Modeling multi-state health transitions in China: A generalized linear model with time trends

Katja Hanewald¹, Han Li² and Adam W. Shao³

¹University of New South Wales, ARC Centre of Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 6174; E-mail: k.hanewald@unsw.edu.au.

²[Corresponding author] University of New South Wales, ARC Centre of Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 5294; E-mail: han.li@unsw.edu.au.

³University of New South Wales, ARC Centre of Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 6174; E-mail: wenqiang.shao@unsw.edu.au.

This paper can be downloaded without charge from the ARC Centre of Excellence in Population Ageing Research Working Paper Series available at www.cepar.edu.au
Modeling multi-state health transitions in China: A generalized linear model with time trends

Katja Hanewald, Han Li and Adam W. Shao

May 12, 2017

Abstract

Rapid population aging in China has urged the need to understand health transitions of older Chinese to assist the development of social security programs and financial products aimed at funding long-term care. In this paper, we develop a new flexible approach to modeling health transitions in a multi-state Markov model that allows for age effects, time trends and age-time interactions. The model is implemented in the generalized linear modeling framework. We apply the model to evaluate health transitions of Chinese elderly using individual-level panel data from the Chinese Longitudinal Healthy Longevity Survey for the period 1998–2012. Our results confirm that time trends and age-time interactions are important factors explaining health transitions in addition to the more commonly used age effects. We document that differences in disability and mortality rates continue to persist between urban and rural older Chinese. We also compute life expectancies and healthy life expectancies based on the proposed model as inputs for the development of aged care and financial services for older Chinese.

Keywords: Generalized linear models (GLMs), health transitions, multi-state model, long-term care, healthy life expectancy, China

Acknowledgment: The authors acknowledge the financial support of the Australian Research Council Centre of Excellence in Population Ageing Research (CEPAR). We thank Professor Colin O’Hare, Dr Anastasios Panagiotelis and Dr Andrés Villegas for their valuable comments and suggestions.

*University of New South Wales, ARC Centre of Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 6174; E-mail: k.hanewald@unsw.edu.au.
†[Corresponding author] University of New South Wales, ARC Centre of Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 5294; E-mail: han.li@unsw.edu.au.
‡University of New South Wales, ARC Centre of Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 6174; E-mail: wenqiang.shao@unsw.edu.au.
1 Introduction

As one of the most populous countries in the world, China is rapidly aging due to improvements in life expectancy and low fertility rates in past decades. In 2015, one in five older persons aged 65+ globally lived in China, while in 2050 one in four elderly—over 370 million people—will be Chinese. China’s old age dependency ratio was 15% in 2015, but will rise to 50% by mid-century (United Nations, 2015). The need for health care, aged care, and financial services for the elderly in China is already large and will keep growing in the future.

Traditionally, older Chinese were cared for by family members, but the availability of family caregivers is declining due to demographic changes, the weakening of traditional values, greater geographic mobility, and improved gender equality (see, e.g., Zhu, 2015; Lu et al., 2015). In China, the current social security programs for older people provide basic medical insurance and a low pension income. However, they do not cover the full cost of residential aged care facilities and also do not fund community-based services (Yang et al., 2013). The resulting unmet aged care needs have a measurable impact on the mortality risk of older Chinese (Zhen et al., 2015). Hence, there is a need for social security programs specializing in the provision of aged care (Zhen et al., 2015) and the development of private market solutions such as long-term care insurance or specialized home equity release products.

These challenges motivate our study on health transitions of older Chinese. There is a large and growing actuarial literature on multi-state health transition models (see, e.g. Renshaw and Haberman, 1995; Pitacco, 1995; Ferri and Olivieri, 2000; Rickayzen and Walsh, 2002; Fong et al., 2015), but these studies focus on the mortality and morbidity experience of developed countries such as the UK and US. As far as we know, there is a lack of specific studies on China on this topic. Since the demographic changes in China are happening at a very fast speed, it is important to consider time effects in health transitions in order to develop more accurate projections. Only a few previous papers have considered time effects in multi-state health transition models. Rickayzen and Walsh (2002) included trend assumptions in their multi-state model of disability for the UK based on trends observed in healthy life expectancy and their own judgment. Majer et al. (2013) modeled health transition probabilities in the Netherlands based on the Lee-Carter framework with stochastic time trends. Li et al. (2017) adopted a multi-state model with latent factors which incorporates time trends and uncertainty to model health transition intensities in the US.

We develop a generalized linear model that incorporates age effects, time trends and
age-time interactions in the transition rates in a Markov model with three health states (healthy, functionally disabled and dead). Compared with existing models, the model developed here allows for greater flexibility in the model structure by including both time trends and age-time interactions. Another strength of our approach is the ability to tailor different functional forms for each transition intensity in different subpopulations. We apply this new model to provide first evidence on the health transitions of older Chinese males and females in urban and rural areas.

We use individual-level panel data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) for ages 65–105 over the period 1998–2012. CLHLS is the largest longitudinal survey of the “oldest old” (aged 80+) internationally (Zeng, 2012). Mortality and morbidity data in the CLHLS have been found to be of good quality (Zeng, 2012) and have been used in many studies analyzing health patterns of older Chinese (e.g., Peng et al., 2010; Peng and Wu, 2015; Fong and Feng, 2016). With a sample size of over 128,000 exposure years we are able to estimate separate models for male and female residents in both urban and rural areas. This distinction is important as large economic and demographic differences continue to exist between urban and rural areas in China (Wang and Yu, 2016). We classify individuals’ health status based on the Activities of Daily Living (ADL) information collected by CLHLS. ADL limitations are widely used internationally to measure an individual’s functional status and long-term care needs for insurance purposes, including a recent long-term care insurance pilot program in the city of Qingdao in Eastern China (Yang et al., 2016). Six basic ADLs are considered in our study including bathing, dressing, eating, using the toilet, continence and transferring in and out of bed.

The empirical results confirm that age and time effects are important factors for modeling health transitions at higher ages. Many of the optimal models for the health transition rates of the different subpopulation also include age-time interactions which capture time trends that differ by age. Our results suggest that the recent improvements in the mortality rates of older Chinese are largely driven by the decline in the mortality rates for functionally disabled older persons rather than by the mortality rates of the non-disabled population. Using the estimated health transition models, we also provide new estimates for life expectancies and healthy life expectancies at different ages for 1998, 2011 and 2020.

The remainder of the paper is organized as follows. Section 2 introduces the new model consisting of the three-state Markov process and the GLM framework. Section 3 describes the CLHLS data used in this study. Section 4 presents and discusses the results. Section 5 concludes.
2 A multi-state health transition model with time trends

2.1 A three-state time-inhomogeneous Markov process

Following previous literature (see, e.g., Olivieri and Pitacco, 2001; Rickayzen and Walsh, 2002; Fong et al., 2015; Shao et al., 2017), we assume that individuals’ health transitions can be modeled as a multi-state Markov process, where the conditional probability distribution of future states of the process (conditional on both past and present values) only depends on the state presently occupied and is independent of the process history. We define a three-state Markov process as in Figure 1. The process has two transient states, “N” (nondisabled) and “F” (functionally disabled), and one absorbing state, “D” (dead). It allows for three health transitions\(^1\):

- σ: $N \rightarrow F$, the intensity to become functionally disabled.

- μ: $N \rightarrow D$, the mortality intensity for a healthy person.

- ν: $F \rightarrow D$, the mortality intensity for a disabled person.

We assume that each of the three transitions follows a time-inhomogeneous Markov process, where the transition probability depends on the time at which the transition takes place:

$$P_{ij}(x, t, h) = \Pr(S(x + h, t + h) = j | S(x, t) = i),$$

$$\alpha_{ij}(x, t) = \lim_{h \to 0^+} P_{ij}(x, t, h)/h,$$

where x represents age, t represents time with $h \geq 0$. $S(x, t)$ denotes the stochastic health status of an individual at age x and time t, and $i, j \in \{N, F, D\}$. $P_{ij}(x, t, h)$ denotes the transition probability from state i at age x and time t to state j at age $x + h$.

\(^{1}\)In the CLHLS data, we observed very few recovery transitions from functionally disabled to nondisabled (only 4% of all health transitions are recoveries). Therefore, we do not consider recovery from functionally disabled to healthy in this study due to its negligible impact on the main results.
and time $t + h$. $\alpha_{ij}(x,t)$ denotes the corresponding transition intensity at age x and time t.

2.2 Model specification

Following earlier works of Renshaw and Haberman (1995) and Fong et al. (2015), we model the transition intensities using a GLM approach. Separate GLMs are estimated for each of the three transition intensities σ, μ and ν. The models are specified by three components: the link function, the linear predictor and the probability distribution.

Link function: We adopt a log link function $g(\cdot)$:

$$g(\alpha_{ij}(x,t)) = \ln(\alpha_{ij}(x,t)) = \eta_{x,t},$$

(3)

where $\alpha_{ij}(x,t)$ are the respective transition intensities $\sigma_{x,t}$, $\mu_{x,t}$ or $\nu_{x,t}$ for age x at time t. $\eta_{x,t}$ is a linear predictor of regressors.

Linear predictor: As our primary interest is to explore time trends in health transitions, we introduce time effects as additional covariates besides the age factors considered in Fong et al. (2015) and allow for age-time interactions. The linear predictor is given by:

$$\eta_{x,t} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t + \beta_4 tx + \beta_5 tx^2,$$

(4)

where x represents age, t represents time and the β_j are unknown coefficients that need to be estimated. The model allows for some of the values of β_j to be zero, allowing for flexibility in the functional form.

We include age factors up to the quadratic effect in agreement with the findings of Fong et al. (2015). This is also in line with common practice in mortality modeling (see, e.g., Cairns et al., 2009). Since the CLHLS data only allow us to compute at most five transition intensities per individual, we focus on a linear time trend in this study. The inclusion of age-time interaction effects has been an important feature in recent developments in mortality modeling (Cairns et al., 2006; Plat, 2009; Li et al., 2016). It ensures that the improvement in mortality has a non-trivial correlation structure across different age groups. Moreover, several studies have recognized the benefits of including quadratic age-time effects for model fitting and forecasting (Cairns et al., 2009; Dowd et al., 2010). Therefore, to build on recent developments in mortality and health tran-
sition modeling, and to keep the model parsimonious and interpretable, we consider
the aforementioned age, time and age-time factors in this study.

Probability distribution: Assuming that the transition intensity is constant for each
one-year age group in a given time interval, the number of health transitions follows
an independent Poisson distribution for each interval. For illustrative purpose, we use
the mortality rate $\mu_{x,t}$ from the healthy state as an example in the following. Let $n_{x,t}$ be
the number of transitions from state N to D at age x and time t,

$$n_{x,t} \sim \text{Poisson}(e_{x,t}^H \mu_{x,t}) \quad \forall \, x, t,$$

where $e_{x,t}^H$ is the central exposure to risk in healthy state at age x and time t.

The Poisson assumption implies that the dispersion parameter equals one, which means
that the mean and variance of transition counts should be the same. However, several
recent mortality studies have found that death data has an “overdispersed” feature in
many countries (see, e.g., Cairns et al., 2009; Li et al., 2015), implying that the variance
of the number of deaths is much larger than the mean. Therefore, we test the disper-
sion parameter in each of the transition counts before estimating the GLMs. Only for
cases where the dispersion parameter is significantly different from one, we relax the
restriction on the value of the dispersion parameter and estimate this parameter based
on the underlying data.

2.3 Estimation and model selection

Maximum likelihood estimation is used to obtain estimates of the proposed GLM mod-
els. We define Φ as the parameter set. Using the mortality rates of healthy individuals
again as an example, the log-likelihood function is given by:

$$l(\Phi; n, e) = \sum_x \sum_t \left\{n_{x,t} \ln [e_{x,t}^H \mu_{x,t}(\Phi)] - e_{x,t}^H \mu_{x,t}(\Phi) - \ln (n_{x,t}!) \right\}. \quad (6)$$

We identify the optimal model specification for each transition intensity by comparing
the Bayesian information criterion (BIC) for all possible combinations of the six terms
in Equation (4). We also provide the results of a stepwise comparison of several nested
model variants based on the BIC in Section 4.2. We choose the BIC for model selection
because it is widely used in statistics and is proven to be consistent (Schwarz, 1978).

3Detailed results for the dispersion analysis are available upon request.
The BIC penalizes the number of parameter estimated in the model as follows:

$$BIC = -2l(\hat{\Phi}) + k \ln(N),$$

where $l(\hat{\Phi})$ is the log-likelihood based on the MLE estimators, N represents total number of observations and k is the number of parameters in the model. The model with the smallest BIC value is selected as the preferred model.

3 Data

3.1 CLHLS survey

We use longitudinal data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), which provides information on the health status and quality of life of the elderly in 22 provinces of China over the period 1998 to 2011. The survey contains detailed information on health, socioeconomic characteristics, family, lifestyle, and other demographic variables. It has been conducted by the Center for Healthy Aging and Family Studies (CHAFS) at the National School of Development at Peking University.

The baseline survey was carried out in 1998 in a randomly selected half of the counties and cities in 22 provinces of China. The survey areas contained about 85% of China’s total population in 1998. The data was collected through face-to-face home-based interviews and basic physical capacity tests. The survey team tried to interview all centenarians who agreed to participate in the study in the sample counties and cities. For each centenarian interviewee, one octogenarian (aged 80–89) living nearby, one nearby nonagenarian (aged 90–99), and one nearby younger elder aged 65–79 of predesignated age and sex were also interviewed. Follow-up surveys with replacement for deceased elders were conducted in 2000, 2002, 2005, 2008, and 2011. In 2002, a sub-sample of adult children of survey participants was included in the survey. More details about the survey design can be found, for example, in Yi et al. (2001) and Zeng (2012).

The sample size of CLHLS is sufficiently large even at higher ages and allows us to estimate models using one-year age groups for the age range 65–105. We consider males and females separately and distinguish between urban and rural residency, which is important in the context of China. We use residency status as reported in CLHLS: ur-

Footnotes:

4 The interview refusal rate was very low: only about 2% of centenarians who were not too sick to participate with proxy assistance refused to participate (Zeng, 2012).

5 In some waves, a small proportion of the data was collected in the following calendar year. We account for the exact interview date when computing the central exposure to risk as described below.
urban (city and town) and rural. About 5% of the sample lives in a nursing home which is consistent with the low number of nursing homes reported for China (see, e.g., Lu et al., 2017).

In this study, information on ADL limitations is used as a measure of health status. Six ADL items were consistently evaluated in all waves of CLHLS: bathing, dressing, eating, using the toilet, continence, and transferring in and out of bed. Individuals reported their ability to perform these activities in three categories (1 = do not need help, 2 = need partial assistance, 3 = need full assistance). We classify an individual as able to perform an ADL only if she/he does not need help. We define individuals as functionally disabled if they have difficulty with two or more (i.e., 2+) ADLs, which is consistent with the main analysis presented in Fong et al. (2015) based on data from the US Health and Retirement Study. In addition, this disability definition is in line with the trigger of benefit payments for many existing long-term care insurance policies in the US market.

3.2 Descriptive statistics

We analyze health transitions between waves of data collection. To fully utilize the available information, we use an unbalanced panel design which includes all individuals with at least two consecutive observations. Every individual can have up to five health transitions between the six CLHLS waves 1998, 2000, 2002, 2005, 2008 and 2011. The numbers of transition counts are given in Table 1. We observe in total 27,659 health transitions, of which 16% are disability transitions, 59% are deaths of healthy individuals and 26% are deaths of disabled individuals.

Table 1: Number of transition counts.

<table>
<thead>
<tr>
<th>Time</th>
<th>σ: N → F</th>
<th>μ: N → D</th>
<th>ν: F → D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>2000 - 2002</td>
<td>191</td>
<td>131</td>
<td>376</td>
</tr>
<tr>
<td>2002 - 2005</td>
<td>168</td>
<td>134</td>
<td>257</td>
</tr>
<tr>
<td>2005 - 2008</td>
<td>105</td>
<td>109</td>
<td>193</td>
</tr>
<tr>
<td>2008 - 2011</td>
<td>214</td>
<td>229</td>
<td>306</td>
</tr>
<tr>
<td>Total</td>
<td>777</td>
<td>756</td>
<td>1,307</td>
</tr>
</tbody>
</table>

To calculate the central exposure to risk of the sample population in both healthy and functionally disabled states, we use the exact interview, birth and death date from the survey or the 15th of the reported month in case the exact day was missing. We assume that disability happened at the mid-point between survey waves. Table 2 gives the number of exposure years. The total number of exposure years is 128,206. The sample
Table 2: Number of exposure years.

<table>
<thead>
<tr>
<th>Time</th>
<th>State N</th>
<th></th>
<th></th>
<th>State F</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
<td>Females</td>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>1998 - 2000</td>
<td>1,763</td>
<td>2,189</td>
<td>3,971</td>
<td>369</td>
<td>797</td>
<td>1,537</td>
<td>14,082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 - 2002</td>
<td>3,240</td>
<td>3,652</td>
<td>571</td>
<td>793</td>
<td>1,258</td>
<td>1,661</td>
<td>14,451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002 - 2005</td>
<td>5,570</td>
<td>6,474</td>
<td>793</td>
<td>793</td>
<td>1,258</td>
<td>1,661</td>
<td>33,482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 - 2008</td>
<td>5,215</td>
<td>5,917</td>
<td>614</td>
<td>614</td>
<td>1,385</td>
<td>1,573</td>
<td>31,980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008 - 2011</td>
<td>4,946</td>
<td>6,609</td>
<td>662</td>
<td>662</td>
<td>1,379</td>
<td>1,979</td>
<td>34,211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20,733</td>
<td>23,840</td>
<td>3,008</td>
<td>3,008</td>
<td>6,480</td>
<td>7,834</td>
<td>128,206</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

split is 42%: 58% between urban and rural areas and 43%: 57% between males and females, which allows us to estimate separate models for these four populations.

We calculate crude transition intensities as the number of health transitions divided by the corresponding central exposure to risk for a given age and time. Figures 2, 3 and 4 show the crude transition intensities on a log scale. Blank areas in the graphs indicate missing data for younger age groups in the first waves 1998 and 2000 of CLHLS. Darker colors indicate lower rates. There are age patterns in most of the graphs and some also show time trends. In particular, the mortality rates \(\nu \) from the functionally disabled state “F” decrease over time (see Figure 4). The model estimates presented in the following section will show which age and time factors are statistically significant drivers of the different health transitions.

For the model estimation, we define the year 1998 as \(t = 0 \) and set the data points in the model to \(t = (1, 3, 5.5, 8.5, 11.5) \) to reflect the fact that the transition intensities refer to the middle of the time intervals between survey waves and to account for the different interval lengths between survey waves. We define the age variable as \(x = \text{age} - 65 \), with a range of \([0, 40]\). These definitions ensure that both covariates have similar magnitudes.

4 Empirical results

4.1 Optimal models: estimation results

We estimated the generalized linear model (GLM) described in Section 2.2 separately for the three transition intensities \(\sigma, \mu, \) and \(\nu \) for each subpopulation in our sample. Table 3 gives the estimation results of the optimal linear predictor for each case based on a comparison of all possible model variants as described in Section 2.2. The selected optimal models all have highly significant parameters and the results are interpretable.
Figure 2: Crude log disability intensities (σ: N \rightarrow F)

(a) Males, urban

(b) Males, rural

(c) Female, urban

(d) Females, rural

Figure 3: Crude log mortality rates for healthy individuals (μ: N \rightarrow D)

(a) Males, urban

(b) Males, rural

(c) Females, urban

(d) Females, rural
The selected models for the disability rate $\sigma_{x,t}$ in each subpopulation all include a positive linear and a negative quadratic age terms, implying that disability rates increase with age, but at a decreasing rate. Moreover, the negative age-time interaction effects in all four subpopulations except for urban males show that there has been an overall improvement in disability rates over time. It is also shows that the rate of improvement in disability rates over time differs across age groups.

For all subpopulations, the mortality rates for healthy individuals $\mu_{x,t}$ increase with age but again there is a deceleration for higher age groups. We note that there are no significant time effects or age-time interaction effects in any of the four subpopulations. This agrees with the fact that the plots of $\mu_{x,t}$ show fairly stable pattern throughout the sample period (see Figure 3).

The models for the mortality rates of the disabled $\nu_{x,t}$ all include positive linear age effects and negative time/age-time effects. For urban and rural males and urban females, a linear negative mortality trend is found for all age groups. The speed of mortality decline over time is similar in these three subpopulations. The model for rural females includes a negative quadratic age-time effect, indicating that mortality decline for this subpopulation is more rapid for older age groups.
Overall, these results show that both age and time effects are important factors explaining patterns in health transitions at higher ages in China. In addition, several of the models rely on age-time interactions which capture time trends that differ by age. Our results also suggest that the improvements in mortality rates of older Chinese aged 65+ are largely driven by the decline of mortality rates of functionally disabled elderly, rather than by the mortality rates of healthy individuals.

Figures 5, 6 and 7 in the Appendix show the residuals for the twelve selected models, computed as the difference between the crude and estimated transition rates. The errors fluctuate around zero and show no systematic patterns. We conclude that the selected models effectively capture age and time patterns in the data.

4.2 Stepwise model selection

The previous section discussed the optimal model specifications for each transition intensity and each subpopulation that were identified by comparing all possible model variants. It is interesting to compare these results with those from a stepwise model selection process where additional terms are added in each step. Table 4 gives the BIC values for six nested model variants and compares these with the BIC values for the optimal models identified in Table 3.

We note that in six of the twelve cases the stepwise model selection identifies models with higher BIC values (representing a worse model fit) than the optimal models selected in Section 4.1. This is the case for all four models for the mortality rate from functionally disabled state $v_{x,t}$, and for two of the models for the disability rate $\sigma_{x,t}$. The limitations of stepwise model selection algorithm are widely recognized in statistics (Hurvich and Tsai, 1990; Grafen et al., 2002; Whittingham et al., 2006). One of the weaknesses of this method is the fact that model selection is very sensitive to factors such as the order of parameter entry and whether we choose to use forward selection algorithm or backward elimination algorithm (Derksen and Keselman, 1992). Therefore, to avoid these limitations, in this paper we have considered all possible model designs for the three health transition models. The preferred models turn out to be parsimonious and have good fitting performances.

Nevertheless, the detailed analysis of the stepwise model comparison confirms that including time effects and age-time interaction terms improves the model fit for most health transition models except for the mortality rates $\mu_{x,t}$ of the non-disabled.
Table 3: Optimal model: parameter estimates

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>0.122**</td>
<td>0.127**</td>
<td>0.217**</td>
<td>0.169**</td>
<td>0.119***</td>
<td>0.140**</td>
<td>0.137**</td>
<td>0.123***</td>
<td>0.046**</td>
<td>0.140**</td>
<td>0.137**</td>
<td>0.123***</td>
<td>0.047**</td>
<td>0.053**</td>
<td>0.053**</td>
</tr>
<tr>
<td>$\beta_2 (\times 10^2)$</td>
<td>-0.111*</td>
<td>-0.09*</td>
<td>-0.259***</td>
<td>-0.178**</td>
<td>-0.081**</td>
<td>-0.132***</td>
<td>-0.110**</td>
<td>-0.090**</td>
<td>-0.027**</td>
<td>-0.029**</td>
<td>-0.026**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_3</td>
<td>-0.154**</td>
<td>-0.158**</td>
<td>0.046**</td>
<td>0.047**</td>
<td></td>
</tr>
<tr>
<td>$\beta_4 (\times 10^2)$</td>
<td>-5.125**</td>
<td>0.122**</td>
<td>0.127**</td>
<td>0.217**</td>
<td>0.169**</td>
<td>0.119***</td>
<td>0.140**</td>
<td>0.137**</td>
<td>0.123***</td>
<td>0.046**</td>
<td>0.140**</td>
<td>0.137**</td>
<td>0.123***</td>
<td>0.047**</td>
<td>0.053**</td>
</tr>
<tr>
<td>BIC</td>
<td>832.77</td>
<td>824.56</td>
<td>977.70</td>
<td>1107.56</td>
<td>832.77</td>
<td>838.42</td>
<td>983.26</td>
<td>1114.76</td>
<td>832.77</td>
<td>836.67</td>
<td>943.25</td>
<td>1071.52</td>
<td>943.25</td>
<td>841.60</td>
<td>1051.16</td>
</tr>
</tbody>
</table>

Note: The functional form of the linear predictor is $\eta_{x,t} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t + \beta_4 t x + \beta_5 t x^2$. * p < 0.05; ** p < 0.01. BIC denotes the Bayesian Information Criterion.

Table 4: Stepwise model selection: goodness-of-fit of nested models

<table>
<thead>
<tr>
<th>Model</th>
<th>$\sigma: N \rightarrow F$</th>
<th>$\mu: N \rightarrow D$</th>
<th>$v: F \rightarrow D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>β_0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x$</td>
<td>1176.30</td>
<td>1204.82</td>
<td>1669.90</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x + \beta_2 x^2$</td>
<td>832.77</td>
<td>838.42</td>
<td>1003.63</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t$</td>
<td>836.67</td>
<td>830.03</td>
<td>981.31</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t + \beta_4 t x$</td>
<td>834.73</td>
<td>826.80</td>
<td>982.48</td>
</tr>
<tr>
<td>$\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 t + \beta_4 t x + \beta_5 t x^2$</td>
<td>838.92</td>
<td>826.91</td>
<td>983.26</td>
</tr>
<tr>
<td>Optimal model</td>
<td>832.77</td>
<td>824.56</td>
<td>977.70</td>
</tr>
</tbody>
</table>

Note: The table gives the Bayesian Information Criterion (BIC) for several nested model variants. Bold font indicates minimum BIC values. Optimal model refers to the optimal model identified in Table 3.
4.3 Life expectancy and healthy life expectancy

We use the optimal models identified in Section 4.1 to compute estimates for life expectancy and healthy life expectancy. Table 5 shows the estimated life expectancies at age 65 and 75 conditional on the initial health status, where “healthy” is defined as having at most one ADL limitation (see Section 3.1). We provide estimates for the first and last time point of the investigation period (1998 and 2011) and out-of-sample forecasts for 2020.

Table 5: Life expectancy conditional on health status at age 65 and 75.

<table>
<thead>
<tr>
<th>Year</th>
<th>Male</th>
<th>Rural</th>
<th>Female</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban Healthy</td>
<td>Disabled Healthy</td>
<td>Urban Disabled</td>
<td>Disabled Healthy</td>
</tr>
<tr>
<td>1998</td>
<td>16.18</td>
<td>7.29</td>
<td>15.75</td>
<td>6.81</td>
</tr>
<tr>
<td>2011</td>
<td>16.52</td>
<td>9.51</td>
<td>16.05</td>
<td>9.08</td>
</tr>
<tr>
<td>2020</td>
<td>16.81</td>
<td>11.33</td>
<td>16.25</td>
<td>10.97</td>
</tr>
<tr>
<td>Life expectancy at 65</td>
<td>Life expectancy at 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>9.81</td>
<td>5.03</td>
<td>9.19</td>
<td>4.65</td>
</tr>
<tr>
<td>2011</td>
<td>10.10</td>
<td>6.69</td>
<td>9.45</td>
<td>6.33</td>
</tr>
<tr>
<td>2020</td>
<td>10.35</td>
<td>8.08</td>
<td>9.62</td>
<td>7.76</td>
</tr>
</tbody>
</table>

The estimated life expectancies vary in plausible ways: life expectancies of urban residents are higher than those of rural residents, females have higher life expectancies than males, and healthy individuals have higher life expectancies than disabled ones. Our models include time trends in three of the four models for disability rate and in all models for the disabled mortality rates. These trends are reflected in the life expectancies which increase over time for all population subgroups and show the largest improvements for disabled individuals. When comparing the computed life expectancies in Table 5 with several related studies, we find consistencies in the results. For example, Luo et al. (2016) report for the age group 65–69 in 2011 a remaining life expectancy of 15.0 years for males and 18.7 years for females (Luo et al., 2016, Table 2).

Table 6: Healthy life expectancy at age 65 and 75.

<table>
<thead>
<tr>
<th>Year</th>
<th>Male</th>
<th>Rural</th>
<th>Female</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban Healthy</td>
<td>Disabled Healthy</td>
<td>Urban Disabled</td>
<td>Disabled Healthy</td>
</tr>
<tr>
<td>1998</td>
<td>15.16</td>
<td>15.03</td>
<td>16.85</td>
<td>16.26</td>
</tr>
<tr>
<td>2011</td>
<td>15.16</td>
<td>15.17</td>
<td>17.36</td>
<td>16.68</td>
</tr>
<tr>
<td>2020</td>
<td>15.16</td>
<td>15.25</td>
<td>17.66</td>
<td>16.93</td>
</tr>
<tr>
<td>Healthy life expectancy at 65</td>
<td>Healthy life expectancy at 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>8.96</td>
<td>8.58</td>
<td>9.64</td>
<td>9.56</td>
</tr>
<tr>
<td>2011</td>
<td>8.96</td>
<td>8.76</td>
<td>10.21</td>
<td>10.04</td>
</tr>
<tr>
<td>2020</td>
<td>8.96</td>
<td>8.86</td>
<td>10.54</td>
<td>10.31</td>
</tr>
</tbody>
</table>

14
Table 6 gives the estimated healthy life expectancies at age 65 and 75. Female urban residents have the highest healthy life expectancy and male rural residents have the lowest healthy life expectancy. Healthy life expectancies of females improve faster over time than those of males. We find that the ratios of healthy life expectancy to life expectancy are quite stable over the period 1998–2020, indicating a dynamic equilibrium where both life expectancy and healthy life expectancy shift to the right – a finding which agrees with the results of several related studies on China (see, e.g., Liu et al., 2009; Guo, 2017).

Overall, our results show persistent health differences between urban and rural China. For life expectancy, we find that the existing urban-rural gaps increase over time for healthy males and for healthy and disabled females. For disabled males, the gap seems to be slowly decreasing (see Table 5). For healthy life expectancy, our results suggest convergence between urban and rural males, but divergence for females.

5 Conclusions

In this article, we develop a new flexible approach to modeling health transitions at higher ages based on the GLM framework. Our model extends existing modeling approaches by allowing for time trends and age-time interactions in the linear predictor in addition to the commonly used age effects. We apply the model to health transitions of older Chinese aged 65–105 and consider males and females in urban and rural areas separately.

We identify important factors explaining the health transition intensities σ, μ and ν in each subpopulation using the BIC model selection algorithm. Different functional forms are selected for the different health transitions in each subpopulation. The optimal models all include age effects which have been included in previous studies including Renshaw and Haberman (1995) and Fong et al. (2015). The models for the disability rates and the disabled mortality rates also include time trends and age-time interactions, which confirms that these factors should be considered when modeling health transitions at higher ages.

Using the optimal models for each group, we compute estimates of life expectancies and healthy life expectancies. The results are largely consistent with the results of previous studies on health expectancies in China (Luo et al., 2016; Guo, 2017; Liu et al., 2009). We also confirm that health differences continue to persist between urban and

6 We only consider healthy life expectancy for individuals who are initially healthy, as the healthy life expectancy for disabled individuals will simply be zero based on our model specification.
rural China, which agrees with recent findings by Wang and Yu (2016). In addition, our study adds new findings on the life expectancy and healthy life expectancy for urban and rural populations over a longer time horizon, and conditioning on initially health status.

We developed this model as an input for further research on population aging and retirement financial planning in China. Our model can be used, for example, to estimate the demand for long-term care insurances based on the disability rate and life expectancy of disabled individuals produced by the model. The outputs of the model can also be used to assist the design and pricing of new retirement financial products for the Chinese market including reverse mortgages and other home equity release products (see, e.g., Alai et al., 2014; Shao et al., 2015). Moreover, in this paper we have used an ADL limitation-based definition of disability. The approach developed here can be easily adjusted to capture other dimensions of health such as chronic diseases or cognitive impairment.

References

Ferri, S. and Olivieri, A. (2000). Technical bases for LTC covers including mortality and

Appendix

Figure 5: Estimated errors for the disability rates (σ: N → F)

(a) Males, urban

(b) Males, rural

(c) Female, urban

(d) Females, rural

Note: The model estimates are in Table 3.
Figure 6: Estimated errors for the mortality rates of healthy individuals ($\mu: N \to D$)

(a) Males, urban
(b) Males, rural
(c) Females, urban
(d) Females, rural

Note: The model estimates are in Table 3.

Figure 7: Estimated errors for the mortality rates of disabled individuals ($v: F \to D$)

(a) Males, urban
(b) Males, rural
(c) Females, urban
(d) Females, rural

Note: The model estimates are in Table 3.