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Abstract

Group Self-annuitisation Schemes (GSAs), or Pooled Annuity Schemes, are de-
signed to share uncertain future mortality experience including systematic im-
provements. They have been proposed because of the significant uncertainty of
future mortality improvement on pension and annuity costs. The challenges for
designing group pooled schemes include the decreasing average payments when
mortality improves significantly, the decreasing numbers in the pool at the older
ages and the dependence of systematic mortality improvements across different
ages of members in the pool. This paper assesses the impact of systematic de-
pendence and reducing numbers in the pool at extreme ages on the efficacy of
longevity pooling. Current proposals for pooling schemes are designed to insure
against idiosyncratic risk while leaving systematic risk to be borne by individuals.
The paper uses a multiple-factor stochastic Gompertz-Makeham model of mor-
tality, calibrated to Australian data, to demonstrate the significance of these is-
sues. The model produces analytical results from extreme value theory for survival
distributions and approximate annuity computations. Simulations are used to
show how the pooling can be made more effective and to quantify the limitations
of these pooling schemes. The results quantify the impact of pool size on risk
sharing, especially at the older ages, demonstrate the significance of systematic
mortality risks and dependence on pooling effectiveness, and highlight the need
for reinsurance, longevity bonds and solidarity between the young and old ages
in the pool to improve the effectiveness of GSAs as a longevity insurance product
solution.

Keywords: group self-annuitisation, pooled annuity, longevity risk, extreme
value distribution, Gompertz-Makeham mortality
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1 Introduction

Internationally there has been a significant shift to defined contribution schemes to
fund retirement and a reduction in pension funds providing longevity protection post
retirement. Increasingly attention has been turned to the post-retirement phase and
financial arrangements to convert accumulated lump sums into retirement incomes.
These policy issues are well covered in recent World Bank discussion papers (World
Bank (2010a) [21] and World Bank (2010b) [14]). The ideal post retirement income
provides consumption income with both longevity insurance and inflation indexation.
Yaari (1965) [22] demonstrates the welfare benefits of ordinary life annuities because of
the longevity insurance protection provided under a standard life-cycle consumption
model with perfect markets, actuarially fair annuities with no loadings and rational
individuals with no bequest motives. Davidoff et al. (2005) [4] shows that there are
benefits from some level of annuitisation under more general assumptions. Although
annuity prices are not actuarially fair, risk-averse individuals will still value annuities
(Mitchell 2001 [10]). Stevens (2010) [19], amongst others, includes analysis of annuity
decisions showing how systematic mortality risk reduces the attractiveness of life an-
nuities.

There are many reasons advanced as to why there is a lack of well developed annuities
markets despite the potential longevity risk benefits. From a demand perspective,
these include lack of liquidity, bequest motives, poor value for money, and availability
of public pensions (Friedman and Warshawsky (1990) [6], Hurd (1989) [8], Mitchell et
al. (1999) [11]). From the supply perspective, insurers incur significant capital costs
in guaranteeing life time incomes because of the significant uncertainty of individual
longevity prospects. Adverse selection and lack of underwriting in the life annuity
market also leads to significant costs for suppliers of life annuities. Evans and Sherris
(2010) [5] review demand and supply factors in developing a life annuity market in
Australia.

An approach to the management of uncertain future longevity presented in Piggott,
Valdez and Detzel (2005) [13] is referred to as group self-annuitisation (GSA), which
is designed to pool idiosyncratic risk with individuals bearing systematic risk. Indi-
viduals invest capital into the pool and are paid an annuity income that varies with
the mortality experience in the pool. As individuals exit the pool from death, their
remaining capital is shared amongst the survivors in the pool in the form of mortality
credits. The motivation behind GSAs is that there are no payment guarantees so that
systematic longevity risk and idiosyncratic mortality risk is borne by the individual
and the pool but not the insurance provider. An advantage of a GSA scheme is that
there are no guarantees and costly capital as compared with an ordinary annuity,
especially in the case where there is a lack of hedging markets for longevity risk.

Valdez, Piggott and Wang (2006) [20] addressed adverse selection and demand issues
for GSAs. Based on research by Abel (1986) [2] and Sinha (1989) [17] on adverse se-
lection for ordinary annuity funds with known heterogeneous mortality probabilities,
Valdez, Piggott and Wang (2006) applied a similar utility framework to GSAs to show
that annuitants will naturally adversely select against both conventional annuities and
GSAs. The extent to which adverse selection is exercised against GSAs is lower than
that of conventional annuities given certain utility function conditions.
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Stamos (2008) [18] extended Valdez, Piggott and Wang by investigating the optimal
consumption problem for fund participants in a portfolio choice framework. Stamos
showed that the expected mortality credit achieved by members who survived increa-
sed with the number of members in the pool. The expected optimal consumption as
a proportion of initial wealth increased with the number of fund members. A similar
pooling scheme was presented by Sabin (2010) [15] known as Fair Tontine Annuity or
FTA, in which “fairness” is achieved by ensuring that pool members’ expected benefits
did not depend on the mortality experience of others in the pool.

Under existing sharing arrangements, as in Piggott, Valdez and Detzel (2005) [13], be-
nefit payments can significantly decline over time, driven primarily by the improving
trend of underlying human mortality. In addition, the volatility of benefit payments
increases over time, driven by uncertainty in mortality forecasts as well as the random
deviation of experienced deaths from population mortality. This is especially the case
at the older ages where numbers of survivors in the pool are smaller.

Group pooling will be more effective when individual benefit payments do not have
a significant expected downward trend over time and future benefit payments do not
have too high a level of volatility. Dependence between individual lives created by
common drivers of mortality improvements has the potential to undermine pooling
effectiveness, not only because of declining payments, but also because of systematic
longevity risk that cannot be reduced with increases in pool size. Group pooling
arrangement must consider to what extent of both these factors are managed in the
pool.

This paper assesses the effectiveness of group self annuitisation schemes allowing for
systematic but uncertain longevity trends. A multi-factor stochastic version of the
Gompertz-Makeham (GoMa) model is used to capture both dependence across ages
and systematic mortality improvements over time. The model is fitted to historical
data for Australian males and implemented in a manner such that positive mortality
rates are generated to demonstrate the results. Other developed countries mortality
experience has been similar to Australia and so the results are broadly applicable.
Simulation is used to quantify the extent to which benefit payments will decline over
time, due to the inability of GSA benefit payment calculation rules to capture syste-
matic mortality improvements. The extent to which the volatility of benefit payments
widens over time is also quantified using the model. GSA’s with a single cohort only
allow for non-systematic risk. Introducing other cohorts of the same initial age makes
it practical to pool systematic risk across cohorts.

The extent to which these pooling arrangements can be made effective is a main aim of
this paper. Current pooling arrangements adopt new annuity factors based on the
current experience. GSA benefit payments still decline at the older ages with this
approach. The effectiveness and feasibility of GSAs is quantified using the distribution
of benefit payments for realistic pooling scenarios. A method is proposed to share
systematic mortality improvements in a GSA arrangement so that they are pooled
and borne by the collective rather than the individual, extending and generalizing
pooling arrangements in Piggott, Valdez and Detzel (2005) [13]. It is also shown that
by including the systematic trend of future mortality improvements in the calculation
of annuity factors for benefit payments, the expected decline over time is significantly
reduced. Pooling effectiveness is considered both with and without expected future
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mortality improvements.

The paper is organised as follows. Section 2 discusses the technical specifications for
GSA pooling. Section 3 discusses the mortality model and Section 4 outlines the GSA
fund value simulation procedures. Results of the analysis are presented and discussed
in Section 5 including the improvements to pooling methodology covered in this paper.
Finally, the main findings of this paper are summarised in Section 6.

2 Analysis of GSA Schemes

The analysis of GSA schemes follows that in Piggott, Valdez and Detzel (2005). A
generalization of their procedure is presented here and explained.

2.1 Benefit payments

In Piggott, Valdez and Detzel (2005), the benefit payments at time t for a fund of
members in a pool is recursively determined by modifying the previous benefit with
experience factors. For a surviving individual i at time time t in the pool the benefit
payment is determined as

k
xB∗i,t = k−1

x B∗i,t−1 · MEAt · IRAt · CEAt

= k−1
x B∗i,t−1 ·

F∗t
∑k≥1 ∑x

1
px+k−1

∑At
k
xF∗i,t

· 1 + Rt

1 + R
· äold

x+k−1,t

änew
x+k−1,t

(1)

where there are a total of At individuals alive, aged x at entry, currently having been
in the fund for k years. F∗t denotes the total fund value of all surviving members at
time t and k

xF∗i,t denotes the fund value of individual i conditional on survival. The ∗
superscript denotes survival to time t.

Payments are adjusted over the time period t with an interest rate factor, where R
is the expected interest rate and Rt the realised interest rate, a mortality adjustment
factor (MEA) and a separate changed expectation factor (CEA) to allow for changes in
experienced mortality and in future expected mortality.

Individual i who is aged aged x at entry, subscribes 0
x F̂∗i,0 and an initial payment is

determined based on
0
xB∗i,0 =

0
x F̂∗i,0
äx

.

The main concern in this paper are the adjustments for mortality and will not include
interest rate variability, so that the IRAt adjustment factor will not be included. This is
not only to simplify the analysis but also to ensure results are not confounded by other
factors. Adjustments for random interest rates is readily incorporated since these are
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normally assumed independent of mortality adjustments. The annual effective nomi-
nal interest rate, expected and realised, used throughout this paper is 5%, equivalent
to a force of interest of δ = 0.048790164 which is the approximate level of current long
term government bond yields in Australia.

At any given point in time

k
xB∗i,t =

k
x F̂∗i,t
äx+k

so that the benefit payment is an average amount based on the expected present value
factor of an ordinary whole life annuity. F̂, denotes the inherited amount of fund
balance given survival after the remaining wealth of deaths of pool members is dis-
tributed to those who survive, at time t.

2.2 Modification of Pooling Benefit Calculation

In Piggott, Valdez and Detzel (2005) the mortality adjustment factor (MEA) is separate
to the changed expectation factor (CEA). The mortality adjustment factor allows for
deviation from the expected number of deaths experienced by a GSA fund, while the
changed expectation adjustment allows for a permanent shock to the underlying mor-
tality. However these two effects are in practice difficult to differentiate between. Any
pattern of mortality changes can be arbitrarily split between temporary and permanent
changes in mortality. For example, if additional deaths were experienced in a GSA
they could either be the random deviation away from the expectation, or it could be
the result of a permanent increase of the underlying mortality rates. It is only future
unknown experience that will allow us to differentiate in any meaningful way. These
two adjustment factors are incorporated into a single factor in this paper. Initially
the adjustment factor will not include expected future mortality improvements. Later
these will be included to show the importance of making this allowance in the pooling.

The mortality model is used to determine annuity factors. As the underlying rate of
mortality evolves and the survival probabilities, px, change, these will be represented
by px,t where t is the time that the survival probabilities apply. The actuarial annuity
factor ä changes every year, as the new mortality rates are revealed and an updated
current life table is generated. These annuity factors will be denoted as äx,t, represen-
ting the actuarial present value of a $1 life annuity for a life aged x, calculated at time
t, using all available mortality information at that point in time. These factors do not
include expected future mortality rates. They are based on the updated dynamic life
table generated by the mortality model at the current time.

Mortality is modeled with a stochastic model, at any time future mortality rates are
denoted by µx,t which is the mortality rate assumed to be experienced by lives aged
x at time t. For any given realization of future mortality rates the probability of a life
aged x at time t surviving s years is given by

s px,t = exp
[
−

∫ x+s

x
µz,tdz

]
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.

For this realization of mortality rates, the actuarial present value of an ordinary lifetime
annuity paid in annually in advance for a life aged x at time t is given by

äx,t =
∞

∑
s=0

e−δs
s px,t

.

The rest of the analysis in this paper is formally based on applying an updated life table
at each future time point, and hence all variables will be subscripted by t to denote
calculation at time t, given mortality information at time t.

The benefit payment received by an individual aged x at entry at time t, having been a
member of the pool for k years, is given by

k
xB∗i,t =

k
x F̂∗i,t

äx+k,t
(2)

.

The calculations are performed at time t based on mortality information at time t.

For the total GSA fund, assuming multiple cohorts, with individuals of various ages at
entry, having been with the fund for various periods of time, the benefit payment and
fund balance are, respectively,

B∗t = ∑
k≥1

∑
x

∑
At

k
xB∗i,t

F∗t = ∑
k≥1

∑
x

∑
At

k
x F̂∗i,t

where At is the number of fund members alive at time t for the cohort (x, k).

The individual fund and benefit amounts are derived using the following recursive
formula:

k
xF∗i,t =

(
k−1
x F̂∗i,t−1 − k−1

x B∗i,t−1

)
eδ (3)

where δ = ln [1 + R] is the rate of investment earned over the previous period.

This relationship defines the fund balance after investment accumulation but before
any inheritance from mortality credits from deaths. For the fund as a whole, F∗t = F̂∗t
since the fund balance is always preserved.

The relationship between k
xF∗i,t (the survived fund balanced before inheritance) and k

x F̂∗i,t
(after inheritance) is important and reflects the mortality experience sharing.
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The relationship between benefit payments in consecutive periods where there is only
a single mortality experience adjustment factor is derived as follows:

F∗t = ∑
k≥1

∑
x

∑
At

(
k
xB∗i,t äx+k,t

)

= ∑
k≥1

∑
x

∑
At

[(
k−1
x B∗i,t−1 · TEAt

)
· äx+k,t

]

= ∑
k≥1

∑
x

∑
At

[(
k−1
x B∗i,t−1 · TEAt

)
· äx+k,t ·

(äx+k−1,t−1 − 1)
px+k−1,t−1

eδ · 1
äx+k,t−1

]

= ∑
k≥1

∑
x

∑
At

[(
k−1
x B∗i,t−1 · TEAt

)
· äx+k,t

äx+k,t−1
· (äx+k−1,t−1 − 1)

px+k−1,t−1
eδ

]

= TEAt ∑
k≥1

∑
x

∑
At


 äx+k,t

äx+k,t−1
·
(

k−1
x B∗i,t−1 äx+k−1,t−1 − k−1

x B∗i,t−1

)

px+k−1,t−1
eδ




= TEAt ∑
k≥1

∑
x

∑
At

[
äx+k,t

äx+k,t−1
·

k
xF∗i,t

px+k−1,t−1

]

.

This then gives an adjustment factor of

TEAt =
F∗t

∑k≥1 ∑x
1

px+k−1,t−1

äx+k,t
äx+k,t−1

∑At
k
xF∗i,t

where TEAt is the total adjustment factor. It is important to note that TEAt is not
MEAt × CEAt, as in the Piggott, Valdez and Detzel (2005) sharing arrangement. They
have

MEAt =
F∗t

∑k≥1 ∑x
1

px+k−1,t−1
∑At

k
xF∗i,t

CEAt =
äx+k,t−1

äx+k,t

which implies that CEAt is dependent on the cohort to which it is being applied. This
requires a subjective judgement as to how to translate the realised survival experience
into a cohort specific permanent improvement factor CEA dependent on cohort, and
a universal volatility factor MEA independent of cohort. The exact way in which this
can be done is subjective. A single factor TEAt universal across cohorts avoids this
ambiguity in the sharing rules.

The approach shares systematic mortality risk experience across cohorts. Sharing ar-
rangements are always conflicted in balancing solidarity for the whole pool and ac-
tuarial fairness for individuals in the pool. By sharing systematic risk across cohorts,
provided each cohort is made better off in terms of benefit payments or benefit volati-
lity, sharing rules are beneficial to all cohorts. Because the age of the cohorts is still used
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in the sharing rules at an individual level, allowance for cohort idiosyncratic mortality
experience is also pooled.

2.3 Fund value inheritance

The method for sharing mortality credits in the pool developed in Piggott, Valdez and
Detzel (2005) relies on the computation and application of the two components MEA

and CEA. The recursive relationship äx+t,t = (äx+t−1,t−1)eδ

px+t−1,t
is used. This constrains the

assumptions used to compute äx+t,t.

The method for the computation of an individual’s share of the fund value and the
subsequent benefit payment can be improved by noting that

∑
k≥1

∑
x

∑
At

k
x F̂∗i,t = ∑

k≥1
∑
x

∑
At

k
x F̂∗i,t−1

äx+k−1,t−1
· TEAt · äx+k,t

= ∑
k≥1

∑
x

∑
At

[
k
x F̂∗i,t−1

äx+k−1,t−1
· TEAt · äx+k,t ·

(äx+k−1,t−1 − 1)
px+k−1,t−1

eδ · 1
äx+k,t−1

]

= ∑
k≥1

∑
x

∑
At

[
k
x F̂∗i,t−1

(
1− 1

äx+k−1,t−1

)
· TEAt · äx+k,t

äx+k,t−1
· eδ

px+k−1,t−1

]

= ∑
k≥1

∑
x

∑
At

[
k
xF∗i,t · TEAt · äx+k,t

äx+k,t−1
· 1

px+k−1,t−1

]

= ∑
k≥1

∑
x

∑
At

k
xF∗i,t

px+k−1,t−1

∑k≥1 ∑x ∑At

k
xF∗i,t

px+k−1,t−1

· F∗t

.

This shows that

k
x F̂∗i,t =

k
xF∗i,t

px+k−1,t−1

∑k≥1 ∑x ∑At

k
xF∗i,t

px+k−1,t−1

· F∗t (4)

.

where k
xF∗i,t is derived using equation (3), and the benefit payment amount is then sub-

sequently calculated using equation (2). This is an improved approach to computing
the recursive equations that bypasses the necessity of calculating TEAt. This method
is used to derive benefit payment amounts.

This expression has a simple interpretation. The fund value inherited by an individual
is simply a weighted portion of the total available fund value. The weight is determi-
ned by the combination of

• k
xF∗i,t, the fund value of the individual prior to inheritance; and

• px+k−1,t−1, the expected survival probability of the individual for the previous
calendar year.
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3 Mortality model

The mortality model adopted to demonstrate the impact of systematic risk on GSA
benefit payments is a stochastic dynamic Gompertz-Makeham (GoMa) model similar
to the Gaussian Makeham model in Schrager (2006) [16].

The model is specified as

µx,t = Yt1 + Yt2cx (5)
dYt1 = a1dt + σ1dWt1 (6)
dYt2 = a2dt + σ2dWt2 (7)

dWt1dWt2 = ρdt (8)

with the conditions Yt1 > 0, Yt2 > 0, c > 1, σ1 > 0, σ2 > 0, -1 ≤ ρ ≤ 1 where Wt1 and Wt2
are Brownian motions, and the initial condition is

µx,0 = y1 + y2cx (9)

.

The model allows for systematic improvements in mortality and captures dependence
in mortality changes across ages. Dependence in the factors across ages is captured
by the standard correlation coefficient. The model formulation allows the derivation
of closed form survival probabilities and approximate annuity factors (Schrager (2006)
[16] and Milevsky (2006) [9]). It is also suited to simulations, as will be used later.

From the model descriptions given above, the following observations can be made

Yt1 ∼ N
(

a1t + y1, σ2
1 t

)

Yt2 ∼ N
(

a2t + y2, σ2
2 t

)

cov [Yt1, Yt2] = ρσ1σ2t

So that
µx,t ∼ N

(
ux,t, s2

x,t

)

where

E [µx,t] = ux,t = (a1t + y1) + (a2t + y2) cx

var [µx,t] = s2
x,t = σ2

1 t + σ2
2 tc2x + 2ρσ1σ2cxt

and X ∼ N
(
µ, σ2) denotes a normally distributed random variable X with mean µ

and variance σ2. That is, E [X] = µ and var [X] = σ2.

Long-term mortality improvements arise from negative parameter values for a1 and
a2, whereas a deterioration would be represented by positive estimates for a1 and a2.

The model is fitted to data from the Human Mortality Database [1] for Australian
deaths and population data from the years 1965 to 2007. Male data for ages 60 to 99 is
selected since GSAs are designed for retired individuals. Older ages are not included
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in fitting the model because of smaller number of deaths at these ages. Data before
1965 was omitted, due to a data collection limitations by the HMD prior to that year.
This results in the data being reduced to incorporate 40 different ages across 43 years
for a total of 1720 observations.

The mortality rate computed from the data is

m̂x,t =
number of deaths in year t for those aged x last birthday

average size of the population aged x in year t
=

D̂x,t

Êc
x,t

(10)

where a hat, ,̂ denotes a data value and a tilde, ,̃ denotes an estimated value.

Under standard Poisson deaths assumptions, with a central population exposure of
Ec

x,t individuals in the pool aged x at time t have a death rate of µx,tEc
x,t. The conditional

death rate Dx,t
Ec

x,t

∣∣∣ µx,t has a mean of µx,t and variance µx,t
Ec

x,t
. This is approximately normally

distributed from the Central Limit Theorem (CLT), so that Dx,t
Ec

x,t

∣∣∣ µx,t ∼ N
(

µx,t,
µx,t
Ec

x,t

)
.

To fit the model parameters to the data, the unconditional distribution of deaths, Mx,t =
Dx,t
Ec

x,t
, is required. This is determined by integrating the distribution function of Dx,t

Ec
x,t

∣∣∣ µx,t

with the distribution of µx,t. Although the unconditional distribution should be a
normal distribution, closed form analytical results do not exist if both the mean and
variance in the distribution of Dx,t

Ec
x,t

∣∣∣ µx,t are functions of µx,t and hence random.

An approximation is used to overcome this problem. Using the law of iterated expec-
tations

E

[
Dx,t

Ec
x,t

]
= E

[
E

[
Dx,t

Ec
x,t

∣∣∣∣∣ µx,t

]]

= E [µx,t]
= ux,t

.

Using the law of iterated variances

var

[
Dx,t

Ec
x,t

]
= E

[
var

[
Dx,t

Ec
x,t

∣∣∣∣∣ µx,t

]]
+ var

[
E

[
Dx,t

Ec
x,t

∣∣∣∣∣ µx,t

]]

= E

[
µx,t

Ec
x,t

]
+ var [µx,t] ≈ E

[
µx,t

Êc
x,t

]
+ var [µx,t] =

ux,t

Êc
x,t

+ s2
x,t

≈ m̂x,t

Êc
x,t

+ s2
x,t

.

The approximation replaces the population parameters with sample estimates.

The volatility of the observed number of deaths varies with age. Even if the underlying
variability of the true rate of mortality for a particular age was zero, the observed
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deaths data exhibits variability from the random date of death.

The expectation and variance of observed deaths is used to estimate the model para-
meters. Since Mx,t is normal, with

E [Mx,t] = ux,t = (a1t + y1) + (a2t + y2) cx

var [Mx,t] = vx,t =
m̂x,t

Êc
x,t

+ σ2
1 t + σ2

2 tc2x + 2ρσ1σ2cxt

the likelihood is given by

L (m̂x,t) = ∏
x

∏
t

1√
2π

(
m̂x,t
Êc

x,t
+ σ2

1 t + σ2
2 tc2x + 2ρσ1σ2cxt

) ×

exp


−

1
2




m̂x,t − [(a1t + y1) + (a2t + y2) cx]√
m̂x,t
Êc

x,t
+ σ2

1 t + σ2
2 tc2x + 2ρσ1σ2cxt




2



The log likelihood function to be minimised in estimating the parameters, using the
observed 1720 data points, is

l (m̂x,t) = −
99

∑
x=60

43

∑
t=0

ln




√√√√2π

(
m̂x,t

Êc
x,t

+ σ2
1 t + σ2

2 tc2x + 2ρσ1σ2cxt

)


−1
2

99

∑
x=60

43

∑
t=0







m̂x,t − (a1t + y1)− (a2t + y2) cx
√

m̂x,t
Êc

x,t
+ σ2

1 t + σ2
2 tc2x + 2ρσ1σ2cxt




2



= −
99

∑
x=60

43

∑
t=0

ln
[√

2πvx,t

]
− 1

2

99

∑
x=60

43

∑
t=0

[(
m̂x,t − ux,t√

vx,t

)2
]

(11)

.

The GoMa mortality model can be readily estimated and captures the uncertainty
and systematic risk in mortality for the data period used in estimation. The fitted
parameters from the data for Australian males aged 65 to 99 from 1965 to 2007 are with
time zero as the year of 1965 are given in Table 1.

The parameters estimates show that the two factors driving mortality include impro-
vement over time and that these improvements are strongly correlated across ages.
This is the systematic risk of mortality changes. Because the random parameters, or
factors, in the model impact different ages there is systematic risk across different aged
individuals. However, for individuals of the same age the future mortality shocks are
also treated as common to individuals of the same age. This risk is not reduced as
much by increasing the pool size since it has common effects across individuals in the
pool.
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Parameter Estimate
ỹ1 0.000322448
ỹ2 0.000058809
c̃ 1.096559466
ã1 -1.144811496×10−10

ã2 -3.832494756×10−7

σ̃2
1 3.639275565×10−19

σ̃2
2 1.145473323×10−11

ρ̃ 0.929491793

Table 1: Parameter estimates for mortality model for ages 65 to 99

Pearson’s chi-squared test was applied to the fitted results using the test statistic

χ2 =
k

∑
i=1

(Oi − Ei)
2

Ei

where Oi is the observed data point and Ei is the theoretical data point according the
assumed underlying distribution. The null hypothesis that the data comes from the
assumed distribution will be rejected if X2 > χ2

k−1−p;@α% where p is the number of
parameters estimated for significance level α%. The Pearson’s chi-squared test statistic
is

χ2 =
99

∑
x=60

43

∑
t=0

(m̂x.t − m̃x,t)2

m̃x,t
= 6.321235

with k = 1720 and p = 6. Given that 6.321235 < χ2
1713;@95% = 1810.400192, the null

hypothesis is not rejected.

3.1 Mortality model assumptions

The Gaussian assumption in the model has the potential to produce negative mortality
rates which is an issue with any Gaussian model. Schrager (2006) suggests that para-
meter values can be estimated to reduce the probability of negative rates. For a mean-
reverting model the possibility of negative mortality rates will be small. However for
a non-mean-reverting model as adopted here, a modification is required to eliminate
the possibility of negative mortality rates. Negative mortality rates are generated by
the model when there are too many larger sized improvements occurring one after the
other.

The GoMa model, generally fits older age mortality period rates well, and explicitly
produces survival probabilities that are double exponential. Survival distributions
are extreme value distributions allowing for analytical approximations and survival
curves consistent with empirical data. Closed form analytical expressions for survival
probabilities and annuity factors is an advantage of the GoMa model if the survival
probabilities are known. When the survival probabilities are simulated for future years
it is only the current survival curve that is known. In this case simulation is required
to generate the future survival curves.
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Based on the estimated parameters for the historical death rates of Australian males
from 1965 to 2007, as given in 1, the probability of a negative mortality rate in at
least one of the future 40 years is 10.66%, based on 83910 simulations. The model
simulations exclude these negative mortality rate paths to ensure that realistic future
scenarios are generated. The negative scenarios are replaced with new simulations that
do not have negative mortality rates. This produces an upward bias in the simulated
mortality rates compared to the historical data.

The choice of the GoMa model includes systematic mortality improvements. Depen-
dence between ages is a significant feature of the model. The GoMa model has a fixed
factor c applying to all ages at any given time period.

Mortality models that have lower age dependence will produce benefit payments that
show greater advantages from pooling across cohorts, due to reduced levels of de-
pendence. Alternative mortality models with systematic mortality improvements will
produce qualitatively similar results.

The GoMa model does not model cohort improvements explicitly and allows for these
only through the relative changes in the two factors Y1 and Y2, which are positively,
but not perfectly, correlated. Expected trends in future mortality rates will differ across
cohorts.

The model is estimated using population mortality which ignores the impact of any
differences between a particular GSA pool and the population. This is used to estimate
the mean and volatility of individual mortality rates. Because of the population size the
estimates will largely exclude any sampling variability from sample size and provides
generally accurate estimates of the individual mortality rate parameters.

3.2 Impact of Mortality Improvements and Systematic Risk

Individuals in a GSA pool have both idiosyncratic and systematic longevity risk. The
idiosyncratic risk is the risk that is reduced most by pooling. These risks are inde-
pendent across individuals in the pool. Increasing the pool size reduces the idiosyncra-
tic risk as measured by the average survival time in the pool. The survival distribution
across time and the resulting payments are also reduced by pooling since they also
vary with the idiosyncratic risk of the pool. Systematic risk arises from dependent risk
factors that impact the survival probabilities of all individuals in the pool to a greater
or lesser extent.

High levels of systematic risk reduce the effectiveness of pooling compared to a si-
tuation with only idiosyncratic risk. Larger pools and pooling across multiple cohorts
will reduce the volatility of benefit payments arising from idiosyncratic mortality risk
to individuals at older ages. Pooling provides higher benefit payments for any given
probability of exhausting the pool funds than for the case of an individual self insuring
longevity by drawing down their own savings to meet the same probability.

Regardless of the pool size or how often younger cohorts are admitted to the pool,
benefit payments decline over time due to

• The existence of systematic mortality improvements from the dependence bet-
ween lives; and
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• The long-tailed distribution for aggregate survival distributions, as reflected by
the GoMa model, where there is a downside skewed tail.

Systematic risk is borne by the fund members in a GSA pool. This alleviates the
need for capital. However, systematic risk will undermine effective pooling because
of higher volatility in payment and declining benefit payments with expected future
improvements. Volatility in payments can be pooled across different cohorts to reduce
overall volatility. Expected future improvements need to be allowed for in the compu-
tation of benefit payments.

The pooling can be made more effective by allowing for future expected improvements
based on the mortality model. The model evolves mortality rates randomly through
time with both expected changes and variability around those changes. At any future
time it provides expected future mortality rates. The uncertainty in the mortality
model arises the random time t evolution of the factors Y1and Y2. At any future time
given the values of these factors a survival curve can be constructed based only on past
mortality information. However, conditional on the factors the mortality rates, µx,t, are
known at time t. Mortality rates will also improve in expectation over time as reflected
by the model parameters.

The expected future mortality rates are

E [µx,t+s| µx,t] = (y1t + a1s) + (y2t + a2s) cx (12)

which projects the mortality rates for the future s years given information at time t.
Information at time t that is relevant for future mortality is the current mortality rate.

Expected future survival probabilities take these expected improvements in the model
mortality rates into account. An approximation is used for convenient computation
of annuity values otherwise extensive simulations are required for computing future
survival rates and values of life annuities.

Noting that the variance of (µz,t+s| µx,t) is very small compared to its expected value,
an approximation for expected future survival probabilities is

E [ px,t+s| µx,t] ≈ exp
[
−

∫ x+1

x
E [µz,t+s| µx,t] dz

]
(13)

.

The annuity value allowing for future expected mortality is then approximated by

ä f
x,t =

∞

∑
k=0

e−δkE [k px,t]

where

E [k px,t] =
k−1

∏
s=0

E [ px+s,t+s| µx,t]

and ä f
x,t denotes the updated actuarial present value annuity factor, taking into account

expected systematic mortality improvements. Where there are long-term expected
mortality improvements, ä f

x,t > äx,t.
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The benefits in the GSA risk pool are then computed based on expected future morta-
lity rates at t and then current information about mortality after including the sharing
of mortality credits from the deaths in the pool. A new projected expected survival
rates life table is generated for each t, resulting in a new ä f

x,t for each x that takes into
account future expected mortality improvements based on the mortality model.

This approach incorporates mortality expectations dynamically without the need to
measure changes in mortality against an assumed future experience. The annuity
factors ä f

x,t and E [ px+s,t+s| µx,t] are computed numerically. Some models would allow
this to be computed analytically.

Benefit payments are then determined by equation (2), using the annuity factors to
account for improving mortality. By using ä f

x,t, and hence increasing äx,t at all ages,
benefit payments at entry will be lower but will be closer to level at future times.

4 Simulation methodology

Monte Carlo simulations are used to assess pooling effectiveness by simulating pools
with individuals entering at the same age at the same time. Allowance is then made
for new cohorts to enter the pool at future times. The methodology for the simulation
of mortality for one possible future realization is:

1. Future mortality rates are forecasted by simulation of the random dependent
factors Y1t and Y2t driving mortality changes.

• These are bivariate normal simulations.

• A mortality matrix x age by t time is generated.

• Simulations with negative rates are not included inducing autocorrelation.

2. Determine survival probabilities from the simulated mortality rates.

• Probability of survival for an individual in a particular year is determined
using equation (15) and setting s = 1, for each year. This is then repeated
every year for all fund members, for their corresponding ages x for each
time t in the fund.

• Determine the actuarial present value annuity factor using equation (16) for
every year, and every member, for their corresponding ages x at time t in the
fund.

3. Simulate the death and survival of fund members every year with a Bernoulli (px,t)
random variable, where 1 denotes survival and 0 denotes death. Death events are
doubly random, where the deaths are random, and the survival probabilities px,t
are also random, driven by random underlying mortality rate simulations.

4. Determine the inherited fund balance from the deaths and benefit payment for
each of the survived fund members at the beginning of every year, using the
algorithm in equations (2), (3) and (4).
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This procedure produces one complete simulation for all the fund members. This
process is repeated so that many simulations are generated, and the resulting benefit
payment amounts are summarised in a distribution for differing future times (and
ages).

All simulations assume

• A starting contribution value of $100 (benefit payments as a percentage of the
starting contribution are unchanged by differing starting contributions);

• A time horizon of 40 years (so the oldest age included is 105);

• All pools start at time zero, which is the year of 2007 for the mortality model;

• The mortality rates for time zero are known, this provides approximately $8.99
in benefit payments, computed by 100

ä65,0
to 65 year old males at time zero (not

including expected mortality improvements);

• Initial entry age of participants is 65 unless stated otherwise;

• All fund members are males since the mortality data used for calibration of the
model was Australian males; and

• An annual effective rate of interest of 5%, which equates to a constant force of
interest of δ = 0.04879016. In all simulations the realised interest rate return is
the same as the expected rate of interest.

4.1 Mortality projections

Future mortality rates are projected by simulating the two factors Y1 and Y2 as bivariate
normally distributed random variables. In projecting future mortality rates, the initial
parameters at t = 0 (2007) are

y1,t=0 = 0.00032244347614
y2,t=0 = 0.00004271285405

With each simulation a current mortality curve for µx,t is generated from

µx,t = y1t + y2tcx (14)

The probability of a single individual aged x at time t surviving for s years is then

s px,t = exp
[
−

∫ x+s

x
µz,tdz

]

= exp
[
−

∫ x+s

x
(y1t + y2tcz) dz

]

= exp
[
−y1ts− y2t

ln c
(
cx+s − cx)] (15)

This rate is evaluated at time t, where information about the future has not yet been
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revealed. These survival probabilities do not take into account future mortality evolu-
tion, since this is unknown at point t in time. This closed form solution is a computa-
tional advantage in the use of a GoMa mortality model.

Under the GoMa survival probabilities given by equation (15), the actuarial present
value of an ordinary annuity for a single individual aged x at time t is

äx,t =
∞

∑
s=0

e−δs
s px,t

=
∞

∑
s=0

exp
[
− (y1t + δ) s− y2t

ln c
(
cx+s − cx)] (16)

.

The annuity factor allowing for expected future mortality improvements is obtained
from

E [ px,t+s| µx,t] ≈ exp
[
−

∫ x+1

x
E [µz,t+s| µx,t] dz

]

= exp
[
−

∫ x+1

x
[(y1t + a1s) + (y2t + a2s) cz] dz

]

= exp
[
− (y1t + a1s)− (y2t + a2s)

ln c

(
cx+1 − cx

)]
(17)

.

These computations are made for every year for use in equation (2) to arrive at indi-
vidual benefit payments for both the case where only current mortality information is
used in the annuity factors and the case where expected future mortality is included.

5 Results and Discussion

The methodology is used to assess the impact of pool size on future benefits by deri-
ving the distributions of these benefits at future times (and ages). The cases considered
include the group self annuitisation scheme based on Piggott, Valdez and Detzel (2005)
but also improvements proposed to enhance the effectiveness of pooling systematic
risk. The impact of admitting new entrants to the pool is also assessed in terms of the
pattern of future pool payments and the impact on volatility of payments at different
ages. The cases with and without allowance for expected future mortality impro-
vements are considered. The impact of inflation on benefits payments along with a
stochastic real rate of return is also quantified.

5.1 Presentation of results

Benefit payments to individuals are illustrated based on the 5th percentile, median, and
the 95th percentile of the simulated outcomes at each age in the future. These distribu-
tion measures highlight the variability of future payments and the risk of payments in
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a very clear way. These measures show the benefit payment level that pool payments
will fall below (5th percentile) 5% of the time, and increase above (95th percentile) 5%
of the time. The median is the payment value with an equal likelihood of being either
above or below. These measures are similar to those recommended in the Review into
the Governance, Efficiency, Structure and Operation of Australia’s Superannuation
System completed under Cooper (2010) [3].

Simulation percentiles are estimates and the confidence level for these quantiles is a
function of the number of simulations run. The 95% confidence intervals (CIs) around
the numerical percentile measures are computed using the Binomial Method develo-
ped by Hardy (2006) [7], where for N simulations, the 95% CIs for the αth percentile are
given by the (

αN ±
⌈

Φ−1 (0.975)
√

(1− α) αN
⌉)th

ordered simulation.

This paper has used 5000 simulations for scenarios, unless specified otherwise, since
the confidence intervals demonstrate this is sufficient to produce reliable simulation
estimates.

All graphical results are presented in a comparative format with identical axes. 95%
CIs have been plotted in grey. All benefit payments are for the surviving pool indivi-
duals and conditional on a pool member surviving.

5.2 Self Insurance: Single cohort, single individual

For an individual who self insures longevity risk the benefit payment distribution
under existing GSA rules is displayed in the top left panel of Figure 1 for a single
individual aged 65 entering the pool at t = 0. For self insurance there are no mor-
tality credits from other members in the pool and the mortality improvements result
in declining payments throughout the individuals life. The original annuity factor
used for the GSA assumes an average life time based on a large pool of independent
individuals. As individuals survive to older ages the chart shows the clear impact of
systematic longevity risk. Too much is consumed too early since survival can occur
past the average life time reflected in the annuity factor at time t = 0. There is not
much variability since there is only one member and experience is adjusted for in the
annuity factors.

5.3 Increasing pool size and pooling benefits

Figure 1 also shows the distribution of payments as the pool size is increased to 10 (top
right panel), 1000 (bottom left panel), and 10000 (bottom right panel). For smaller pool
sizes the variation in the benefit payments at future ages is very wide and the upside
for higher benefit payments increases early on. This is because for those scenarios
where mortality deteriorates with a small group in the pool, the survivors benefit from
larger mortality credits early on. However as the pool size diminishes through time
the mortality credits reduce. This is referred to as a "lucky hump" or "tontine effect"
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Figure 1: Comparison of benefit distributions for increasing pool sizes without
allowing for expected future mortality improvements

for small pools. The tontine benefit arises for survivors in small pools where there is a
higher probability of deaths occurring that represent a given proportion of the pool.

As the pool size increases this tontine effect is much reduced and occurs at later ages
since it occurs only for small survivor pool sizes. Benefits are higher for longer than in
the self insurance case because of the pooling effect of mortality risk. With 1000 initial
members in the pool, which would normally be sufficient to benefit from risk pooling
with only idiosyncratic risk, the upside tontine effect remains significant at the older
ages. With 10,000 initial members in the pool the effect is much reduced, but the wide
range of benefit outcomes at the older ages remains along with the reduction in average
benefits. Without allowing for future expected mortality improvement benefits drop
for the older aged survivors in the pool.

With a single cohort in the pool, even with significant sized pools, there are a number of
factors that clearly undermine the effectiveness of group self annuitisation. One is the
decline in benefits at the older ages reflecting the impact of systematic improvement in
mortality. The other is the widening range, and increasing volatility, of future benefits
in the pool. The extent of the downside is of particular concern since the 5% worse
cases at the older ages are a significant reduction in benefit payments.

To provide a numerical comparison of these effects at the older ages, Table 2 shows
the 95% CIs for the three percentile estimates for the amount of benefits received by
a single individual at t = 25, when he is aged 90. This highlights the benefits of risk
pooling and group self annuitisation in terms of improvements over self insurance but
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Pool size 5thpercentile Median 95th percentile
1 (1.24,1.27) (2.00,2.03) (3.09,3.14)

10 (3.69,3.79) (7.50,7.70) (19.58,20.19)
1000 (5.49,5.77) (8.18,8.33) (10.81,11.15)

10000 (5.50,5.86) (8.27,8.47) (10.62,10.83)

Table 2: CIs for benefit payment percentile comparisons with varying pool sizes for
age 90

also the limitations.

5.4 Results with no allowance for future expected morality improve-
ments

For the case where the annuity factor does not include expected future mortality im-
provements, the following are the most significant results.

• Increasing the pool size will increase the median and the 5th percentile of benefit
payments for GSA members. It will also decrease the absolute volatility of the
payments.

• As the number of members in the pool increases, it becomes more difficult for
further pooling benefits to be realised. Most of the significant pooling benefits are
realised when the pool size reaches 1000.

• The volatility of benefit payments at old ages is far greater than those at younger
ages reflecting the impact of systematic longevity risk and reducing pool size.

• The median and 5th percentile value of payments declines over time regardless
of the number of people in the pool. This arises because of the expected morta-
lity improvement in mortality and demonstrates that the current approaches to
group self annuitisation benefit determination result in payments being too high
early on. Smaller pool sizes at the older ages result in more significant reductions.

• The 95th percentile increases first before declining, due to the tontine effect in
small pools. There is always a small chance that a sizeable proportion of people
will die early and this increases for small pool sizes. For the members who are
lucky enough to survive, they benefit from those who died, leaving them with
substantially larger benefit payments. Eventually, the benefit payments decline
regardless of the tontine effect.

• As the pool size increases, the tontine effect is deferred to later, as the actual
deaths are closer to the deaths expected.

• The absolute volatility of payments is large even allowing for increasing pool
size.
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Figure 2: Benefit distributions dynamic pooling every year (one thousand new 65 year
old entering every year and every five years)

5.5 Pooling with new cohorts

Piggott, Valdez and Detzel (2005) proposed pooling multiple cohorts in the same pool.
This has to be carefully considered since it will be favourable for the 65 year old cohorts
to pool with older cohorts entering the pool at the same time unless pooled benefit
payments are determined separately for cohorts of different age at entry to the pool.
The benefits of risk pooling would otherwise be diminished and older cohorts would
be less willing to participate.

Effective risk pooling arrangements with intergenerational solidarity are possible if
members of older cohorts share experience with younger cohorts, where all the cohorts
enter the pool at the same age. New cohorts of 65 year olds would continuously join
existing pools in subsequent years. The benefits are that improvements, or adverse
mortality changes, at the older ages would be shared across all ages resulting in a more
level benefit payment across ages of the members in the pool. Also the volatility at the
higher ages would be shared with the lower volatility at the younger ages resulting in
more chance of adequate benefits at the older ages.

In order to quantify the benefits of such a pooling arrangement with new entrants at the
same age, a scenario with new members entering every year at age 65 is considered,
and this is compared with scenarios where new members aged 65 enter every five
years. For each of the scenarios, a thousand members aged 65 enter at time 0 and are
pooled with the survivors of the cohorts of the thousand 65 year olds who entered at
earlier times.

The results of these dynamic pooling arrangements are shown in Figure 2. Table 3
shows the 95% CIs for the three percentile estimates for the amount of benefits received
by a single individual at t = 25, when he is aged 90, under the dynamic pooling
arrangements, with dynamic pooling occurring every year (left panel) and every five
years (right panel).

Dynamic pooling also reduces the volatility of benefit payments of older members
significantly. This occurs because the idiosyncratic volatility of deaths experienced in
the pool will diminish when younger cohorts are allowed to enter. Annuity factors for
pooling and benefit payments allow for the age of members in the pool. The size of
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Dynamic pooling frequency 5thpercentile Median 95th percentile
every year (5.47,5.78) (8.26,8.47) (11.11,11.39)

every 5 years (5.66,5.88) (8.31,8.41) (10.67,10.84)
never (5.49,5.77) (8.18,8.33) (10.81,11.15)

Table 3: Confidence intervals for percentile comparisons for age 90 with scenarios
where dynamic pooling occurs at differing frequencies

Figure 3: Benefit payments calculated using annuity factors with expected
improvements

the pool is more stable over time and the higher volatility of older ages is shared with
lower volatility at younger ages in the pool. Dynamic pooling every five years does
not produce significantly different results to pooling new cohorts every year.

Dynamic pooling where individuals from other cohorts join existing funds on a frequent
basis will reduce the high volatility of benefit payments experienced by people survi-
ving to old ages. These benefits will be available to all those entering the pool if they
survive to old ages and new entrants are admitted to the pool at the same entry age on
a regular basis.

5.6 Dynamic pooling with future expected improvements

The pooling results so far use the annuity factor based on the simulated mortality
experience as it evolves without explicit allowance for future expected improvement.
By using an updated ä f factor future benefit payments will be less susceptible to reduc-
tions from systematic mortality improvements and the equity of pooling arrangements
between different cohorts will be improved.

To demonstrate the impact of this assumption, a group of a thousand 65 year olds are
assumed to enter the pool at t = 0, with subsequent groups of a thousand 65 year olds
entering the same pool every 5 years. Benefit payments are determined based on the
updated ä f factor taking into account expected mortality improvements.

The benefit payment distribution is displayed in Figure 3 and Table 4. Table 4 presents
the benefit payment received by a pool member when he is 70 years of age at t = 5, 80
years of age at t = 15 and 90 years of age at t = 25.
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Age 5thpercentile Median 95th percentile
70 (7.78134,7.84896) (8.76987,8.81321) (9.64436,9.70525)
80 (6.84956,7.06950) (8.89730,8.97150) (10.57074,10.67242)
90 (5.94495,6.28521) (9.10051,9.24033) (11.57233,11.73409)

Table 4: Benefit distributions at times t = 5, 15, 25, for a thousand 65 year olds at entry,
with dynamic pooling where new members enter every 5 years, and with the updated
ä¯ factor with systematic allowance used to calculate benefit payments

By allowing for systematic mortality improvements in the determination of the actua-
rial present value annuity factor, the amount of benefit payments received by indivi-
duals shows much reduced declines over time.

The updating of the annuity factor for determining benefit payments of surviving
members in the pool to include expected improvements has largely offset the reduction
in median payments. The systematic nature of mortality changes means that absolute
volatility will increase through time regardless of the risk sharing rules in the pool.
Mortality uncertainty increases over time and impacts older ages more significantly
than younger ages.

At the older ages there is always a declining trend in benefit payments affecting the
median and the 5th percentile of outcomes. The survival distribution for the Go-Ma
model is an extreme value distribution and with systematic mortality improvement
the pooled distribution has extreme value properties so that the distribution has a
significant skew to the downside at the older ages.

These issues call for other solutions. Reinsurance is a possible approach where younger
members would reduce benefit payments earlier on to purchase a guaranteed narrower
band for future payments from an external reinsurer. Another alternative is an invest-
ment in longevity bonds with payments linked to population mortality providing an
offset to the systematic mortality of members in the pool. Since these solutions are not
related to the GSA fund payment distributions and volatilities that is the aim of this
paper, they are not considered here.

5.7 Nominal Payments

The payments in the results have been standardized to an initial amount of $100.
The absolute level of payments is readily determined. Consider as an example a
male individual, earning on average $70,000 per year in salaries from age 25 with
an average investment return rate over 40 years of 5%. This male individual will
accumulate to 70000 × 0.09 × s̈40|@5% =$761,038, which is the contribution times the
actuarial accumulation factor for 40 years, in retirement savings by the age of 65 under
a 9% contribution. This is the contribution rate for the Australian compulsory SG
scheme.

In a pool with a thousand 65 year olds entering the fund every 5 years, and where the
annuity factor takes into account expected mortality improvements, the corresponding
benefit payments based on Figure 3 and Table 4 for an initial contribution to the GSA
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Age 5thpercentile Median 95th percentile
70 (59215.98,59730.61) (66738.72,67068.57) (73393.57,73856.99)
80 (52125.14,53798.93) (67708.46,68273.09) (80443.35,81217.13)
90 (45241.09,47830.43) (69254.85,70318.9) (88065.41,89296.42)

Table 5: Benefit distributions for a thousand 65 year olds at entry, with dynamic
pooling where new members enter every 5 years, and with the updated ä f factor
with systematic allowance used to calculate benefit payments, and where the initial
contribution is $761,000.

of $761,038 are shown in Table 5. Tables with other initial contribution amounts can be
readily constructed.

This male will receive around $68,000 annually from a GSA fund on the balance of
probabilities (reflected by the median), should he choose to participate in such a fund
with the entire amount of his retirement savings.

In such a GSA fund, there will be a 5% probability that he will receive less than around
$45,000 annually in his retirement, an amount that would still be adequate as a retire-
ment income. GSAs, implemented as discussed in this paper, will provide a sustainable
and feasible retirement product for retirees, even after allowing for adverse outcomes.

Substantial pooling benefits are gained when the pool size reaches around a thousand.
The Australian Bureau of Statistics reported that there were 97,708 Australian males
turning 65 in 2009. A hypothetical major retail GSA fund with a market share of 10%
of Australian males at age 65, would have approximately 10,000 members. A thousand
members would represent a relatively small fund. The major issue for such small funds
is the expense of managing the fund. However the methodology for managing a GSA
is efficient to implement and smaller funds may be viable, especially if the technology
is available in a standard adminstration system.

5.8 Indexed benefit payments and random real interest rates

Retirees aim to ensure benefit payments are inflation indexed, such that their income
does not diminish in purchasing power over time. Real returns are uncertain and
the risk of inadequate real returns is also an important factor along with longevity
improvements in assessing GSA pooling.

To consider the impact of uncertain real rates of return on inflation index payments
simulations were carried out with a stochastic real rate of return. Simulations with 5
year dynamic pooling and a pool size of a thousand were carried out with stochastic
real interest rates. In this case investments are effectively assumed to be made in real re-
turn instruments with low volatility. The real rate assumed was the long run historical
average real interest rate for Australia from 1991, or 2.72% per annum. Uncertainty in
the real rate of interest was based on a Cox-Ingersoll-Ross (CIR) stochastic real interest
rate model, with a volatility factor of 0.0709, consistent with historical observations.

The results are shown in Figure 4.
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Figure 4: Inflation adjusted benefit payments based on historical real interest rates

In real terms the adverse payment scenarios are roughly constant when increased
by inflation. By including real interest rate uncertainty, the range for the upper and
lower benefit amounts widens. Systematic longevity risk remains the driving factor
for volatility of payments.

6 Conclusions

The paper extends and generalizes the pooling arrangements for GSAs as proposed by
Piggott, Valdez and Detzel (2005). The extent to which benefit payments decline over
time and the extent to which the volatility of benefit payments increases over time have
been mitigated through innovations in the risk pooling methodology. Under currently
proposed GSA pooling arrangements, benefit payments are expected to decrease, and
the volatility of payments is expected to increase, over time.

This paper has provided enhancements to understanding the implementation of group
self annuitisation schemes and shown how the impact of systematic longevity risk
can undermine their effectiveness. At the same time, strategies for pooling in the
schemes with the introduction of new cohorts at the same age through time are shown
to improve the performance of the risk sharing in the pools.

Increasing the pool size was shown to increase the benefit payments for GSA members
and to decrease the absolute volatility of the payments. Dynamic pooling, where
individuals of the same age join existing funds on a frequent basis was shown to reduce
the high volatility of benefit payments experienced by pool members surviving to old
ages and to limit the decline in benefits for older ages. Using annuity factors that
take into account future expected mortality trends also ensures the amount of benefit
payments received by pool members will remain relatively stable over time.

A multi-factor stochastic version of the Gompertz-Makeham (GoMa) was used to pro-
ject mortality rates. The model was calibrated to Australian male mortality. The model
included systematic and idiosyncratic mortality risk and allows analytical computa-
tions to be used to improve efficiency of the determination of pool benefit payments.
Simulation was used to demonstrate the performance of improved risk pooling arran-
gements. The results hold for more general mortality models.
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There are many aspects of longevity risk pooling that this paper did not aim to address.
A viable GSA pooling scheme must formally allow for heterogeneity for individuals of
the same age. An example is pooling males with females. Sharing arrangements will
have to recognise different longevity prospects for females and males. This is readily
incorporated in the framework presented here.

If an inflation indexed life annuity bond (longevity) market was available for invest-
ment then it would be possible to reduce the systematic mortality risk through the
investment of the pool funds. The interaction between investments and mortality risk
has not been included in the analysis in this paper partly because such a government
bond is not available currently in Australia. An analysis of the hedging effect of such
bonds on annuity payments is provided in Ngai and Sherris (2010) [12].
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