T to Tm. The cash flows of the longevity bonds are linked to survival
indices based on a reference cohort for the Australian population. To focus on longevity
risk, we assume there is no basis risk and the annuity fund experience is the same as that
of the Australian population. The time−t value of a longevity bond can be expressed as
(Menoncin, 2008):

LBx(t, T, Tm, r, µx) =EQt
[ Tm∑
Ti=T

nt ×HTi × e−
∫ Ti
t (r(u)+νx(u))du

]
(3.22)

=
Tm∑
Ti=T

nt ×HTi × eC(x,t,Ti)−D1(x,t,Ti)Y1(t)−D2(x,t,Ti)Y2(t)

× eCr(t,Ti)−Dr(t,Ti)r(t) (3.23)

=
Tm∑
Ti=T

ZCLBx(t, Ti, r, µx) (3.24)

where nt is the number of survivors of the population at time−t and HTi is the coupon
amount made at time−Ti for each survivor.

The dollar duration and convexity of LBx(t, T, Tm, r, µx) are given by:

D[LBx(t, T, Tm, r, µx)] =
Tm∑
Ti=T

(Ti − t)× ZCLBx(t, Ti, r, µx) (3.25)

C[LBx(t, T, Tm, r, µx)] =
Tm∑
Ti=T

(Ti − t)2 × ZCLBx(t, Ti, r, µx) (3.26)

The delta and gamma of LBx(t, T, Tm, r, µx) with respect to the two mortality factors
Y1(t) and Y2(t) and the interest rate r(t) are given by:

∆Y1(t)[LBx(t, T, Tm, r, µx)] = −
Tm∑
Ti=T

D1(x, t, Ti)× ZCLBx(t, Ti, r, µx) (3.27)

∆Y2(t)[LBx(t, T, Tm, r, µx)] = −
Tm∑
Ti=T

D2(x, t, Ti)× ZCLBx(t, Ti, r, µx) (3.28)

∆r(t)[LBx(t, T, Tm, r, µx)] = −
Tm∑
Ti=T

Dr(t, Ti)× ZCLBx(t, Ti, r, µx) (3.29)

ΓY1(t)[LBx(t, T, Tm, r, µx)] =
Tm∑
Ti=T

(D1(x, t, Ti))
2 × ZCLBx(t, Ti, r, µx) (3.30)

ΓY2(t)[LBx(t, T, Tm, r, µx)] =
Tm∑
Ti=T

(D2(x, t, Ti))
2 × ZCLBx(t, Ti, r, µx) (3.31)

Γr(t)[LBx(t, T, Tm, r, µx)] =
Tm∑
Ti=T

(Dr(t, Ti))
2 × ZCLBx(t, Ti, r, µx) (3.32)
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4 Bond Markets - Coupon, Annuity and Longevity

Bonds

The bonds used for selecting the immunization and hedging portfolios are based on coupon
and annuity bonds available in the Australian market as well as hypothetical annuity and
longevity bonds. We present the details on the bonds including coupon and other cash
flow information, bond prices determined using the models in the paper, the modified
Fisher-Weil duration and convexity, as well as the modified delta and gamma. The bonds
considered have a wide range of maturities and cash flow structures including both coupon
and annuity bonds. Frequency of cash flows payments includes annual, semi-annual,
quarterly and monthly.

In practice coupon bonds are used to match or immunize the cash flows for life annuities.
Initially only coupon bonds are considered using Fisher-Weil dollar durations and con-
vexity and then delta-gamma hedging with our mortality and interest rate models. Since
annuity bonds are also available, although of shorter terms, we then consider selecting
bond portfolios from all of the annuity bonds with the inclusion of the hypothetical longer
term annuity bonds.

Longevity bonds are not available and so we consider selecting the bond portfolio from hy-
pothetical longevity bonds. These hypothetical bonds have a range of maturities. Finally
we consider both coupon bonds and annuity bonds along with the longevity bonds.

Table 4.1 shows the details for the annuity liability of the portfolio. This is a whole-life
annuity with monthly payments to males currently aged 65.

Tables 4.2 to 4.5 give details for all the fixed-income securities we consider in the analysis.

The Government coupon bonds are all products available in the market. They have
semi-annual coupon frequency.

The coupon bonds based on the FIIG securities are hypothetical coupon paying bonds
with quarterly frequency based on the maturity of these securities.

The Waratah annuity bonds are fixed rate annuity bonds with monthly payments available
in the market.

The annuity bonds based on the FIIG securities are hypothetical annuity bonds with
maturities corresponding to securities in this market and with quarterly annuity payments.

Tables 4.6 provides details of the hypothetical longevity bonds considered. We use matu-
rities ranging from 5 to 50 years for these bonds. The values are based on the expected
survival probabilities from the stochastic mortality model. We assume the longevity bond
will be issued to a cohort of males currently age 65. The initial population is 100 and the
coupon amount for all the longevity bonds are $1. The frequency of payment is assumed
to be annual with the longevity index updated on a yearly basis.
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4.1 Life Annuity

Code Maturity TTM Freq Price ∆̃Y1(t) ∆̃Y2(t) ∆̃r(t) Γ̃Y1(t) Γ̃Y2(t) Γ̃r(t) D̃ C̃
IA-WL ∞ ∞ 12 127.67 -7.79 -5.08E+03 -2.27 98.20 7.85E+07 5.78 8.12 109.23

Table 4.1: These are details of the life annuity with monthly payments. The deltas with respect to the mortality risk factors are negative.
Increases in these factors produce lower survival probabilities used for the discount factors and hence lower annuity values. The interest
rate delta is also negative. Increases in the short rate produce lower zero coupon bond prices and hence lower annuity values. For a 65
year old the Fisher-Weil duration is 8.12 years. Interest rate sensitivity for the stochastic interest rate model is lower than the Fisher-Weil
duration. The delta for the mortality risk factor Y1(t) is of a similar magnitude as the duration, with opposite sign. Y1(t) reflects the level
of mortality, whereas Y2(t) captures the impact of age.
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4.2 List of Government Coupon Bonds

Code Sector Coupon Maturity TTM FV Freq Price ∆̃r(t) Γ̃r(t) D̃ C̃
GSBS-CB-14 Government 4.50 % 21/10/2014 0.31 100 2 101.39 -0.29 0.09 0.31 0.10
GSBS-CB-15 Government 4.75 % 21/10/2015 1.31 100 2 102.65 -1.03 1.08 1.28 1.65
GSBM-CB-17 Government 4.25 % 21/07/2017 3.06 100 2 102.05 -1.79 3.35 2.85 8.53
GSBA-CB-18 Government 5.50 % 21/01/2018 3.56 100 2 106.13 -1.90 3.83 3.21 11.10
GSBS-CB-18 Government 3.25 % 21/10/2018 4.31 100 2 95.33 -2.15 4.77 4.02 16.93
GSBG-CB-23 Government 5.50 % 21/04/2023 8.81 100 2 101.44 -2.47 6.49 6.99 56.56
GSBG-CB-24 Government 2.75 % 21/04/2024 9.82 100 2 79.06 -2.62 7.16 8.39 77.99
GSBG-CB-25 Government 3.25 % 21/04/2025 10.82 100 2 80.99 -2.60 7.13 8.85 89.19
GSBG-CB-26 Government 4.25 % 21/04/2026 11.82 100 2 88.01 -2.56 6.97 9.04 96.85
GSBG-CB-27 Government 4.75 % 21/04/2027 12.82 100 2 91.41 -2.54 6.91 9.35 106.67
GSBG-CB-29 Government 3.25 % 21/04/2029 14.82 100 2 74.11 -2.61 7.22 11.04 147.40
GSBG-CB-33 Government 4.50 % 21/04/2033 18.82 100 2 83.37 -2.55 6.94 11.82 186.06
GSBG-CB-15 Government 6.25 % 15/04/2015 0.79 100 2 103.77 -0.68 0.47 0.78 0.61
GSBK-CB-16 Government 4.75 % 15/06/2016 1.96 100 2 102.13 -1.39 1.97 1.89 3.66
GSBC-CB-17 Government 6.00 % 15/02/2017 2.63 100 2 107.13 -1.63 2.77 2.43 6.23
GSBE-CB-19 Government 5.25 % 15/03/2019 4.71 100 2 103.81 -2.15 4.88 4.17 18.85
GSBG-CB-20 Government 4.50 % 15/04/2020 5.80 100 2 98.56 -2.33 5.68 5.10 28.25
GSBI-CB-21 Government 5.75 % 15/05/2021 6.88 100 2 104.08 -2.38 6.01 5.74 36.91
GSBM-CB-22 Government 5.75 % 15/07/2022 8.05 100 2 105.28 -2.40 6.22 6.38 47.39

Table 4.2: These are semi-annual coupon paying bonds available in the bond market. Codes used are those for the ASX. Maturities range
up to 18.8 years and Fisher-Weil durations range up to 11.82 years with the longest duration exceeding that of the life annuity. The
interest rate deltas range up to 2.62 and are all similar for bonds maturing longer than 4 years. Fisher-Weil convexity varies much more
than interest rate gamma across the maturity range of the bonds.
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4.3 List of Coupon Bonds based on securities offered on FIIG

Code Sector Coupon Maturity TTM FV Freq Price ∆̃r(t) Γ̃r(t) D̃ C̃
ACG-CB-15 Government 4.00 % 20/08/2015 1.14 100 4 101.26 -0.93 0.87 1.12 1.26
ACG-CB-20 Government 4.00 % 20/08/2020 6.15 100 4 95.06 -2.38 5.91 5.42 31.87
ACG-CB-22 Government 1.25 % 21/02/2022 7.65 100 4 74.54 -2.63 7.08 7.21 54.15
ACG-CB-25 Government 3.00 % 20/09/2025 11.23 100 4 77.73 -2.63 7.23 9.22 96.65
ACG-CB-30 Government 2.50 % 20/09/2030 16.24 100 4 63.77 -2.65 7.40 12.31 181.46
SAFA-CB-15 Semi-govern 4.00 % 20/08/2015 1.14 100 4 101.26 -0.93 0.87 1.12 1.26
TCV-CB-20 Semi-govern 4.00 % 15/08/2020 6.13 100 4 95.13 -2.37 5.90 5.40 31.72
ACT-CB-30 Semi-govern 3.50 % 17/06/2030 15.98 100 4 74.83 -2.60 7.16 11.41 161.28
QTC-CB-30 Semi-govern 2.75 % 20/08/2030 16.15 100 4 66.80 -2.63 7.31 12.01 174.92
NSWTC-CB-20 Semi-govern 3.75 % 20/11/2020 6.40 100 4 93.20 -2.41 6.07 5.65 34.59
NSWTC-CB-25 Semi-govern 2.75 % 20/11/2025 11.40 100 4 75.47 -2.63 7.28 9.41 100.52
NSWTC-CB-35 Semi-govern 2.50 % 20/11/2035 21.41 100 4 56.85 -2.61 7.25 14.30 265.62
ELECTRANET-CB-15 Infrastructure 5.21 % 20/08/2015 1.14 100 4 102.74 -0.92 0.86 1.11 1.25
LANECOVE-CB-20 Infrastructure 4.50 % 9/09/2020 6.20 100 4 97.46 -2.37 5.88 5.40 31.89
SYDAIR-CB-20 Infrastructure 3.76 % 20/11/2020 6.40 100 4 93.25 -2.41 6.07 5.64 34.58
SYDAIR-CB-30 Infrastructure 3.12 % 20/11/2030 16.40 100 4 70.42 -2.61 7.21 11.82 172.67
RABO-CB-20 ADI-IB 1.51 % 28/08/2020 6.17 100 4 81.37 -2.50 6.36 5.85 35.42
CBA-CB-20 ADI-Major Bank 3.60 % 20/11/2020 6.40 100 4 92.35 -2.41 6.09 5.67 34.79
ALE-CB-23 Other Financials 3.40 % 20/11/2023 9.40 100 4 84.89 -2.57 6.94 7.86 69.45
ENVESTRA-CB-25 Energy 3.04 % 20/08/2025 11.15 100 4 78.49 -2.61 7.19 9.12 94.87

Table 4.3: These are hypothetical coupon paying bonds with coupons and maturities corresponding to index linked bonds available on
the FIIG web site. We do not include inflation in the analysis so we have used these as hypothetical coupon paying bonds with quarterly
frequency. These hypothetical bonds have longer duration compared to the Government Coupon bonds. They also have quarterly coupon
cash flows.
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4.4 List of Waratah Annuity Bonds offered by the NSW Government

Code Sector Annuity
Payment

Maturity TTM Freq No. of
Payment

Price ∆̃r(t) Γ̃r(t) D̃ C̃

NSWWAB1-AB-21 Semi-govern 1.00 15/10/2021 7.30 12 111 74.60 -1.79 3.77 3.43 16.17
NSWWAB2-AB-21 Semi-govern 1.00 15/10/2021 7.30 12 108 74.60 -1.79 3.77 3.43 16.17
NSWWAB3-AB-22 Semi-govern 1.00 15/01/2022 7.55 12 108 76.62 -1.81 3.86 3.54 17.22
NSWWAB4-AB-22 Semi-govern 1.00 15/04/2022 7.80 12 108 78.60 -1.83 3.95 3.64 18.28
NSWWAB5-AB-22 Semi-govern 1.00 15/07/2022 8.05 12 108 80.56 -1.86 4.04 3.75 19.38
NSWWAB6-AB-22 Semi-govern 1.00 15/10/2022 8.30 12 108 82.48 -1.88 4.13 3.85 20.50
NSWWAB7-AB-23 Semi-govern 1.00 15/01/2023 8.55 12 108 84.36 -1.90 4.21 3.95 21.64
NSWWAB8-AB-23 Semi-govern 1.00 15/04/2023 8.80 12 108 86.22 -1.92 4.29 4.06 22.81
NSWWAB9-AB-23 Semi-govern 1.00 15/07/2023 9.05 12 108 87.05 -1.96 4.41 4.20 24.28
NSWWAB10-AB-23 Semi-govern 1.00 15/07/2023 9.05 12 105 84.06 -2.02 4.57 4.35 25.14

Table 4.4: These are annuity bonds with monthly payments. Terms to maturity are relatively short compared to the coupon paying bonds
with a maximum of around 9 years. Fisher-Weil durations are between 3 and 5 years. Interest rate deltas do not vary much. Similar
comments apply to interest rate gamma and Fisher-Weil convexity. Since the life annuity is assumed to have monthly payments these
annuity bonds have the potential to better match the cash flows for the liability but suffer from having short maturities.
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4.5 List of Hypothetical Annuity Bonds based on securities offered on FIIG

Code Sector Annuity
Payment

Maturity TTM Freq No. of
Payment

Price ∆̃r(t) Γ̃r(t) D̃ C̃

MPC-AB-25 Infrastructure 1.00 31/12/2025 11.51 4 46 34.49 -2.11 5.05 5.23 37.95
MPC-AB-33 Infrastructure 1.00 31/12/2033 19.52 4 78 46.99 -2.33 5.99 7.90 91.30
CIVICNEXUS-AB-32 Infrastructure 1.00 15/09/2032 18.22 4 73 45.57 -2.30 5.87 7.48 81.61
PHF-AB-29 Other Financials 1.00 15/09/2029 15.22 4 61 41.31 -2.23 5.58 6.52 60.83
PJS-AB-30 Other Financials 1.00 15/06/2030 15.97 4 64 42.46 -2.25 5.67 6.77 65.88
Novacare-AB-33 Other Financials 1.00 15/04/2033 18.81 4 76 46.97 -2.28 5.83 7.55 84.60
Praeco-AB-20 Other Corporate 1.00 15/08/2020 6.13 4 25 21.82 -1.66 3.31 2.96 11.98
Boral-AB-20 Other Corporate 1.00 16/11/2020 6.39 4 26 22.54 -1.70 3.43 3.07 12.92
WYUNA-AB-22 Other Corporate 1.00 30/03/2022 7.75 4 31 12.58 -1.84 3.95 3.61 17.69
JEM(CCV)-AB-22 Other Corporate 1.00 15/06/2022 7.96 4 32 26.52 -1.88 4.09 3.79 19.62
JEM-AB-35 Other Corporate 1.00 28/06/2035 21.01 4 84 48.67 -2.35 6.08 8.32 102.30
JEM(NSWSch)-AB-31 Other Corporate 1.00 28/02/2031 16.68 4 67 43.66 -2.26 5.72 6.98 70.48
JEM(NSWSch)-AB-35 Other Corporate 1.00 28/11/2035 21.43 4 86 49.44 -2.34 6.06 8.38 104.73
ANU-AB-29 Other Corporate 1.00 7/10/2029 15.28 4 62 42.16 -2.20 5.49 6.43 60.14

Table 4.5: These are hypothetical annuity bonds with maturities corresponding to index linked bonds available on FIIG. We do not
include inflation in the analysis so we have used these as hypothetical annuity bonds with quarterly frequency. Terms to maturity are
longer than for the Waratah annuity bonds. We do not adjust pricing for credit risk.
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4.6 List of Assumed Longevity Bonds

Code Maturity TTM Freq Price ∆̃Y1(t) ∆̃Y2(t) ∆̃r(t) Γ̃Y1(t) Γ̃Y2(t) Γ̃r(t) D̃ C̃
LB65-19 30/06/2019 5 1 420.94 -2.83 -1.00E+03 -1.71 9.92 1.31E+06 3.23 2.86 10.17
LB65-24 30/06/2024 10 1 699.86 -4.74 -1.96E+03 -2.11 29.81 5.66E+06 4.89 4.83 31.23
LB65-29 30/06/2029 15 1 866.81 -6.19 -2.94E+03 -2.26 53.41 1.45E+07 5.58 6.36 57.03
LB65-34 30/06/2034 20 1 956.71 -7.18 -3.86E+03 -2.33 74.98 2.88E+07 5.87 7.43 81.38
LB65-39 30/06/2039 25 1 998.30 -7.77 -4.59E+03 -2.35 90.50 4.70E+07 5.98 8.07 99.45
LB65-44 30/06/2044 30 1 1,013.60 -8.03 -5.05E+03 -2.36 98.84 6.47E+07 6.03 8.36 109.46
LB65-49 30/06/2049 35 1 1,017.70 -8.12 -5.24E+03 -2.36 101.87 7.64E+07 6.04 8.46 113.21
LB65-54 30/06/2054 40 1 1,018.40 -8.13 -5.30E+03 -2.36 102.52 8.10E+07 6.04 8.48 114.03
LB65-59 30/06/2059 45 1 1,018.40 -8.13 -5.30E+03 -2.36 102.58 8.19E+07 6.04 8.48 114.11
LB65-64 30/06/2064 50 1 1,018.40 -8.13 -5.30E+03 -2.36 102.59 8.20E+07 6.04 8.48 114.12

Table 4.6: These longevity bonds are hypothetical bonds with maturities at 5 year intervals up to a maximum of 50 years. They are
based on a cohort aged 65 at issue. Fisher-Weil durations at the longer maturities do not vary much with a maximum of 8.48 years.
The interest rate deltas also show very little variation with maturity. The deltas for Y1(t) in the mortality model are of a similar
magnitude to the Fisher-Weil durations. The gammas for Y1(t) are of a similar magnitude to the convexity. The deltas for the Y2(t)
are larger and reflect the impact of age.
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5 Duration-Convexity Immunization

Bonds are selected to immunize the liability using a linear program, including both fixed-
income and longevity linked securities. We follow Panjer et al. (1997) and take into
account the mean-absolute deviation of the net cash flows. The approach matches the
Fisher-Weil dollar durations and minimizes portfolio risk arising from convexity. The
linear program is as follows:

C[a] = max
wk,wj

{∑
k

wk · C[ak] +
∑
j

wj · C[aj]

}
(5.1)

subject to∑
t>0

nt(t− h)+ ≤ 0, for all positive h (5.2)

nt =
∑
k

wk · Ak,t ·B(0, t) +
∑
j

wj · Aj,t · Sx(0, t)B(0, t)− Lt · Sx(0, t)B(0, t) (5.3)

S0 =
∑
t≥1

nt = 0 (5.4)

D[S0] =
∑
k

wk ·D[ak] +
∑
j

wj ·D[aj]−D[l] = 0 (5.5)

Equation (5.1) is the objective for selecting the portfolio in fixed-income and longevity
bonds. In this case we maximize the convexity of the asset portfolio. This is because
the mean-absolute deviation constraint in Equation (5.2) is only met for negative values.
There were no feasible solutions for the portfolios when the convexity constraint was
minimized with Equation (5.2) as a non negative constraint. The details of this approach
are found in Panjer et al. (1997). Equation (5.3) defines the value of the net cash flows
and Equation (5.4) gives the surplus. Equation (5.5) requires a match of the Fisher-Weil
dollar durations of the assets and liability.

All allocations are determined as proportions of the liability value with

Wk =
wk ·

∑
t>0Ak,t ·B(0, t)∑

j wk ·
∑

t>0Ak,t ·B(0, t)
(5.6)

Wj =
wj ·

∑
t>0Aj,t · Sx(0, t)B(0, t)∑

j wj ·
∑

t>0Aj,t · Sx(0, t)B(0, t)
(5.7)∑

k

Wk +
∑
j

Wj = 1 (5.8)

Equations (5.6) and (5.7) express the units of fixed-income assets (wk) and longevity bond
assets (wj) as a proportion of the total asset fund (Wk and Wj). The proportions invested
in all assets sum to 1 so that premiums are fully invested in assets.
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5.1 Immunization Portfolio Results

Table 5.1 gives details of the bonds selected for the immunized portfolios. For coupon
only bonds the portfolio selected includes a range of maturities in order to ensure the
mean-absolute deviation constraint is met. This provides a closer match of the coupon
bond cash flows to the expected life annuity cash flows. The bonds include both semi-
annual and quarterly coupon bonds. There is 24% of the portfolio in the longest maturity
bond, NSWTC-CB-35.

The annuity bonds required to immunize the life annuity are fewer than for the coupon
bonds. None of the Waratah Annuity bonds are included since they are not of sufficiently
long maturity to allow matching the life annuity duration or convexity. The immunized
portfolio of annuity bonds has 94% in the hypothetical annuity bond with duration 8.38
and convexity 104.73, 1% in the hypothetical annuity bond with duration 8.32 and con-
vexity 102.30 along with 5% in the hypothetical annuity bond with duration 2.96 and
convexity 11.98. The portfolio includes the two longest maturity annuity bonds with
maturities of approximately 21 years.

For the longevity bonds, 86% is invested in a 45 year bond with duration 8.48 and con-
vexity 114.11, 8% in a 50 year bond with similar duration and convexity along with 6%
in a 5 year bond with duration 2.86 and convexity 10.17. The portfolio includes both the
shortest and the longest maturity longevity bonds. This reflects the objective of mini-
mizing risk by matching the duration of the bond portfolio with the liability but also by
including the impact of convexity.

Including both coupon bonds and longevity bonds or annuity bonds and longevity bonds
produces little change in the portfolio selected compared with the longevity bond portfolio.
Longevity bonds are the ideal form of bond to immunize the life annuity liability expected
cash flows. If these are available in the market then other more traditional bonds are not
required for immunization.

Since the driving factors in selecting bonds using immunization are the Fisher-Weil dollar
duration and convexity, along with the mean-absolute deviation constraint, longevity
bonds are shown to be very effective in immunizing a life annuity portfolio. It is interesting
to consider why these bonds are not available in the market. One factor is the limited
market for life annuities in most countries, including Australia. Also the availability of
reinsurance and the use of natural hedging of longevity risk with life insurance business
means that these forms of risk management dominate. We expect that as the life annuity
market grows and as pension funds increasingly look to investment markets to manage
longevity risk, longevity bonds will be issued.
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Table 5.1: Bond Portfolios to Immunize a Life Annuity Issued to 65 year olds

Bond Weight Bond Weight

Only Coupon Bonds
GSBS-CB-14 0.03 GSBK-CB-16 0.01
GSBS-CB-15 0.04 GSBC-CB-17 0.08
GSBS-CB-18 0.09 GSBE-CB-19 0.01
GSBG-CB-23 0.06 GSBG-CB-20 0.05
GSBG-CB-24 0.04 GSBI-CB-21 0.03
GSBG-CB-25 0.05 ACG-CB-22 0.05
GSBG-CB-26 0.01 ACT-CB-30 0.01
GSBG-CB-27 0.09 NSWTC-CB-25 0.01
GSBG-CB-29 0.07 NSWTC-CB-35 0.24
GSBG-CB-15 0.02 SYDAIR-CB-20 0.02

Only Annuity Bonds
Praeco-AB-20 0.05 JEM(NSWSch)-AB-35 0.94
JEM-AB-35 0.01 - -

Only Longevity Bonds
LB65-19 0.06 LB65-64 0.08
LB65-59 0.86 - -

Coupon Bonds and Longevity Bonds
GSBS-CB-14 0.04 LB65-64 0.08
LB65-59 0.87 - -

Annuity Bonds and Longevity Bonds
LB65-19 0.06 LB65-64 0.08
LB65-59 0.86 - -

Figure 5.1 shows the cash flows for the immunized bond portfolios along with the expected
liability cash flow. The annuity bonds provide a closer cash flow match than for the coupon
bonds. Between years 10 and 20 the cash flows on the annuity bonds exceed the expected
liability payments allowing a build up in surplus which is then used to meet the longer
term liability cash flows that exceed the term of the longest annuity bonds. The longevity
bond portfolio provides an even better cash flow match.

From a visual inspection of the figures, annuity bonds provide a good match but are
limited by the term of the longest annuity bond available, which is a hypothetical annuity
bond. Longevity bonds provide what appears to be a very effective cash flow match.
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Figure 5.1: Asset and Liability Cash Flows - Immunization
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6 Delta-gamma Hedging

Immunization using Fisher-Weil dollar duration and convexity considers expected cash
flows and average time to receipt of cash flows incorporating mortality into the discount
factor used for valuation. This approach does not allow for interest rate and mortality
rate risks to be separately hedged. Delta-gamma hedging allows explicit recognition of the
impact of both interest rate and mortality risks. We use a linear programming approach
with delta and gamma risk factors in order to select bond portfolios that have the same
deltas for interest rate and mortality risk as the liability. At the same time we minimize
the gamma of the asset portfolio in order to minimize both interest rate and mortality
risk. The linear program used is as follows:

Γ[a] = min
wk,wj

K ×

[∑
k

wk ·
{
σ2
r · Γr(t)[ak]

}
(6.1)

+
∑
j

wj ·
{
σ2
r · Γr(t)[aj] + σ2

1 · ΓY1(t)[aj] + σ2
2 · ΓY2(t)[aj]

}]

subject to

nt =
∑
k

wk · Ak,t ·B(0, t) +
∑
j

wj · Aj,t · Sx(0, t)B(0, t)− Lt · Sx(0, t)B(0, t) (6.2)

S0 =
∑
t≥1

nt = 0 (6.3)

∆r(t)[S0] =
∑
k

wk ·∆r(t)[ak] +
∑
j

wj ·∆r(t)[aj]−∆r(t)[l] = 0 (6.4)

∆Y1(t)[S0] =
∑
j

wj ·∆Y1(t)[aj]−∆Y1(t)[l] = 0 (6.5)

∆Y2(t)[S0] =
∑
j

wj ·∆Y2(t)[aj]−∆Y2(t)[l] = 0 (6.6)

The bond portfolio is selected to minimise portfolio gamma in Equation (6.1). The objec-
tive used is the sum of the gamma values for each factor multiplied by the factor variances.
Since the impact of gamma on the value of the portfolio is multiplied by the factor vari-
ance, we weight by the variance. This also gives more weight to the more volatile risk
factors. We multiply the objective by K = 105 to reduce numerical problems with min-
imising the objective since it can take small values when multiplied by the variances. The
first summation term is for the fixed-income securities and the second summation term is
for the longevity bonds, where both interest rate and mortality risk are included.

Equations (6.2) and (6.3) ensure the matching of the values of the assets and the liability.
Equations (6.4) to (6.6) match the deltas of the assets and liabilities. The linear program
is formulated in terms of wk and wj along with the dollar values of the deltas and gammas.
Thus the solution for the wk and wj are in terms of units of the bonds based on the price
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of the bond. This is converted into a percentage of the liability so that the asset portfolio
in terms of the proportion of the liability becomes

Wk =
wk ·

∑
t>0Ak,t ·B(0, t)∑

k wk ·
∑

t>0Ak,t ·B(0, t)
(6.7)

Wj =
wj ·

∑
t>0Aj,t · Sx(0, t)B(0, t)∑

j wj ·
∑

t>0Aj,t · Sx(0, t)B(0, t)
(6.8)∑

k

Wk +
∑
j

Wj = 1 (6.9)

Equations (6.7) and (6.8) express the units of fixed-income assets (wk) and longevity bond
assets (wj) as a proportion of the total asset fund (Wk and Wj). The proportions invested
in all assets are required to sum to 1 so that premiums are fully invested in assets.

6.1 Hedge Portfolio Results

Table 6.1 shows the delta-gamma hedging portfolios of bonds for the different groups of
bonds. The interest rate delta of the liability is -2.27 and the interest rate gamma is 5.78.
The delta for the first risk factor of mortality, Y1(t), is -7.79 and the gamma for this factor
is 98.20.

Bond Weight Bond Weight

Only Coupon Bonds
GSBS-CB-18 0.65 RABO-CB-20 0.35

Only Annuity Bonds
NSWWAB10-AB-23 0.24 JEM-AB-35 0.76

Only Longevity Bonds
LB65-19 0.22 LB65-34 -1.34
LB65-24 -0.12 LB65-39 2.23

Coupon Bonds and Longevity Bonds
GSBG-CB-15 0.02 LB65-34 -1.44
LB65-19 0.13 LB65-39 2.28

Annuity Bonds and Longevity Bonds
LB65-19 0.22 LB65-34 -1.34
LB65-24 -0.12 LB65-39 2.23

Table 6.1: Bond Portfolios to Delta-Gamma Hedge a Life Annuity Issued to 65 year olds

For coupon bonds the portfolio selected has 65% in a bond with interest rate delta of
-2.15, and interest rate gamma of 4.77, along with 35% in a bond with interest rate delta
of -2.50 and interest rate gamma of 6.36. Only two bonds are required for the hedging
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with only one risk factor to hedge. The hedging is based on the dollar sensitivities so that
the relative prices of the bonds and the liability are taken into account in the portfolio.

For the annuity bonds the portfolio selected has 24% in the Waratah annuity bond with
monthly cash flows, an interest rate delta of -2.02 and an interest rate gamma of 4.57,
along with 76% in the hypothetical annuity bond with quarterly cash flows, a maturity of
21 years, interest rate delta -2.35 and interest rate gamma of 6.08. These are the longest
maturity annuity bonds for each of these bond types.

When considering only the longevity bonds, the portfolio requires a short position of 12%
of the liability value in the 10 year maturity bond, a short position of 134% in the 20
year longevity bond and long positions in the 5 and 25 year bonds of 22% and 223%
respectively. The portfolio requires short selling of longevity bonds to match the liability.
This portfolio includes a combination of a short position in the 20 year longevity bond
along with a long position in the 25 year longevity bond. This is equivalent to a position
in a 20 year deferred, 5 year maturity longevity bond. The selected portfolio has an
interest rate delta of -2.27 and an interest rate gamma 5.65. The portfolio delta for the
mortality risk factor Y1(t) is -7.79 and the portfolio gamma for this risk factor is 100.35.

When both coupon bonds and annuity bonds are added to the longevity bonds in the
portfolio, there is little difference from the case with only longevity bonds. The portfolio
consists of a small component of coupon bonds but no additional annuity bonds are
included.

Figure 6.1 shows the cash flows for the bond portfolios selected with delta-gamma hedging
allowing for both mortality and interest rate risk. The coupon bonds have shorter maturi-
ties than for the Fisher-Weil duration-convexity immunization portfolio. This reflects the
lower sensitivities to maturity for the interest rate deltas for the interest rate risk model.

The liability cash flows are not well matched by the coupon bonds. The annuity bonds
provide an improved cash flow match over coupon bonds in a similar way as in the
Fisher-Weil duration-convexity immunization. However the liability cash flows exceed
the annuity bond cash flows early on and the reverse is the case after the longest maturity
annuity bond matures. Including the longevity bonds improves the cash flow match to
the liability compared to the coupon and annuity bond cases.

The figures show a similar situation to the immunization case. In general the cash flow
match is not as good for the delta-gamma hedge. The delta and gamma values are quite
different from the duration and convexity risk measures used in immunization. The result
is that for the coupon bonds, the duration of the delta-gamma hedge portfolio is much
lower than for the immunization portfolio. However for the longevity bonds, the duration
and convexity are much closer to those of the immunization portfolio.
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Figure 6.1: Asset and Liability Cash Flows - Hedging
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7 Stochastic Assessment of Liability Hedging

Using both traditional immunization and delta-gamma hedging produces differences in
the selected bond portfolios. The cash flow match varies depending on which bonds are
included in the selected portfolios. In order to assess the differences between the different
approaches and resulting portfolios, we use the stochastic interest rate and mortality
models to simulate the distribution of the surplus at future time points. This distribution
provides a more realistic assessment of the immunization and hedging effectiveness of the
different bond portfolios. To do this we generate the surplus at future horizons of 1, 10
and 50 years, the terminal date for the annuity portfolio, to assess the short, medium and
long term hedging performance.

7.1 Surplus Analysis

Immunization and hedging strategies require re-balancing of the bond portfolio through
time. We allow for this to some extent by assuming reinvestment of cash flows in zero
coupon bonds maturing on the horizon date used for the surplus. This reduces the rein-
vestment risk arising from future interest rates. Figure 7.1 illustrates the process used
to determine the distribution of the surplus for the time horizon of 10 years. Similar
calculations are used for the surplus at t = 1 and 50.

Cash flows prior to the time horizon are accumulated assuming reinvestment in zero-
coupon bonds maturing at time 10. All future cash flows occurring after the time horizon
are revalued at time 10 using the simulated interest and mortality model values at time
10.

Figure 7.1: Illustration of Simulation for the Portfolio Surplus

The portfolio surplus at time 10 is determined as the value of the assets minus the value
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of the liabilities:

S10 =
∑
k

wkV10[ak] +
∑
j

wjV10[aj]− V10[l] (7.1)

where wk and wj are the number of units of fixed-income and longevity-linked bonds
respectively. The portfolio surplus is thus the sum of the net accumulated cash flows and
the net expected value of the future cash flows at time 10.

These values for the fixed-income assets (k), longevity-linked assets (j), and annuity lia-
bility at time 10 are determined using:

V10[ak] =
10∑
t≥1

Ak,t
B(t, 10)

+
∞∑
t>10

Ak,t ×B(10, t) (7.2)

V10[aj] =
10∑
t≥1

Aj,t × S̊x(0, t)
B(t, 10)

+
∞∑
t>10

Aj,t × S̊x(0, 10)× Sx+10(0, t− 10)×B(10, t) (7.3)

V10[l] =
10∑
t≥1

Lt × S̊x(0, t)
B(t, 10)

+
∞∑
t>10

Lt × S̊x(0, 10)× Sx+10(0, t− 10)×B(10, t) (7.4)

where for t ≤ 10,

B(t, 10) = eCr(t,10)−Dr(t,10)r(t) (7.5)

is the zero-coupon bond price at time t maturing at time 10 and r(t) is the simulated
interest rate at time t, and for t > 10,

B(10, t) = eCr(10,t)−Dr(10,t)r(10) (7.6)

is the zero-coupon bond price at time−10 maturing at time t and r(10) is the simulated
interest rate at time 10.

For t ≤ 10, S̊x(0, t) and S̊x(0, 10) are the simulated survival probabilities, and for t > 10,

Sx+10(0, t− 10) = eC(x+10,0,t−10)−D1(x+10,0,t−10)Y1(10)−D2(x+10,0,t−10)Y2(10) (7.7)

is the projected survival probability at time 10 for age x + 10 over t − 10 years. Y1(10)
and Y2(10) are the simulated mortality factors at time 10.
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Figure 7.2: Surplus Distribution - Immunization
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(c) Time horizon - 50 years

Figure 7.2 gives plots of the surplus for the different time horizons for the immunization
portfolios. Each sub-figure shows a comparison of the surplus distribution for the different
immunized bond portfolios. The improvement in the surplus distribution when longevity
bonds are included is dramatic regardless of the time horizon. There is little difference
between the coupon and annuity bonds. Although the annuity bonds appear to provide
a better cash flow match, there is little difference in the surplus distribution. In practice
the annuity bonds require fewer bonds to be held and will require less re-balancing than
for the coupon bonds.

Table 7.1 gives summary statistics for the surplus distributions showing the mean, stan-
dard deviation, value at risk (V aR) and expected shortfall (ES) at the 0.5% probability
level for the immunization portfolios. V aR is a quantile measure that represents the worst
expected loss over the given time period at confidence level α and Expected Shortfall (ES)
reflects the losses in the tail of the distribution. The confidence level used reflects the
Solvency II risk levels of 1 in 200. These are expressed as a percentage of the initial
liability value.

The mean surplus is approximately zero as expected. All the risk measures demonstrate
the improvement from including longevity bonds in the portfolio. Even if interest rate
risk is immunized, the 1 in 200 loss could be as high as 10% over a 10 year horizon and
10% over the full time horizon for the life annuity. Longevity bonds allow this risk to be
reduced to less than 0.5% over a 10 year horizon and less than 0.6% over the full time
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horizon.

Measure CB AB LB LB & CB LB & AB

Time Horizon 1 year
Mean -0.0183% -0.0187% -0.0008% -0.0002% -0.0008%
SE(Mean) 0.0090% 0.0090% 0.0002% 0.0000% 0.0002%
SD 1.28% 1.28% 0.03% 0.01% 0.03%
SE(SD) 0.01% 0.01% 0.00% 0.00% 0.00%
V aR0.5% -3.32% -3.31% -0.08% -0.02% -0.08%
SE(V aR0.5%) 0.03% 0.04% 0.00% 0.00% 0.00%
ES0.5% -3.73% -3.74% -0.09% -0.02% -0.09%
SE(ES0.5%) 0.08% 0.08% 0.01% 0.00% 0.01%

Time Horizon 10 year
Mean -0.0591% -0.0597% 0.0016% -0.0017% 0.0016%
SE(Mean) 0.0218% 0.0218% 0.0013% 0.0010% 0.0013%
SD 3.08% 3.08% 0.19% 0.14% 0.19%
SE(SD) 0.02% 0.02% 0.00% 0.00% 0.00%
V aR0.5% -8.90% -8.93% -0.45% -0.35% -0.45%
SE(V aR0.5%) 0.11% 0.13% 0.00% 0.00% 0.00%
ES0.5% -10.13% -10.12% -0.49% -0.40% -0.49%
SE(ES0.5%) 0.17% 0.16% 0.02% 0.02% 0.02%

Time Horizon 50 year
Mean -0.1377% -0.1280% -0.0079% -0.0083% -0.0079%
SE(Mean) 0.0242% 0.0241% 0.0017% 0.0014% 0.0017%
SD 3.42% 3.41% 0.25% 0.20% 0.25%
SE(SD) 0.02% 0.02% 0.00% 0.00% 0.00%
V aR0.5% -10.55% -10.44% -0.60% -0.51% -0.60%
SE(V aR0.5%) 0.20% 0.19% 0.01% 0.01% 0.01%
ES0.5% -12.63% -12.61% -0.90% -0.78% -0.90%
SE(ES0.5%) 0.27% 0.27% 0.10% 0.10% 0.10%

Table 7.1: Summary Statistics for Surplus - Immunization

Figure 7.3 shows plots of the surplus for the varying time horizons for the different delta-
gamma hedged bond portfolios. The benefits of holding longevity bonds are again very
noticeable with significant reductions in the variability in surplus over all horizons com-
pared to portfolios without longevity bonds. Although results are broadly similar to those
for the immunization portfolios there are some noticeable differences. The coupon bond
portfolio has more variability than the annuity bond portfolio over medium and long
horizons. The portfolios that include longevity bonds have more variability than for the
immunized portfolios.
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Figure 7.3: Surplus Distribution - Delta-Gamma hedging
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(a) Time horizon - 1 year
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(b) Time horizon - 10 years
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(c) Time horizon - 50 years

Table 7.2 gives summary statistics for the surplus distributions for the delta-gamma hedg-
ing. For the coupon and annuity bond portfolios the risk measures are relatively large for
all horizons.

All of the risk measures show significant reductions when longevity bonds are included.
These reductions are not as great for the long horizon of 50 years compared to the short
and medium term horizons.

There is very little difference when coupon bonds and annuity bonds are included in the
portfolio along with the longevity bonds, as compared to including only longevity bonds.
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Measure CB AB LB LB & CB LB & AB

Time Horizon 1 year
Mean -0.0179% -0.0181% -0.0038% -0.0038% -0.0038%
SE(Mean) 0.0090% 0.0090% 0.0002% 0.0002% 0.0002%
SD 1.28% 1.28% 0.02% 0.02% 0.02%
SE(SD) 0.01% 0.01% 0.00% 0.00% 0.00%
V aR0.5% -3.33% -3.32% -0.06% -0.06% -0.06%
SE(V aR0.5%) 0.04% 0.03% 0.00% 0.00% 0.00%
ES0.5% -3.74% -3.74% -0.07% -0.07% -0.07%
SE(ES0.5%) 0.08% 0.08% 0.01% 0.01% 0.01%

Time Horizon 10 year
Mean 0.0225% -0.0473% -0.0449% -0.0439% -0.0449%
SE(Mean) 0.0251% 0.0218% 0.0019% 0.0015% 0.0019%
SD 3.55% 3.08% 0.26% 0.22% 0.26%
SE(SD) 0.03% 0.02% 0.00% 0.00% 0.00%
V aR0.5% -9.65% -8.90% -0.73% -0.62% -0.73%
SE(V aR0.5%) 0.12% 0.12% 0.01% 0.01% 0.01%
ES0.5% -11.07% -10.15% -0.87% -0.78% -0.87%
SE(ES0.5%) 0.18% 0.17% 0.04% 0.05% 0.04%

Time Horizon 50 year
Mean -0.1397% -0.1324% -0.1148% -0.1134% -0.1148%
SE(Mean) 0.0275% 0.0241% 0.0037% 0.0035% 0.0037%
SD 3.89% 3.41% 0.52% 0.49% 0.52%
SE(SD) 0.03% 0.02% 0.00% 0.00% 0.00%
V aR0.5% -11.39% -10.43% -1.97% -1.96% -1.97%
SE(V aR0.5%) 0.20% 0.16% 0.05% 0.06% 0.05%
ES0.5% -13.43% -12.65% -3.34% -3.32% -3.34%
SE(ES0.5%) 0.27% 0.28% 0.23% 0.23% 0.23%

Table 7.2: Summary Statistics for Surplus - Delta-Gamma Hedging

7.2 Portfolio Hedge Effectiveness

Although there are clear benefits demonstrated from holding longevity bonds, in order
to assess the significance of this improvement we consider three measures of the relative
hedge effectiveness of the different portfolios. They are the standard deviation reduction
ratio HE(σ) used in Lin and Tsai (2013), the Value at Risk reduction ratio HE(V aRα),
and the expected shortfall reduction ratio HE(ESα) used in Ngai and Sherris (2011).
These measures are defined in Table 7.3.
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Table 7.3: Risk Reduction Measures

Volatility Value-at-Risk Expected Shortfall

HE(σ) =
σ(St)−σ(S∗

t )

σ(St)
HE(V aRα) =

V aRα(St)−V aRα(S∗
t )

V aRα(St)
HE(ESα) =

ESα(St)−ESα(S∗
t )

ESα(St)

- V aRα = sup{l : Pr(St < l) ≤ α} ESα = 1
α

∫ α
0
V aRu(St)du

To interpret the risk reduction measures, a negative figure indicates the former strategy
with surplus St performs better than the latter strategy with surplus S∗t and vice versa.

Measure t=1 t=10 t=50

Delta-Gamma Hedging: AB compared to CB
HE(σ) 0 % -13 % -13 %
HE(V aR0.5%) -0 % -8 % -8 %
HE(ES0.5%) -0 % -8 % -6 %

Immunization: AB compared to CB
HE(σ) 2 % 1 % -7 %
HE(V aR0.5%) 0 % 0 % -0 %
HE(ES0.5%) -0 % 0 % -1 %

Delta-Gamma Hedging: LB compared to CB
HE(σ) -98 % -93 % -87 %
HE(V aR0.5%) -98 % -92 % -83 %
HE(ES0.5%) -98 % -92 % -75 %

Immunization: LB compared to CB
HE(σ) -98 % -94 % -93 %
HE(V aR0.5%) -98 % -95 % -94 %
HE(ES0.5%) -98 % -95 % -93 %

Delta-Gamma Hedging: CB and LB compared to only CB
HE(σ) -98 % -94 % -87 %
HE(V aR0.5%) -98 % -94 % -83 %
HE(ES0.5%) -98 % -93 % -75 %

Immunization: CB and LB compared to only CB
HE(σ) -100 % -96 % -94 %
HE(V aR0.5%) -100 % -96 % -95 %
HE(ES0.5%) -100 % -96 % -94 %

Delta-Gamma Hedging: AB and LB compared to only CB
HE(σ) -98 % -93 % -87 %
HE(V aR0.5%) -98 % -92 % -83 %
HE(ES0.5%) -98 % -92 % -75 %

Immunization: AB and LB compared to only CB
HE(σ) -98 % -94 % -93 %
HE(V aR0.5%) -98 % -95 % -94 %
HE(ES0.5%) -98 % -95 % -93 %

Table 7.4: Risk Reduction Measures - Comparison of Bond Portfolios
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Table 7.4 shows the risk reductions at t = 1, t = 10 and t = 50. Annuity bonds provide
improved hedging compared to coupon bonds, especially over longer horizons. Longevity
bonds produce significant risk reductions regardless of the horizon used for the surplus
when compared to using only coupon bonds. The reduction is almost complete and high-
lights the significance of longevity risk in life annuity portfolios that cannot be immunized
or hedged with fixed-income securities. The reduction is not as great over the longer hori-
zon when using delta-gamma hedging.

Measure t=1 t=10 t=50

Using CB: Delta-Gamma Hedging compared to Immunization
HE(σ) - 0 % 15 % 14 %
HE(V aR0.5%) 0 % 8 % 8 %
HE(ES0.5%) 0 % 9 % 6 %

Using AB: Delta-Gamma Hedging compared to Immunization
HE(σ) -0 % 0 % 0 %
HE(V aR0.5%) 0 % -0 % -0 %
HE(ES0.5%) 0 % 0 % 0 %

Using LB: Delta-Gamma Hedging compared to Immunization
HE(σ) -13 % 41 % 113 %
HE(V aR0.5%) -20 % 62 % 228 %
HE(ES0.5%) -20 % 77 % 272 %

Using CB and LB: Delta-Gamma Hedging compared to Immunization
HE(σ) 292 % 57 % 146 %
HE(V aR0.5%) 289 % 77 % 288 %
HE(ES0.5%) 304 % 95 % 327 %

Using AB and LB: Delta-Gamma Hedging compared to Immunization
HE(σ) -13 % 41 % 113 %
HE(V aR0.5%) -20 % 62 % 228 %
HE(ES0.5%) -20 % 77 % 272 %

Table 7.5: Risk Reduction Measures - Comparison of Bond Selection Methods

Table 7.5 compares the risk reductions for delta-gamma hedging portfolios with the im-
munization portfolios. For the coupon portfolios, immunization is more effective in risk
reduction than is delta-gamma hedging. For annuity bonds there is little difference be-
tween the two approaches regardless of the horizon used.

For the longevity bonds, delta-gamma hedging portfolios are more effective over shorter
horizons than immunization but significantly worse in effectiveness over medium and
longer horizons. The combination of short and long positions in the longevity bonds
with delta-gamma hedging is only more effective over short horizons. There is a need for
re-balancing of the delta-gamma bonds portfolio over short horizons.

Including coupon bonds along with longevity bonds produces delta-gamma hedging port-
folios that are considerably less effective than the immunized portfolios. This reflects the
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inclusion of short positions in the delta-gamma longevity bond portfolios that resemble
deferred longevity bonds. Since these are selected to hedge the delta and gamma, based
on the stochastic model used, they do not provide the cash flow hedge that immunization
does.

8 Conclusions

This paper presents an extensive analysis of bond portfolio selection for immunizing and
hedging the life annuity liabilities of a life annuity provider. The paper assesses both
Fisher-Weil immunization as well as delta-gamma hedging using stochastic models for
both interest rate risk and mortality risk. The portfolios considered include coupon bonds,
annuity bonds and longevity bonds.

We show how Fisher-Weil immunization can be used to immunize both interest rate
and mortality risk. We extend a linear-programming approach used for interest rate
immunization to selecting coupon, annuity and longevity bonds to immunize a life annuity
portfolio. We use a linear programming approach for delta-gamma hedging and allow for
both interest rate and mortality risk.

We show that annuity bonds provide better cash flow matching than coupon bonds,
although the annuity bonds available in the Australian market do not have a long enough
term to maturity to immunize a life annuity portfolio. Annuity bonds provide a better
cash flow match to the life annuity liability, with improved immunization effectiveness
compared with coupon bonds over short horizons.

For the delta-gamma hedging portfolio with longevity bonds, a short position in a shorter
term bond and a long position in a longer term bond is required. This is the equivalent of
a deferred longevity bond. Although this portfolio performs well over the short horizon, it
does not perform well compared to the immunized portfolio over medium or long horizons.
This highlights the need for re-balancing of the delta-gamma hedging portfolio as the
underlying risk factors evolve.

The portfolios selected, regardless of method, all demonstrate that longevity bonds are
valuable in immunizing or hedging longevity risk in life annuities. They provide a better
cash flow match in the case of immunization and have much reduced risk in the surplus
distribution at short, medium and long horizons.

Longevity bonds are not available in the Australian market or in other bond markets.
We have shown the clear benefits that these bonds bring to the risk management of a life
annuity provider. As a result we expect that as the life annuity market develops these
bonds should be in increasing demand by insurers.

Our analysis uses Australia bonds as well as stochastic models calibrated to Australian
interest rate and mortality data. Most developed economies have similar bond markets as
well as interest rate and mortality experience as has Australia. As a result our analysis has
direct application to any economy considering the types of bonds that should be offered
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in order to better manage the risks of long term pension and annuity portfolios.
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