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Abstract
We present a stacked regression ensemble method that optimally combines di�erent mortality models to

reduce the mean squared errors of mortality rate forecasts and mitigate model selection risk. Stacked regression
uses a supervised machine learning algorithm to approximate the horizon-specific weights by minimizing the
cross-validation criterion for each forecasting horizon. The horizon-specific weights facilitate the development of
a mortality model combination customized to each horizon. Unlike other model combination methods, stacked
regression simultaneously solves model selection and estimates model combinations to improve model forecasts. Our
numerical illustrations based on 44 populations from the Human Mortality Database demonstrate that stacking
mortality models increases predictive accuracy. Using one-year-ahead to 15-year-ahead out-of-sample mean squared
errors, we find that stacked regression improves mortality forecast accuracy by 13% - 49% and 19% - 90% over the
individual mortality models for males and females, respectively. Therefore, combining the mortality rate forecasts
provides lower out-of-sample point forecast errors than selecting the single best individual mortality method.
Stacked regression ensemble also achieves better predictive accuracy than other model combination methods,
namely Simple Model Averaging, Bayesian Model Averaging, and Model Confidence Set. Our results support the
stacked regression ensemble approach over individual mortality models and other model combination methods in
forecasting mortality rates. We also provide a user-friendly open-source R package, CoMoMo, that combines multiple
mortality rate forecasts using di�erent model combination techniques.

Keywords. Stacked regression, ensemble learning, cross-validation, model uncertainty, model combination,
age-period-cohort model, mortality forecasting.

1. Introduction
Life expectancy has been continuously increasing globally since the nineteenth century due to the decline in mortality
rates. In particular, life expectancy at birth has risen approximately linearly by three months per year in the past
four decades for several industrialized countries (Oeppen and Vaupel 2002). The decrease in mortality rates across
ages and years is mainly due to enormous e�orts dedicated to preventing and curing diseases through advances in
public health, nutrition, and medical discoveries (Janssen 2018).

Longevity risk is a potential risk attached to the unexpected increasing life expectancy of policyholders. This risk
obliges life annuity providers and defined-benefit pension funds to pay more benefits and pensions than expected.
Longevity risk is also a risk to individuals who may outlive their retirement resources. The estimated potential size of
the global longevity risk market for pension liabilities is between USD 60 trillion and USD 80 trillion (Blake et al.
2018).

Mortality models have consistently underestimated future longevity because they are often based on the assumption
that the pace of mortality improvement would decline (Shaw 2007). However, in practice, life expectancy has been
rising globally. Longevity risk is accentuated by prevailing low equity returns, low-interest rates, and volatility
in financial markets resulting in the unavailability of suitable assets for matching liabilities that come with aging
populations (Berdin and Gründl 2015). These concerns about longevity risk have led to a growing interest among
practitioners and researchers in accurately modelling and forecasting mortality rates and capturing their corresponding
uncertainty. The accurate forecasting of future mortality quantities is a challenging task as it depends on unknown
future events such as medical advances and disease outbreaks like the COVID-19 pandemic. Even a small improvement
in point and interval mortality forecast accuracy can provide considerable financial savings among financial entities.
This study exploits the power of advanced data analytics methods in improving the forecast accuracy of mortality
rate forecasts.
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Despite the diversity of existing mortality models, the “single best” mortality model is customarily used to forecast
mortality rates (Booth and Tickle 2008). This single mortality model framework overlooks model choice uncertainty
and can make decision-makers overconfident in the mortality rate forecasts from the single best mortality model. The
presence of model uncertainty and the possible limitations of modelling the mortality rates using the single model
approach are supported theoretically and empirically. Firstly, given the complexity of mortality data, there is no
single stochastic mortality that performs consistently better than others, either in-sample or out-of-sample for all
mortality data and forecasting horizons (Cairns et al. 2009; Rabbi and Mazzuco 2018; SriDaran et al. 2021). For
example, mortality models that accurately predict short-term mortality rates tend to perform relatively poorly in
longer-horizon forecasts (SriDaran et al. 2021). Secondly, there is no one accepted model selection criteria to evaluate
mortality models. Several model selection criteria are based on di�erent assumptions and may yield contradicting
model choices (Kourentzes, Barrow, and Petropoulos 2019). Therefore, it is hard to select the model selection criteria
to choose the single best mortality model (Atance, Debón, and Navarro 2020). Comparing di�erent variants and
extensions of the mortality models based on various assumptions does not always select the single best mortality
model (Janssen 2013). In such situations, recommending a mortality model can be challenging. This underscores the
benefits of model averaging, which empirically combines predictions from composite mortality models and reduces
model choice uncertainty (Bates and Granger 1969).

A model combination approach is an alternative approach to model selection. It has been employed for more than 50
years in other forecasting fields to reduce model selection risk and improve forecast accuracy (Bates and Granger
1969; Genre et al. 2013). A few mortality forecasting studies have implemented the model averaging approach (Shang
2012; Kontis et al. 2017; Shang and Haberman 2018; Shang and Booth 2020; Barigou et al. 2021). Shang and
Haberman (2018) combine multiple mortality models using the model confidence set approach proposed in Hansen,
Lunde, and Nason (2011) to forecast national and sub-national Japanese mortality data. This technique selects a set
of statistically superior mortality models from a predetermined set of models based on their in-sample forecast errors
which are then combined using equal weights.

Kontis et al. (2017) use probabilistic Bayesian model averaging (BMA) to combine age-specific death rates from 21
mortality models applied to 35 industrialized countries. They choose di�erent mortality models to capture di�erent
mortality rate dynamics such as trends, linearity, non-linearity, and cohort e�ects. These mortality models are then
weighted depending on their in-sample predictive power. Kontis et al. (2017) find that, on average, the BMA approach
has a smaller forecast error than the best single mortality model for di�erent genders and countries. Barigou et
al. (2021) also recently proposed a fully Bayesian approach for mortality forecasting using a validation set made of
the most recent years. They show that BMA methods, based on an out-of-sample criterion, outperform in terms of
prediction performance and robustness, the standard BMA which calculates the weights using a marginal likelihood
approximation.

The model combination approaches proposed to date in the mortality projection literature have some limitations.
Firstly, the model combination weights are often calculated using a validation set with the potential of overfitting
(James et al. 2014). Therefore, overparameterized models are assigned higher weights, but they tend to perform
poorly in longer forecasting horizons (Makridakis and Hibon 2000). Secondly, the out-of-sample forecast accuracy of
BMA depends sensitively on the correct choice of the prior distribution of each model (Yao et al. 2018), and the true
data-generating model should be in the list of models to be combined (Clarke 2004). Thirdly, the existing approaches
use the same weights for all forecasting horizons, implicitly assuming that various mortality models have the same
predictive power across all the forecasting horizons. However, the performance of di�erent mortality models tends
to vary with the forecasting horizon (SriDaran et al. 2021). This means that the forecasting accuracy of model
combination approaches could be enhanced using horizon-specific weights (Shang and Booth 2020). Finally, while all
the studies report that model averaging attained smaller forecast errors than the single mortality models, they do
not examine whether the di�erences in point forecast accuracies between the individual mortality models and model
combination methods are statistically significant.

Stacked regression ensembles, first proposed by Wolpert (1992), o�er an alternative model combination approach that
could overcome some of the shortcomings of traditional model combination methods. Stacked regression combines
several diverse individual models into a single powerful prediction function via a secondary learning process known
as meta-learning (Breiman 2004). Stacked regression can learn the complex patterns in the data, reduce model
uncertainty, and enhance prediction accuracy (Wolpert 1992). When the true-data generating model is not amongst
the list of models to be combined, Clarke (2004) empirically shows that stacked regression has a smaller out-of-sample
point forecast error than BMA. This is because stacked regression is less dependent on the likelihood, and therefore
it is more representative of the true data-generating model. Moreover, stacked regression assigns weights to the
individual models based on the cross-validation technique, while BMA assigns weights to the individual models based
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on the posterior probabilities (Yao et al. 2018). The combination weights from stacked regression reflect the ability of
the individual model to generalize on new data, while BMA weights reflect the goodness-of-fit to the data. Owing to
empirical and theoretical benefits of stacked regression, most winning teams in data science competitions have used
such an approach (Sill et al. 2009; Puurula, Read, and Bifet 2014). The results of past data science competitions
show that combined methods regularly outperform individual models in terms of out-of-sample predictive accuracy
(Makridakis and Hibon 2000). Stacked regression ensemble methods have also been successfully applied with improved
predictive accuracy on a wide range of problems such as credit risk assessment (Doumpos and Zopounidis 2007),
forecasting global energy consumption (Khairalla et al. 2018), financial time series forecasting (Ma and Dai 2016),
and prediction of infectious disease epidemics (Ray and Reich 2018; Reich et al. 2019).

This paper aims to develop and evaluate a stacked regression ensemble forecasting approach that combines forecasts
from di�erent stochastic mortality models. Despite the success of the stacked regression ensemble methods in other
fields, to the best of our knowledge, they have not been explored previously in mortality modelling and forecasting
literature. This paper seeks to fill this gap. In particular, this paper aims at answering the following research questions
empirically:

• Does the stacked regression ensemble have lower out-of-sample point forecast errors than individual mortality
models?

• Does the stacked regression ensemble have lower out-of-sample point forecast errors than other model combination
techniques?

• Do the optimal combination weights estimated based on the forecasting horizons reduce the out-of-sample point
forecast errors of model combination methods?

• Do individual mortality models and model combination methods have statistically di�erent out-of-sample point
forecast errors?

As implied by our research questions, this paper contributes to the existing mortality forecasting literature in the
following three dimensions. Firstly, it introduces a new approach of learning model combination weights for each
mortality model using the stacked regression ensemble method to improve model predictions. Secondly, it develops a
mortality model combination approach that is dependent on the forecasting horizon. Finally, We develop a user-friendly
open-source R package, CoMoMo, that combines multiple mortality rate forecasts using di�erent model combination
techniques.

The rest of the paper is organized as follows. In Section 2, we define the primary notation used to refer to mortality
data. Section 3 briefly describes the properties of the individual mortality models, which underpin the di�erent model
combination approaches discussed in this paper. Section 4 discusses di�erent metrics for evaluating the individual
mortality models and cross-validating the mortality data. Section 5 discusses how to estimates the combination
weights using di�erent model combination methods. In Section 6, we introduce how to implement the stacked
regression ensemble framework to combine multiple mortality models. In Section 7, we report on the application
of di�erent model combination approaches to 44 populations from the Human Mortality Database (University of
California Berkeley and Max Planck Institute for Demographic Research 2020). Using one-year-ahead to 15-year-ahead
out-of-sample mean squared errors, we find that stacked regression improves mortality forecast accuracy by 13% -
49% and 19% - 90% over the individual mortality models for males and females, respectively. Therefore, combining
the mortality rate forecasts provides lower out-of-sample point forecast errors than selecting the single best individual
mortality method. Finally, Section 8 concludes with the key findings of this paper and proposes possible future
directions.

2. Notation
Let calendar year t run from time t to t + 1 and let D(x, t) denote the number of deaths aged x at previous birthday
during calendar year t. The actual observed number of deaths is denoted by d(x, t) and the corresponding central
exposed at risk by E

c(x, t). The death and central exposure data are arranged in matrices D = (d(x, t)) and
E

c = E
c(x, t), respectively. Each matrix has dimension na ◊ ny with na ages, ny years, and nb = na + ny ≠ 1 cohorts.

The force of mortality matrix can then be estimated with µ =
1

d(x,t)

Ec(x,t)

2
.
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3. Single Mortality Models
We combine di�erent individual mortality models that have been used in the literature on modelling and forecasting the
mortality rates. Multiple mortality models capture various death rate dynamics, such as trends, linearity, non-linearity,
curvature, mortality volatility, and cohort e�ects (Kontis et al. 2017). It is computationally expensive to combine a
large number of mortality models in practice (Sharabiani and Mahani 2016). Therefore, we focus on the popular
family of Generalized Age-Period-Cohort (GAPC) discrete-time mortality models formalized in Villegas, Kaishev, and
Millossovich (2018). GAPC models decompose the force of mortality, µ(x, t) for age x œ [x1, xna ] at time t œ [t1, tny ]
across the dimensions of age x, period t, and cohort c œ {t1 ≠ xna , . . . , tny ≠ x1}. We assume that the observed
number of deaths, D(x, t) are distributed according to a Poisson distribution so that D(x, t) ≥ Poisson(Ec(x, t)µ(x, t))
(Brouhns, Denuit, and Vermunt 2002). Therefore, the GAPC models are represented as

ln µ(x, t) = –(x) +
Nÿ

i=1

f
i(x)Ÿi(t) + “(c), (1)

where –(x) is the age pattern of the log mortality rates averaged across years, N is the number of age-period terms
describing the mortality trends using the time index Ÿ(t), f

i(x) is an age-modulating function, and “(c) is the cohort
factor. We consider various forms of GAPC mortality models summarized in Table 1. LC denotes the Lee-Carter
model, CBD the Cairns-Blake-Dowd model, APC the age-period-cohort model, RH the Renshaw-Haberman model,
mRH the modified Renshaw-Haberman model, M7 the quadratic CBD model, and PLAT the Plat model.

Table 1: Generalized age-period-cohort mortality models. Here, –(x) captures the general shape of the mortality by
age, ’i = 1, 2, 3, Ÿ

(i)(t) is the time index which specifies the mortality trend, “c is the cohort e�ects at the year of
birth c = t ≠ x, ’i = 0, 1, —

(i)(x) measures the e�ect of Ÿ
(1)(t) or “c across ages, x̄ is the average age in the sample

range, ‚‡2(x) is the average value of (x̄ ≠ x)2, and (x̄ ≠ x)+ = max(x̄ ≠ x, 0).

Name Model Constraints

LC ln µ(x, t) = –x + —(1)
x Ÿ(1)

t

q
t

Ÿ(1)
(t) = 0,

q
x

—(1)
(x) = 1

RH ln µ(x, t) = –x + —(1)
x Ÿ(1)

t + —(0)
x “c

q
t

Ÿ(1)
(t) =

q
x

“(1)
(c) = 0,

q
x

—(1)
(x) =

q
x

—(0)
(x) = 1

mRH ln µ(x, t) = –x + —(1)
x Ÿ(1)

t + “c

q
t

Ÿ(1)
(t) =

q
x

“(1)
(c) = 0,

q
x

—(1)
(x) = 1

APC ln µ(x, t) = –x + Ÿ(1)
t + “c

q
t

Ÿ(1)
(t) =

q
x

“(1)
(c) =

q
x

c“(1)
(c) = 0

CBD ln µ(x, t) = Ÿ(1)
t + (x ≠ x̄)Ÿ(2)

t Not required

M7 ln µ(x, t) = Ÿ(1)
t + (x ≠ x̄)Ÿ(2)

t +

!
(x ≠ x̄)

2 ≠ ‡̂2
x

"
Ÿ(3)

t + “c

q
t

Ÿ(1)
(t) =

q
t

Ÿ(2)
(t) =

q
t

Ÿ(3)
(t) =

q
x

“(1)
(c) =

q
x

c2“(1)
(c) = 0,

q
x

—(1)
(x) = 1

PLAT ln µ(x, t) = –x + Ÿ(1)
t + (x̄ ≠ x)Ÿ(2)

t + (x̄ ≠ x)
+Ÿ(3)

t + “c

q
t

Ÿ(1)
(t) =

q
t

Ÿ(2)
(t) =

q
t

Ÿ(3)
(t) =

q
x

“(1)
(c) =

q
x

c2“(1)
(c) = 0,

q
x

—(1)
(x) = 1

GAPC models reflect di�erent structures, assumptions, degrees of complexity, and extract di�erent information
from the mortality data. The LC model is perhaps the most widely used mortality model for predicting mortality
rates (Lee and Carter 1992). Nevertheless, the LC model can not fully capture non-linear patterns in the mortality
data. Therefore, Renshaw and Haberman (2006) extend LC model to RH by adding the cohort e�ect “

(1)(c) which
captures the life experiences and life styles of people born at di�erent time periods. When —

(0)(x) = 1, the RH
model becomes mRH which is more stable than RH because of its simpler structure (Hunt and Villegas 2015) and we
therefore implement mRH in this paper. The RH model does experience a much better fit than LC for mortality
data with dominant cohort e�ects (Cairns et al. 2009). The APC model is derived from RH model by setting
—

(1)(x) = —
(0)(x) = 1. The APC tends to produce more robust parameter estimates than RH with respect to the

data changes (Cairns et al. 2009).

Cairns, Blake, and Dowd (2006) propose the CBD model which is an alternative parametric mortality method which
models and forecasts the mortality rates using a two-factor model. In contrast to the non-parametric age structure
in LC, RH, and APC, the CBD model treats age as a continuous variable that varies linearly with ln µ(x, t). CBD
has two time factors Ÿ

(1)(t) and Ÿ
(2)(t) that allows for substantial period e�ects than the LC, RH, and APC models.

Cairns et al. (2009) generalize the CBD model to M7 to capture the curvature in the mortality rates by age using a
quadratic age term. M7 captures the time variability more adequately than the LC, RH, APC, and CBD models
using a three time factors, Ÿ

(1)(t), Ÿ
(2)(t), and Ÿ

(3)(t). It further includes the quadratic age term (x̄ ≠ x)2 ≠ ‚‡2(x) that
capture the curvature along the age axis and “

(1)(c) to model the cohort e�ects. Plat (2009) combines the features of
LC and CBD to model the mortality rates.
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3.1. Fitting GAPC Models

The parameters of GAPC are estimated by assuming a Poisson distribution of the deaths D(x, t). The log-likelihood
for GAPC models is presented in Villegas, Kaishev, and Millossovich (2018) as

L(d(x, t)) =
ÿ

x

ÿ

t

Ê(x, t)
1

d(x, t) ln ‚d(x, t) ≠ ‚d(x, t) ≠ ln d(x, t)!
2

,

where the expected number of the deaths for the GAPC models are given as

‚d(x, t) = E(x, t)e
!

–(x)+

qN

i=1
fi

(x)Ÿi
(t)+“(c)

"
,

and the weights Ê(x, t) are given as

Ê(x, t) =
I

0 if the (x, t) data cell is excluded,

1 if the (x, t) data cell is included.

3.2. Mortality Projection with GAPC Models

The dynamics of the GAPC model are driven by the period indexes Ÿ
i(t), i = 1, . . . , N and by the cohort index “(c).

Therefore, to forecast the mortality rates, we need to model these indexes using the appropriate time series methods.
Villegas, Kaishev, and Millossovich (2018) model the period indexes using a multivariate random walk with drift
which can be expressed as

Ÿ(t) = Ÿ(t)(t ≠ 1) + ” + ‘(t), ‘(t) ≥ N (0, �) , (2)

where Ÿ(t) = [Ÿ1(t), . . . , Ÿ
N (t)]Õ, � is the N ◊ N variance-covariance matrix of the multivariate white noise ‘(t), and

” is an N dimension vector of drift parameters. Villegas, Kaishev, and Millossovich (2018) model “(c) using an
autoregressive integrated moving average process ARIMA(p, q, d) with drift which is independent of the time index
Ÿi(t)

�d“(c) = ”(0) + „1�d“(c ≠ 1) + . . . + „p�d“(c ≠ p) + ‘(c) + „1‘(c ≠ 1) + . . . + „q‘(c ≠ q), (3)

where ‘(c) is a normal white noise process with variance ‡‘. In this paper, we implement an ARIMA(1, 1, 0) because
when d = 1, we avoid model identification issues (SriDaran et al. 2021). We set p = 1 because there is usually some
autoregression among the cohorts.

The projected values of the period index ‚Ÿ(tny +h) = [‚Ÿ1(tny +h), . . . , ‚ŸN (tny +h)]Õ and cohort index ‚“(tny +h≠x), h =
1, . . . , H are extrapolated using Equations (2) and (3), respectively. Then, the mortality rate forecasts at horizon h

are expressed as

ln ‚µ(x, t + h) = –(x) +
Nÿ

i=1

f i(x)‚Ÿi(tny + h) + ‚“(tny + h ≠ x),

where tny is the last year of the fitting period.

We use the StMoMo R package to fit and forecast the mortality rates using GAPC mortality models (Villegas, Kaishev,
and Millossovich 2018).

4. Model Selection Criteria
It is challenging to predict mortality rates in the presence of multiple mortality models because there is no widely
accepted best method to choose the best mortality model (Atance, Debón, and Navarro 2020). Multiple model
selection methods are based on various assumptions and may yield contradicting model choices (Kourentzes, Barrow,
and Petropoulos 2019). Therefore, the computation of model weights in di�erent model combination approaches is
underpinned by di�erent model selection criteria. We group di�erent model selection methods as to whether they
focus on the in-sample goodness-of-fit of a model or the ability of the model to generalize on the unseen data.

4.1. In-Sample Model Evaluation

The in-sample goodness-of-fit criteria assess the performance of a model in relation to how well it explains the data.
For example, the Akaike Information Criterion (AIC) selects the best model by balancing the quality of fit measured

5



using the likelihood function and model complexity measured using the number of parameters (Akaike 1974). The
AIC of any mortality models is mathematically defined as

AIC = ≠2L + 2‹, (4)

where L is the maximized value of the likelihood function and ‹ is number of parameters in a particular model. The
AIC tends to select overparameterized models (Wagenmakers and Farrell 2004). As an alternative, Schwarz (1978)
propose the Bayesian Information Criterion (BIC) that imposes a stronger penalty for the model complexity. The
BIC of any mortality models is mathematically defined as

BIC = ≠2L + ‹ ln(n), (5)

where n is the number of observations. A comparison of AIC in Equation (4) and BIC in Equation (5) indicates
that BIC penalty term is larger than the AIC penalty term when ln n > 2. Therefore, BIC often selects simpler
models than AIC. The models with the lower values of both criteria are generally preferred. Both criteria tend to
choose models that adhere to the historical data but do not guarantee accurate out-of-sample forecasts, especially for
longer horizons (Cairns et al. 2011; SriDaran et al. 2021). Furthermore, both criteria do not enable one to choose a
mortality model tailored to a particular forecasting horizon.

4.2. Out-of-Sample Model Evaluation

An out-of-sample model evaluation of forecasting accuracy starts with splitting the mortality data into train and
test periods. The final period in the training period is known as the forecasting origin, and the number of periods
between the forecasting origin and time being forecast is the forecasting horizon. We can use either a single forecasting
origin called fixed-origin evaluation or multiple forecasting origin such as a rolling window approach to perform the
out-of-sample evaluation (Tashman 2000). The fixed-origin evaluation uses mortality data from t1 to t

ú
ny

for ages
x œ [x1, xna ] to estimate the model parameters, which are then used to forecast the mortality rates from t

ú
ny

+ 1 to tny

(Kontis et al. 2017). We measure the forecasting accuracy of the model from t
ú
ny

+ 1 to tny for ages x œ [x1, xna ] using

◊(‚µ(x, t), µ(x, t)) = 1
nanú

y

tnyÿ

t=tú
ny

+1

xnaÿ

x=x1

fi(‚µ(x, t), µ(x, t)), (6)

where ◊(‚µ(x, t), µ(x, t)) is the forecasting error, n
ú
y = tny ≠ t

ú
ny

, and fi(‚µ(x, t), µ(x, t)) is the respective loss function.
The common loss functions are the quadratic loss, (ln ‚µ(x, t) ≠ ln µ(x, t))2, which gives the mean squared error (MSE);
the mean absolute loss, | ln ‚µ(x, t) ≠ ln µ(x, t)|, which yields the mean absolute error (MAE); and the bias loss,
ln ‚µ(x, t) ≠ ln µ(x, t), which yields the projection bias.

The fixed-origin evaluation generates only one forecast for each forecasting horizon, and therefore it needs a reasonably
long test period to yield a forecasting track-record (Tashman 2000). The mortality forecasts produced from the
fixed-origin evaluation may be influenced by occurrences unique to that origin. The fixed-origin evaluation also does
not allow us to assess the forecasting accuracy of a mortality model at each forecasting horizon. We can overcome
the shortcomings of the fixed-origin evaluation using a rolling window approach similar to Dowd et al. (2008). For
instance, as depicted in Figure 1, we train the mortality models using all the in-sample data shown in blue and predict
the unseen validation data V shown in red. Suppose that the validation data contains nE number of years. We then
roll forward one period of nE ≠ h + 1 times until all the data is finished. We extrapolate the period indices for horizon
h using a multivariate random walk with drift given in Equation (2). The predictive power of a mortality model at
horizon h is evaluated on V using

◊
h(‚µ(x, t), µ(x, t)) = 1

na(nE ≠ h + 1)

nE≠h+1ÿ

j=1

ÿ

(x,t)œVj(h)

fi(‚µ(x, t), µ(x, t)), (7)

where Vj(h) = {(x, t)}t=nT +j≠1 for j = 1, . . . , nE ≠ h + 1. We compute the evaluation metrics such as mean squared
errors, mean absolute errors, and projection bias using their respective loss functions in Equation (7).

4.3. Resampling and Block Cross-Validation of Mortality Data

The out-of-sample evaluation approach described above uses a single validation period at the end of the data. To make
a better use of the available data we can use cross-validation techniques to evaluate the models. Cross-validation is the
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Figure 1: Iterations of rolling window out-of-sample evaluation for horizon one-year-ahead (h = 1) (top row) and
three-years-ahead (h = 3) (bottom row).

resampling approach that randomly partitions the available data into k folds of roughly equal size. A model is trained
k times, using k ≠ 1 folds as a fitting set and the one remaining fold to evaluate the out-of-sample performance of the
model using MSE or MAE. This is repeated until all k folds have been employed as out-of-sample. The hold-out
performance is then averaged, yielding the cross-validation error. Cross-validation assumes the data are identically and
independently distributed. This assumption does not hold on time series data such as mortality data. Therefore, we
introduce block cross-validation, which preserves the dependency structure in time series data (Bergmeir, Costantini,
and Benítez 2014).

Block cross-validation is an estimator used to assess and evaluate the accuracy of the forecasting methods over a given
forecasting horizon for the time series data. It yields a lower forecast error than the standard out-of-sample scheme
because it ensures full data use (Bergmeir, Costantini, and Benítez 2014). SriDaran et al. (2021) implement the block
cross-validation method for mortality data using the following steps. Firstly, they split the mortality data into the
in-sample data for model training and validation set for model performance testing. Secondly, the in-sample data
is iteratively further divided into training data to fit the individual mortality models, known as base learners, and
test data to evaluate their forecasting performances. The testing data can take di�erent widths to represent varying
forecasting horizons. For example, when forecasting one-year-ahead mortality rates, test data should be defined as a
one-year block, as illustrated in Figure 2 (top row). While when forecasting three-years-ahead mortality rates, test
data should be defined as a three-year block as illustrated in Figure 2 (bottom row).
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Figure 2: Iterations of cross validation for horizon one-year-ahead (h = 1) (top row) and three-years-ahead (h = 3)
(bottom row).

The data is iteratively used to train and test the base learners for the time periods t œ [t1, t2, . . . , tny ]. In particular,
’k = t1, . . . , tny ≠ h, the training data shown in blue is defined as Dk

train
(h) = {(x, t)}t”œ[k+1,k+h] while the testing

data shown in red is defined as Dk
test

(h) = {(x, t)}t=k+h. The data in the left and right of the test data set (red) are
used for training the base learners (Bergmeir, Costantini, and Benítez 2014).
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As shown in Figure 2 (bottom row), using the training data, we can estimate the coe�cients corresponding to every
age group and cohort. However, we can not fully approximate the period index Ÿ

i(t) for non-training years with no
observations. Figure 3 illustrates the time-series process of imputing the missing values. We can impute the missing
values shown in grey by fitting a random walk with drift using all observable period indices shown in blue on both
sides of the missing region as

Ÿ
(i)(t) = Ÿ

(i)(t ≠ 1) + ”
(i) + ‘

(i)(t), (8)

where ‘
(i)(t) ≥ N(0, ‡k

2(i)) and ”
(i) is a drift parameter. Once we approximate the drift term, we can then predict

the missing values using a forward fill approach (SriDaran et al. 2021)

Ÿ̂
(i)(t) = Ÿ̂

(i)(t ≠ 1) + ”̂
(i)

.
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Figure 3: Illustration of time-series imputation approach. The blue points correspond to Ÿt estimates that can be
calculated directly from the training data and the grey area to the non-training years that can not be estimated. The
red points indicating the values imputed using a forward fill procedure.

The cross-validation errors at horizon h are then estimated for the test data using

◊
h(‚µ(x, t), µ(x, t)) = 1

na(tny ≠ t1 ≠ h + 1)

tny ≠hÿ

k=t1

ÿ

(x,t)œDk
test(h)

fi(‚µ(x, t), µ(x, t)). (9)

We estimate the cross-validation mean squared error (CVMSE(h)) and cross-validation projection bias (CVPB(h)) by
substituting their respective loss functions in Equation (9).

Finally, the best model at forecast horizon h is selected as the model with the least ◊
h(‚µ(x, t), µ(x, t)). However,

cross-validation o�ers more information than merely identifying which model is the best. It permits the estimation of
combinations of models, which can yield more precise out-of-sample forecasts. Therefore, instead of picking the model
with the least ◊

h(‚µ(x, t), µ(x, t)), we use the cross-validated predictions to develop a stacked regression ensemble as
discussed in Section 6.

5. Model Combination

Model selection and combination are two competing forecasting approaches. The model selection approach produces
forecasts using the single best-selected model, assuming that the chosen single best model is close to the underlying
data-generating process (Kourentzes, Barrow, and Petropoulos 2019). However, due to limited data and complexity of
the data structures, it is often hard to identify the true data-generating process using real data (Makridakis, Spiliotis,
and Assimakopoulos 2019). Even when a particular best-selected model appears to be close to a true data-generating
process, using the single best-selected model is unstable and wastes information in the rejected models (Ahlburg 1995;
Yao et al. 2018). Alternatively, combining forecasts from multiple models is a naturally reasonable substitute for
using a single forecasting technique. It empirically combines predictions from composite models that reduce model
choice uncertainty and improve point forecast accuracy (Bates and Granger 1969).

Let the h-year-ahead mortality rate forecasts from M mortality models L1, . . . , LM be ‚µ1(x, tny + h), . . . , ‚µM (x, tny + h)
for age x œ [x1, xna ] at time tny + h. Then, in general then the combined mortality rate forecasts ln

!
‚µ(x, tny + h)

"
comb

are given as
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ln
!
‚µ(x, tny + h)

"
comb

=
Mÿ

m=1

wm(h) ln ‚µm(x, tny + h), (10)

where h is the forecasting horizon and wm(h) is the horizon specific weight assigned to a particular forecasting method
such that (w1(h), . . . , wM (h)) œ RM and

qM
m=1

wm(h) = 1 which makes the model combination a weighted average.

In what follows, we consider four di�erent model combination approaches: Simple Model Averaging (Genre et al.
2013), Bayesian Model Averaging (Bates and Granger 1969), Model Confidence Set (Hansen, Lunde, and Nason 2011),
and Stacked Regression Ensemble (Wolpert 1992). These methods vary from each other depending on how they use
the historical data to choose the combination weights wm(h) or the individual forecasting methods in Equation (10).

5.1. Simple Model Averaging

In a simple model averaging (SMA) approach, the mortality rate forecasts from multiple mortality models are
assigned equal weights in Equation (10). That is, wm(h) = 1

M , with the final mortality rate forecasts given by

ln
!
‚µ(x, tny + h)

"
SMA

=
Mÿ

m=1

1
M

ln ‚µm(x, tny + h).

The SMA approach assigns weights to individual mortality models without considering their historical performances.
Empirically, sometimes a simple model averaging outperforms sophisticated ways of assigning weights to the individual
forecasting methods (Genre et al. 2013; Graefe et al. 2014; Makridakis, Spiliotis, and Assimakopoulos 2019). This
is referred to as a “model combination puzzle” (Stock and Watson 2004). Therefore, we consider the SMA as a
benchmark to other implemented model combinations in this paper.

5.2. Bayesian Model Averaging

The Bayesian model averaging (BMA) estimates the weights in Equation (10) using the posterior model probabilities.
Let L1, . . . , LM be the set of M mortality models and suppose that at least one of these models is the true data-
generating mortality model. Let a vector � = „m, . . . , „M be parameters corresponding to each of the mortality
models, and › be the combined mortality forecasts. Then, the posterior distribution given the mortality data D, is
given by

P(›|D) =
Mÿ

m=1

P(›|Lm, D)P(Lm|D) =
Mÿ

m=1

wmP(›|Lm, D), (11)

where wm = P(D|Lm)qM

m=1
P(D|Lm)P(Lm)

, P(D|Lm) =
⁄

P(D|„m, Lm)P(„m|Lm) d„m, P(„m|Lm) is the prior density of „m

under Lm, P(D|„m, Lm) is the likelihood function, and P(Lm) is the prior probability that Lm is a true data-generating
model. Therefore, the Bayesian prediction is the weighted average of individual mortality model predictions, with
weights proportional to the posterior probability of each mortality model. The Bayesian model averaging assigns
weight to each mortality model depending on its number of parameters and how well it fits the mortality data
measured by Akaike or Bayesian Information Akaike Criterion. A full Bayesian model averaging in Equation (11)
is computationally hard to compute, so traditionally, the weights are approximated using much simpler Akaike or
Bayesian Information approximation (Bates and Granger 1969).

Define a set of M mortality models with the comparable Akaike Information Criterion (AIC) such that AIC(M) =
{AICm} for m = 1, . . . , M . Given non-informative priors and equal model prior probabilities, the BMA approximates
the normalized weights using the AIC criterion (Shang 2012) as

w
BMA

m (h) ¥ e
≠0.5AICm

qM
m=1

e≠0.5AICm

, ’m = 1, 2, . . . , M, (12)

where AICm is the raw Akaike Information Criterion of a particular model m given in Equation (4). However, the raw
AIC are not interpretable as they contain arbitrary constants and are much a�ected by the sample size (Pi≥atowska
2009). Therefore, in our implementation we follow Shang and Booth (2020) and transform the raw AIC to the
di�erence in AIC of each model with reference to AIC of the best model. That is, �m = AICm ≠ min(AIC(M)), so
that the normalized Bayesian weights in Equation (12) becomes
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w
BMA

m (h) ¥ e
≠0.5�m

qM
m=1

e≠0.5�m

, ’m = 1, 2, . . . , M. (13)

The weights w
BMA

m (h) approximates the probability that model m is the best model given the data and the set of
candidate models, that is, w

BMA

m (h) ¥ L(Lm|D). Empirically, the forecasting methods with �m < 4 are considered
plausible in terms of Kullback-Leibler information (Pi≥atowska 2009).

When a particular mortality model is superior to other models when measured by Akaike or Bayesian Information
Criteria, the posterior probability tends to be close to one (Wagenmakers and Farrell 2004). The combined results will
be indistinguishable from those of the best-fitting individual mortality model. Therefore, for each mortality model to
contribute information to the ensemble, we consider an alternative Bayesian model averaging approach used in Kontis
et al. (2017), where they compute the Bayesian weights, w

bias

m (h) using normalized exponentiated projection bias
given by

w
bias

m (h) ¥ e
≠0.5|Projection Biasm|

qM
m=1

e≠0.5|Projection Biasm|
, ’m = 1, 2, . . . , M. (14)

We calculate the projection bias in Equation (14) using Equation (6) when the loss function is ln ‚µ(x, t) ≠ ln µ(x, t).

The weights in Equation (14) depend on a single validation set with the potential of overfitting. Moreover, Equation
(14) assumes the same weights for all forecasting horizons. Thus, for our numerical experiments in Section 7, we
also propose two modified versions of computing the model weights using a cross-validation approach which makes
full use of the data and produces horizon-dependent weights. In a similar spirit to Kontis et al. (2017), we replace
projection bias in Equation (14) with the cross-validation mean squared error for horizon h, (CVMSE(h)) and the
cross-validation projection bias for horizon h, (CVPB(h)) in Equation (9). The weights based on the CVMSE and
CVPB at horizon h are given as

w
CVMSE

m (h) ¥ e
≠0.5CVMSEm(h)

qM
m=1

e≠0.5CVMSEm(h)
’m = 1, 2, . . . , M,

w
CVPB

m (h) ¥ e
≠0.5CVPBm(h)

qM
m=1

e≠0.5CVPBm(h)
, ’m = 1, 2, . . . , M.

5.3. Model Confidence Set

The model confidence set (MCS) approach chooses the subset of superior mortality models to combine in Equation
(10) using equal weights. Superior models are identified by assessing if they have an equal predictive ability at a given
confidence interval (Hansen, Lunde, and Nason 2011). An equal predictive ability test of the models can be conducted
using any arbitrary loss functions, such as the square or absolute loss function explained in Section 4. Formally,
suppose Mú is a subset of the set of original models denoted by M0 = {L1, . . . , LM }. According to Hansen, Lunde,
and Nason (2011), we define the square loss function for evaluating any model m at time t for ages x œ [x1, xna ] as
ÏLm,x,t = (ln µ(x, t) ≠ ln ‚µm(x, t))2. Therefore, the loss di�erential between any two models La and Lb for a finite
time t œ [t1, . . . , tny ] and ages x œ [x1, xna ] is defined as

’ab,x,t = ÏLa,x,t ≠ ÏLb,x,t, ’ a, b = 1, 2, . . . , M.

Let ÷ab = E(’ab,x,t) be finite and not time dependent (Hansen, Lunde, and Nason 2011). Now, the role of the model
confidence set is to choose a set of superior models „M1≠– © {La œ Mú : ÷ab Æ 0 ’ Lb œ Mú} at the test level –

through a sequence of significance tests. The equal predictive ability test hypothesis is constructed as follows
H0,Mú :÷ab = 0, ’a, b = 1, 2, . . . , M, (15)
H1,Mú :÷ab ”= 0 for some a, b = 1, 2, . . . , M.

We use ÷ab to formulate the hypothesis test as follows:

tab = ’̄abÒ
‰Var(’̄ab)

,
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where ’̄ab = 1

nanÕ
y

qtny

t=t1

qxna
x=x1

’ab,x,t, here, n
Õ

y = tny ≠ t1 + 1 and ’̄ab measures the relative sample loss between La

and Lb. The quantity ‰Var(’̄ab) is estimated using the bootstrap method (Hansen, Lunde, and Nason 2011). Model
confidence set works sequentially by eliminating the worst model at each stage until the null hypothesis given in
Equation (15) is accepted at a given level of confidence. The elimination rule for the worst model is coherent with the
test statistic and is defined as arg maxLaœMú{supLbœMú tab}.

We calculate the combination weight of each model m in the subset „M1≠– using

wm(h) = I(m œ „M1≠–)
| „M1≠–|

,

where | „M1≠–| is the number of selected superior models and the indicator function I(·) has the value of one if the
model m is included in „M1≠– and zero otherwise.

Shang and Haberman (2018) use a single validation set approach to select the same set of superior mortality
models for all the forecasting horizons. We modify this procedure by choosing the superior mortality models via
cross-validation. We calculate the loss di�erential at each forecasting horizon h as ’

h
ab,t = Ï

h
La,x,t ≠ Ï

h
Lb,x,t, ’ a, b =

1, 2, . . . , M and we select the superior models at each forecasting horizon. We compute Ï
h
Lm,x,t using a quadratic loss,

(ln µ(x, t + h) ≠ ln ‚µm(x, t + h))2 at horizon h.

6. Stacked Regression Ensemble

The stacked regression ensemble combines point forecasts from multiple base learners using weights that optimize a
cross-validation criterion (Wolpert 1992). The base learners can, for example, be a family of generalized age-period-
cohort discrete-time mortality models. The stacked regression ensemble often proceeds in two steps in generating the
final predictions. The first step consists of multiple base models which separately generate cross-validated predictions
from the training data. The predictions from various models and the observed response variable constitute the
metadata. Secondly, a meta-learner is trained on the metadata to learn the optimal weights for combining multiple
base learners while minimizing the cross-validation criterion. Figure 4 schematizes the implementation of the stacked
regression ensemble framework when forecasting three-year ahead mortality rates.

Mortality Data

Age

Year

Age

Age

Year

Year

Training models using data in blue

Metadata

Fold Predictions ObsPredict mortarity
rates in red

Meta learner

Super learner

Test data

Training base learner
on the entire data set

Weights

Final Predictions

Block Cross-Validation folds

Collection of Models

to estimate

Year

Age

Figure 4: Stacked regression ensemble framework when forecasting three-year ahead mortality rates. The framework
can be generalized for predicting mortality rates in any forecast horizon by varying the width of the testing data in
red.

Like the standard model combination approaches, the stacked regression ensemble combines the mortality rate
forecasts as a linear combination of individual mortality model forecasts. However, in the stacked regression ensemble,
the combination weights are viewed as coe�cients of a linear regression problem in which the observed mortality
rates are treated as the dependent variable and the point forecasts from the individual mortality models are treated

11



as the independent variables. That is

ln µ(x, tny + h)
¸ ˚˙ ˝

Dependent variables

=
Mÿ

m=1

wm(h)¸ ˚˙ ˝
coe�cients

ln ‚µm(x, tny + h)
¸ ˚˙ ˝

covariates

, (16)

where ln µ(x, t + h) are observed mortality rates and ln ‚µm(x, t + h) are the mortality rate forecasts from individual
models generated via cross-validation. For each forecast horizon h, the set of combining weights wm(h) ’m = 1, . . . , M

are learned using any supervised machine learning algorithm that optimizes the respective loss function (Gunes,
Wolfinger, and Tan 2017). The squared loss function is usually preferred (Wolpert 1992). The optimization is
constrained such that these weights sum to one.

6.1. Implementation of Stacked Regression Ensemble

We combine the individual mortality rate forecasts linearly using the stacked regression ensemble via block cross-
validation as follows:

1. Split the mortality data into the in-sample data to train the model and validation set for model performance
testing. We use two-thirds of the data to train the model and the remaining data for model testing.

2. Fit each base learner L1, . . . , LM on the training data Dk
train

= {(x, t)}t”œ[k+1,k+h], ’k = t1, . . . , tny ≠h depending
on the forecasting horizon and ages x œ [x1, xna ]. For instance, we train each mortality base learners on the
training data set shown in blue in Figure 2 to forecast one-year-ahead (h = 1) and three-years-ahead (h = 3)
mortality rates, respectively.

3. For each mortality base learner L1, . . . , LM , predict the mortality rates ln ‚µ(x, t + h) using the test data set
Dk

test
= {(x, t)}t=k+h, ’k = t1, . . . , tny ≠ h for di�erent forecasting horizons and ages x œ [x1, xna ]. For instance,

we predict the mortality rates shown in red in Figure 2 for h = 1 and h = 3, respectively. Let h = 1, . . . , H be the
forecasting horizon for estimating the weights w(h). Also, let the predictions of a base learner m, m = 1, . . . , M

for the forecasting horizon h, h = 1, . . . , H on the entire test data be an na ◊ n
ú
y(h) dimensional matrix Z

h
m

with n
ú
y(h) = ny ≠ h. Let z

h
m = vec(Zh

m) be the vectors of predictions from a base learner m on the test set. The
operator vec stacks the columns of Z

h
m in column order on top of each other. Therefore, for any base learner

m, z
h
m = [ln ‚µm(x1, t1 + h), . . . , ln ‚µm(xna , t1 + h), . . . , ln ‚µm(x1, tny ), . . . , ln ‚µm(xna , tny )]Õ. For each forecasting

horizon h, the matrix Dh of M columns (base learners) and na ◊ n
ú
y(h) rows is given by

Dh = [zh
1

, . . . , z
h
M ].

The matrix Dh along with the observed mortality rates ln µ(x, t) forms the metadata. With these metadata we
formulate the following linear regression

y
h = Dh

w(h), (17)

where w(h) = [w1(h), . . . , wM (h)]Õ and y
h is the corresponding observed mortality rates with na ◊ n

ú
y(h) rows

given by y
h = [ln µ(x1, t1 + h), . . . , ln µ(xna , t1 + h), . . . , ln µ(x1, tny ), . . . , ln µ(xna , tny )]Õ. The parameter, w(h),

of the linear regression Equation (17) can be estimated using any supervised machine learning algorithm or
meta-learner.

4. Estimate the optimal weights w(h) in Equation (17) using a meta-learner. The optimal weights are estimated
by regressing the dependent variable y

h on to the cross-validation predictions of base models Dh. Intuitively,
the weighting coe�cients indicate the forecasting strength of each base learner at a particular horizon.

5. Predict the unseen data by fitting the base learners L1, . . . , LM on the in-sample data, and use them to predict
mortality rates on the validation set. Finally, combine these predictions using Equation (10).

6.2. Base Learners Integration

Any supervised machine learning algorithm can be used as a meta-learner for optimally estimating the weights in
Equation (17) to combine multiple mortality models (Gunes, Wolfinger, and Tan 2017). Standard least squared
regression is the simplest meta-learner we could first consider (Khairalla et al. 2018). Thus, using the metadata
Dh = [zh

1
, . . . , z

h
M ], the weighting coe�cients ‰wm

ú(h) in Equation (10) are determined as the minimizers of
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‚wú(h) = argmin
w(h)

Nÿ

i=1

A
y

h
i ≠

Mÿ

m=1

wm(h)zh
im

B2

, (18)

where N = na ◊ n
ú
y(h). Standard least squared regression tends to perform poorly because of the variability of

weighting coe�cients (James et al. 2014).

Breiman (2004) applied non-negative least squared regression to estimate the weighting coe�cients by optimizing
Equation (18) such that it restricts all the weighting coe�cients to be positive ‰wm

ú(h) > 0, ’m = 1, . . . , M . The
non-negativity condition ensures that the predictive accuracy of the stacked regression ensemble in Equation (10) is
better than selecting the single best individual mortality model (Breiman 2004). Also, the positive weights increase
the ensemble interpretability (Gunes, Wolfinger, and Tan 2017). Linear and non-negative least squared regressions are
preferred as meta-learners when the base learners are less correlated because these methods cannot penalize highly
correlated base learners (James et al. 2014).

Typically, regularization methods such as lasso, ridge, and elastic net regressions are used to reduce overfitting and
increase the predictive accuracy of the stacked regression ensemble (Breiman 2004). In lasso regression, we estimate
the weights as

‚wú(h) = argmin
w(h)

Nÿ

i=1

A
y

h
i ≠

Mÿ

m=1

wm(h)zh
im

B2

+ ⁄

Mÿ

m=1

|wm(h)|, (19)

where ‚wú(h) œ RM is a vector of optimal weighting coe�cients (James et al. 2014). Equation (19) has a tuning
parameter ⁄ that controls the degree of shrinkage applied to the weights of the resulting stacked regression ensemble. If
the penalty parameter ⁄ is chosen correctly, the total generalization error will decrease, and the resulting ensemble will
be more stable (Gunes, Wolfinger, and Tan 2017). This penalty parameter is optimally determined via cross-validation
(Gunes, Wolfinger, and Tan 2017). Lasso regression can force some weighting coe�cients to be identically zero if the
constraint ⁄ is tight enough, which results in a simple and interpretable ensemble. Therefore, lasso regression can be
used as a pruning tool in which only some mortality models will contribute to the final mortality rate forecasts. In
the presence of groups of correlated base learners, lasso regression indi�erently selects only one base learner from each
group (Ahrens, Hansen, and Scha�er 2019).

Ridge regression can be used when all the base learners are relevant in the ensemble presented in Equation (10).
Ridge shrinks all of the weighting coe�cients towards zero via shrinkage parameter ⁄, however, none of them will be
set exactly to zero (James et al. 2014). Ridge regression approximates the weighting coe�cients by minimizing the
quantity

‚wú(h) = argmin
w(h)

Nÿ

i=1

A
y

h
i ≠

Mÿ

m=1

wm(h)zh
im

B2

+ ⁄

Mÿ

m=1

w
2

m(h).

Ridge regression tends to give small and well-distributed weights in Equation (10).

The elastic net regression can be used to keep or drop the correlated base learners jointly (Ahrens, Hansen, and
Scha�er 2019). When there are many accurate individual mortality models to combine, their mortality rate forecasts
will be correlated, and the elastic-net linear regression will be able to perform groupwise selection. The elastic net
regression combines the ¸1 and ¸2 properties of lasso and ridge regressions, respectively into

‚wú(h) = argmin
w(h)

Nÿ

i=1

A
y

h
i ≠

Mÿ

m=1

wm(h)zh
im

B2

+ ⁄1

Mÿ

m=1

w
2

m(h) + ⁄2

Mÿ

m=1

|wm(h)|.

The elastic net produces a sparse ensemble depending on the choices of ⁄1 and ⁄2 (James et al. 2014).

7. Empirical Results
For our empirical results, we use mortality data from the Human Mortality Database provided by the University of
California Berkeley and Max Planck Institute for Demographic Research (2020). The years of data vary by country,
but for consistency, we consider the period of 1960 to 2015. There are 22 countries with reliable and quality data for
this period, for both males and females, which provides 44 empirical datasets for testing the performance of stacked
regression ensembles. To illustrate the application of stacked regression ensemble, we first consider in Subsection 7.1
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the commonly referenced mortality data of England and Wales for both males and females. Then, in Subsection 7.2,
we present the results of applying the stacked regression ensemble to 44 populations.

In all cases, we use mortality data from 1960 to 1990 to train six individual mortality models via cross-validation.
Additionally, we consider the restricted age range 50 to 89, the range of greatest interest to pensions and annuities
providers (Currie 2016). The fitted individual mortality models are used to predict one to 15-year-ahead mortality
rates. That is because pension funds and life insurers are principally interested in accurate mortality rate forecasts in
longer forecasting horizons. However, it is challenging to achieve accurate mortality rate forecasts in longer forecasting
horizons because of the limited historical mortality data, and mortality models lose their forecasting strength as the
horizon lengthens. The mortality rate forecasts from these individual mortality models are combined using di�erent
model combination methods.

7.1. Application of Stacked Regression Ensemble to England and Wales

7.1.1. Mortality Model Selection Dilemma

Table 2 presents the performance of di�erent GAPC mortality models using AIC, BIC, and CVMSE for England and
Wales males. Both AIC and CVMSE concurrently choose RH as the best mortality model while BIC chooses M7 for
males. The CVMSE chooses APC as the second-best model while AIC and BIC select PLAT and RH, respectively.
For the third-best model, CVMSE chooses di�erent models depending on the forecasting horizons while AIC and
BIC select M7 and PLAT, respectively. Based on all the selection criteria, LC and CBD are the worst-performing
mortality models because of their non-inclusion of cohort e�ects dominant in England and Wales mortality data
(Villegas, Kaishev, and Millossovich 2018). These results align with the findings in Cairns et al. (2009) and Atance,
Debón, and Navarro (2020) that di�erent model selection criteria can lead to di�erent mortality model choices.

Table 2: Values of AIC, BIC, and CVMSE (with their respective rankings shown in parentheses) for the di�erent
GAPC mortality models fitted to the England and Wales males population for ages 50≠89 and the period 1960≠1990.
The values of CVMSE at di�erent forecasting horizons namely one, five, ten, and 15 year-ahead are presented.

Criterion LC RH APC CBD M7 PLAT
AIC 19076.90 (5) 15133.12 (1) 16005.34 (4) 37906.72 (6) 15216.00 (3) 15189.67 (2)
BIC 19635.30 (5) 16039.86 (2) 16712.30 (4) 38224.34 (6) 16035.66 (1) 16045.19 (3)
CVMSE (h = 1) 0.001750 (5) 0.001150 (1) 0.001300 (2) 0.006100 (6) 0.001310 (4) 0.001300 (3)
CVMSE (h = 5) 0.003120 (5) 0.001270 (1) 0.001780 (2) 0.007410 (6) 0.002350 (3) 0.002400 (4)
CVMSE (h = 10) 0.005670 (5) 0.001190 (1) 0.002490 (2) 0.009600 (6) 0.004110 (3) 0.004120 (4)
CVMSE (h = 15) 0.008320 (5) 0.002050 (1) 0.003680 (2) 0.012500 (6) 0.005950 (4) 0.005580 (3)
�m(AIC) 3943.78 0 872.22 22773.6 82.88 56.55
Note: Values of CVMSEs for all the forecasting horizons are presented in the top panel of Figure 5.
AIC Di�erence: 1 �m(AIC) = AICm ≠ min(AICm).

The cross-validation criterion allows the influence of the forecasting horizon in selecting the best mortality model.
Conversely, both AIC and BIC are not customized to a specific forecasting horizon. Hence, they are less e�ective in
choosing mortality models for longer forecasting horizons. Table 2 further shows that the values of di�erent model
selection criteria di�er minimally from each other for some mortality models. Therefore, it is hard to know how
much statistical importance we should attach to a di�erence in the values of the selection criteria between the single
best model and the next best model (Wagenmakers and Farrell 2004). For instance, RH and M7 have BIC values of
16039.86 and 16035.66, respectively for males. Traditionally, we would choose M7 over RH based on a small di�erence
of 4.2 on their BIC values, but it is questionable to select a single model given such small di�erences among the models
(Wagenmakers and Farrell 2004). Moreover, we compare only a few mortality models in Table 2 which does not
guarantee that the single best-selected mortality model will represent the underlying true mortality data-generating
process.

Di�erent model selection criteria can choose di�erent single best mortality models with di�erent out-of-sample
performances. For example, in Table 2, BIC chooses M7 as the best mortality model for England and Wales males.
However, as depicted in Figure 5 (Lower left panel), this model consistently outperforms other mortality models only
on one-to-five-ahead mortality rate forecasts and performs poorly in the medium and long horizons1. Furthermore,

1
In this study, the short-term horizon corresponds to a period of one-to-five years, medium-term horizon corresponds to a period of
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Figure 5: Top panel shows the CVMSEs of the one-step-ahead to 15-step-ahead mortality rate forecasts using di�erent
mortality methods and forecast horizons for England and Wales male mortality data (Top left panel) and females (Top
right panel). The CVMSEs are estimated using mortality data from 1960 to 1990 for ages 50 to 89 via cross-validation.
The lower panel shows the MSEs of one-step-ahead to 15-step-ahead mortality rate forecasts using di�erent mortality
methods and forecast horizons for England and Wales male mortality data (Lower left panel) and females (Lower
right panel). The MSEs are estimated using mortality data from 1991 to 2015 for ages 50 to 89.

the RH model, which is the best mortality model by both the AIC and CVMSE criteria, is outperformed by the M7
model at least in short-term male mortality rate forecasts. This presents subjectivity to the mortality forecasters on
which model selection criteria to employ.

The forecasting model selection paradigm assumes that the chosen single best mortality model is close to the underlying
true mortality model. However, it is di�cult to identify one mortality forecasting method that performs consistently
well over all the forecasting horizons and for both males and females, making the choice of the single best forecasting
mortality model a challenging task. Prudent mortality forecasters should acknowledge model risk and take advantage
of combining various mortality models with di�erent forecasting abilities instead of selecting the single best forecasting
mortality model (Cairns et al. 2011).

7.1.2. Mortality Model Combination Using Stacked Regression Ensemble

As shown in the lower panel of Figure 5, multiple mortality forecasting techniques generate forecasts with varying
prediction accuracies. Forecasts from a particular mortality model, for example, RH provides additional information,
especially in longer horizons than forecasts from other forecasting techniques such as M7. This reveals that multiple
mortality models satisfactorily learn di�erent parts of the mortality data at di�erent forecasting horizons. Their
combinations complement each other, leveraging their advantages and avoiding their drawbacks.

7.1.2.1. Comparisons of the Point Forecast Accuracies

Before combining multiple GAPC mortality models, we test whether their mortality rate forecasts at di�erent
forecasting horizons are statistically di�erent from each other. The distribution of MSEs for di�erent mortality
models at di�erent forecasting horizons is not normally distributed. That allows us to employ the Friedman test, a
non-parametric test that does not depend on the distributional assumptions of the data (see Appendix A) (Friedman
1937). The p≠values are 1.518 ◊ 10≠11 and 2.137 ◊ 10≠12 for England and Wales males and females, respectively. The
p≠values are both less than a customary 5% level of significance. Thus, we reject the null hypothesis that there is no
di�erence in the forecasting accuracy among the compared individual mortality models. Shang (2015) also reports

six-to-10 years, and long-term horizon as a period of 11-to-15 years.
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Figure 6: Component models weights for males: Horizon-specific optimal combining weights learned using di�erent
model combinations for England and Wales males mortality data from 1960 to 1990 and ages 50 to 89.

that the forecasting accuracy of di�erent individual mortality models is statistically di�erent from each other. This
indicates that the GAPC models produce di�erent mortality forecasts for both males and females, and hence they
can be combined using multiple model combination methods.

7.1.2.2. Combination Weights for Mortality Models

We estimate the weights of the individual mortality models using multiple model combination approaches described
in Section 5 and 6. Namely, we apply Simple Model Averaging (SMA), Bayesian Model Averaging using a projection
bias estimated from a single withheld data (BMAB), Bayesian Model Averaging using a projection bias estimated
from a cross-validation approach (BMABC), and Bayesian Model Averaging using cross-validation mean squared
error (BMAC). We also use a model confidence set based on single validation and cross-validation approaches, which
we refer to as MCSV and MCSC, respectively. Finally, we apply stacked regression ensemble using lasso regression
(SRLa), ridge regression (SRR), elastic net regression (SRE), non-negative least square regression (SRN), and linear
regression (SRL) as meta-learners. We did not implement the Bayesian Model Averaging which uses modified Akaike
Information Criteria in Equation (13) because as shown in Table 2, most of the individual models have �m(AIC) > 4
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Figure 7: Component models weights for females: Horizon-specific optimal combining weights learned using di�erent
model combinations for England and Wales females mortality data from 1960 to 1990 and ages 50 to 89.

(Pi≥atowska 2009). This implies that all models are assigned zero weights except for the mortality model with the
smallest AIC and hence the combination will include only one individual mortality model (see Barigou et al. (2021)).
In all cases, we normalize the weights of the six mortality models to sum to one.

Figures 6 and 7 depict the corresponding weights for males and females, respectively. The weights estimated
using BMAB, BMABC, BMAC, MCSC, and MCSV vary less among the individual mortality models and over the
forecasting horizons. The BMAB, BMABC, and BMAC assign weights to individual mortality models which are close
to the weighs from SMA. Shang and Booth (2020) report similar findings that the combination weights estimated
using BMA approaches do not vary much over the forecasting horizons. This is because the weights estimated using
these approaches do not reflect the ability of the model to generalize on the new unknown future mortality data.
Additionally, all BMA approaches do not perform model selection and assign small and well-distributed weights to all
the six mortality models. For the model confidence set approaches, all the selected superior models are combined
using equal weights. At a 90% confidence level, MCSC chooses {RH} for females and males over all the forecasting
horizons, respectively while MCSV chooses {RH} and {RH, APC, CBD} for females and males, respectively.

The stacked regression ensemble learns horizon-specific optimal weights for combining individual mortality models at
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di�erent forecasting horizons using di�erent meta-learners. The mortality models with stronger predictive strength for
a given horizon receive higher weights. This can be seen from the top panel of Figure 5, which indicates that models
with the lower CVMSE get higher proportional weights. For instance, RH generalizes well for the new unknown
future mortality data and hence gets higher weights that increase with the forecasting horizons. Other models such as
LC, APC, CBD, M7, and PLAT receive corresponding smaller weights that decrease with the forecasting horizons
across all the meta-learners.

The size of the weight assigned to a particular model using the stacked regression ensemble also depends on how the
model di�ers from other mortality models. Both lasso and elastic net linear regressions give zero weights to some of
the models with similar predictive ability. The less significant mortality models are more shrunk and hence contribute
less to the combined mortality rate forecasts. For instance, from Figure 5 (Top left panel), the set of mortality
models {APC, RH}, {M7, PLAT}, and {LC, CBD} generate closely related CVMSEs, respectively for males. In such
situations where groups of individual mortality models have similar predictive ability, lasso indi�erently selects only
one mortality model from each group and the models with the complex structures2 such as M7 and PLAT are highly
penalized due to their poor out-of-sample performance. Therefore, as shown in Figure 6, LC and RH are selected
from each group, and complex models, M7 and PLAT are zero-weighted as a result of penalization. In contrast, in
the same situation, elastic net regression does a group-wise selection of the individual mortality model. For instance,
Figure 6 shows that the mortality models from each group get a smaller fraction of weights.
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Figure 8: Out-of-sample performance of di�erent models: MSEs of the one-step-ahead to 15-step-ahead mortality
rate forecasts using di�erent mortality methods and forecast horizons for England and Wales male mortality data
(Left panel) and females (Right panel). The MSEs are estimated using the mortality data from 1991 to 2015 for ages
50 to 89. The values of MSEs for the mortality rate forecasts of males and females generally increase linearly with
increasing forecast horizon.

Linear and non-negative least squares regressions estimate weights which are close to each other except that linear
regression allows negative weights to some of the poorly performing individual mortality models such as M7 for
females as shown in Figure 5 (Top right panel). SRL assigns negative weights to PLAT because the information
in PLAT is better captured by M7. In contrast, non-negative least squares regression assigns zero weights to the
poorly performing individual mortality models. Ridge regression assigns a small proportion of weights that are well
distributed to all the six mortality models. The weights estimated from ridge regression are more consistent than linear
regression over the forecasting horizons and among the models because ridge regression shrinks all the weights. The

2
These are the mortality models with many numbers of parameters. M7 and PLAT have 3ny + nb and na + 3ny + nb number of

parameters, respectively.
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Table 3: Percentage improvement over the best model combination for males: MSEs (◊103) of male mortality rates
for one-year-ahead to 15-year-ahead forecasts by model and forecast horizon. The SRE approaches produce gains in
point forecast accuracy of 33% to 84% over the six individual mortality models for males. The underlined and bolded
values correspond to the smallest MSE within the forecast horizon.

Horizon LC RH APC CBD M7 PLAT SMA BMAB BMABC BMAC MCSV MCSC SRL SRN SRR SRLa SRE
1 4.02 1.1 2.22 4.13 0.95 1.13 1.11 1.1 1.1 1.11 1.1 1.1 1.02 0.97 1.1 1.87 1.06
2 4.95 1.6 2.88 4.97 1.41 2.01 1.49 1.49 1.49 1.49 1.6 1.6 1.64 1.41 1.48 1.8 1.41
3 6.13 2.29 3.81 6 2.26 3.6 2.12 2.11 2.11 2.12 2.29 2.29 2.27 1.96 2.1 1.89 1.96
4 7.86 3.13 4.99 7.54 3.48 5.95 3.05 3.03 3.05 3.05 3.13 3.13 3.2 2.59 3.02 2.24 2.73
5 9.82 4.01 6.34 9.2 4.88 8.92 4.1 4.08 4.1 4.1 4.01 4.01 4.36 3.52 4.05 2.66 2.92
6 12.32 4.59 7.91 11.63 6.69 12.67 5.45 5.41 5.44 5.44 4.59 4.59 4.16 3.75 5.35 2.89 2.97
7 15.4 5.38 9.78 14.63 9 17.14 7.18 7.14 7.18 7.18 5.38 5.38 5.7 4.97 7.02 3.61 3.41

8 18.96 6.09 11.84 18.13 11.67 22.3 9.19 9.12 9.18 9.18 6.09 6.09 7.52 6.08 8.92 4.36 3.6

9 23.44 7.24 14.26 22.46 15.07 28.18 11.84 11.75 11.84 11.83 7.24 7.24 9.79 7.24 11.43 5.72 4.43

10 28.46 7.99 16.88 27.51 18.67 34.86 14.66 14.55 14.67 14.65 7.99 7.99 11.22 7.99 14.1 6.52 4.94

11 34.08 9.07 19.7 33.28 22.86 42.06 17.96 17.83 17.97 17.94 9.07 9.07 13.42 8.99 17.21 7.53 5.77

12 39.97 10.22 22.35 39.21 27.1 49.4 21.27 21.11 21.29 21.25 10.22 10.22 16.72 10.22 20.28 9.19 6.8

13 46.74 11.09 25.23 46.2 31.79 57.43 24.98 24.8 25.01 24.96 11.09 11.09 17.44 10.6 23.8 10.12 6.93

14 54.33 12.71 28.12 53.88 36.84 65.17 29.08 28.86 29.12 29.05 12.71 12.71 23.9 12.71 27.6 12.6 9.06

15 61.72 14.09 30.83 61.49 41.64 72.84 32.94 32.69 32.98 32.9 14.09 14.09 23.5 13 31.32 12.56 9

Mean 24.55 6.71 13.81 24.02 15.62 28.24 12.43 12.34 12.44 12.42 6.71 6.71 9.72 6.4 11.92 5.71 4.47

% Gain 81.81 33.42 67.66 81.41 71.42 84.19 64.07 63.81 64.1 64.04 33.42 33.42 54.08 30.23 62.54 21.74 0

Average Rank 16.2 6.17 13.13 15.47 11.73 16.07 10.8 8.27 10.33 9.67 6.17 6.17 7.73 3.03 7.2 3.27 1.6

Note:
% Gain =

1
1 ≠ Mean of the Best combined Method

Mean of the Typical Method

2
◊ 100%.

complex mortality models such as M7 and PLAT receive the least and decreasing weights over forecasting horizons,
reflecting the fact that these models tend not to generalize well in longer forecasting horizons. On the contrary, simple
models such as LC, RH, and APC generalize well in longer horizons and hence receive a considerable proportion of
the weights as the forecasting horizon lengthens.

7.1.2.3. Final Mortality Rate Forecasts

After estimating the optimal weights as illustrated in Figures 6 and 7, we can produce the final mortality rate
forecasts using Equation (10). For instance, using SRE, the super-learner mortality model for forecasting one-year-
ahead males mortality rate forecasts is given by combining the individual mortality models LC, RH, APC, CBD,
M7, and PLAT using their corresponding weights 0.18, 0.18, 0.18, 0.14, 0.17, and 0.18. Similarly, the 15-year-ahead
males mortality rate forecasts is obtained by combining LC, RH, CBD, APC, and PLAT with their corresponding
weights 0.22, 0.48, 0.04, 0.04, and 0.23. Thus, the super-learner mortality models for forecasting one-year-ahead and
15-year-ahead males mortality rates are respectively given by

ln
!
‚µ(x, tny+1)

"
SRE

= 0.18 ◊ „LC + 0.18 ◊ ‰RH + 0.17 ◊ „M7 + 0.18 ◊ \PLAT + 0.18 ◊ [APC + 0.14 ◊ [CBD, (20)

ln
!
‚µ(x, tny+15)

"
SRE

= 0.22 ◊ „LC + 0.48 ◊ ‰RH + 0.23 ◊ \PLAT + 0.04 ◊ [APC + 0.04 ◊ [CBD, (21)

where „LC, ‰RH, [APC, [CBD, „M7, and \PLAT represent the log-mortality rate forecasts from each of the individual
models.

Noticeably, the weights of each of the individual mortality models that form the one-year-ahed and 15-year-ahead
super-learner mortality model in Equations (20) and (21) di�er. In one-year-ahead mortality rate forecasts, complex
mortality models, namely M7 and PLAT, contribute 35% of the weights in the ensemble while the simple and more
accurate models get the remaining weights. However, as the forecasting horizon increases to 15-year-ahead, complex
mortality models do not generalize well to the new unknown future mortality data and lose their forecasting ability,
and hence their contribution decreases to 23%.

7.1.2.4. Performance of Stacked Regression Ensemble

Figure 8 presents the performance of di�erent methods measured in MSEs over di�erent forecasting horizons. The
stacked regression ensembles, namely SRN, SRLa, and SRE, consistently outperform individual mortality models
in predicting the mortality rates over all the forecasting horizons using England and Wales mortality data. This
improved forecast accuracy reflects the fact that the stacked regression ensemble optimally combines the features of
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Table 4: Percentage improvement over the best model combination for females: MSEs (◊1000) of female mortality
rates for one-year-ahead to 15-year-ahead forecasts by model and forecast horizon. The SRN approaches produce
gains in point forecast accuracy of 15% to 89% over the six individual mortality models for females. The underlined
and bolded values correspond to the smallest MSE within the forecast horizon.

Horizon LC RH APC CBD M7 PLAT SMA BMAB BMABC BMAC MCSV MCSC SRL SRN SRR SRLa SRE
1 4.7 1.26 2.03 8.42 1.39 1.39 1.55 1.56 1.55 1.55 1.99 1.26 1.21 1.21 1.54 1.65 1.5
2 5.59 1.64 2.28 9.09 2.33 1.62 1.87 1.87 1.87 1.87 2.16 1.64 1.42 1.42 1.86 1.81 1.81
3 6.93 2.25 2.91 9.49 4.31 2.34 2.51 2.51 2.51 2.51 2.46 2.25 1.78 1.8 2.5 2.15 2.44
4 8.59 2.88 3.54 9.93 7.12 3.26 3.3 3.29 3.3 3.3 2.73 2.88 2.08 2.18 3.27 2.68 3.19
5 10.4 3.52 4.27 10.48 10.71 4.39 4.2 4.18 4.2 4.19 2.98 3.52 2.44 2.59 4.16 3.07 4
6 12.66 4.03 5.26 11.46 15.66 6.01 5.47 5.44 5.47 5.47 3.35 4.03 2.71 2.94 5.41 3.55 5.1
7 15.11 4.38 6.19 12.58 21.43 7.74 6.81 6.77 6.81 6.81 3.63 4.38 2.88 3.14 6.7 3.78 5.57
8 17.86 4.57 7.23 13.84 28.55 9.79 8.43 8.37 8.42 8.42 3.94 4.57 3.65 3.57 8.24 3.73 4.82
9 21.04 5.22 8.45 15.5 36.71 12.01 10.46 10.38 10.45 10.45 4.65 5.22 4.25 4.09 10.17 4.33 5.92
10 24.38 5.41 9.62 17.23 46.14 14.41 12.51 12.41 12.49 12.5 5.08 5.41 4.44 4.43 12.12 4.49 6.38
11 28.54 6.22 11.37 19.77 57.19 17.5 15.34 15.22 15.31 15.32 6.14 6.22 5.36 5.22 14.83 5.39 7.23
12 32.23 6.74 12.44 21.82 68.74 20.01 17.67 17.52 17.61 17.64 6.62 6.74 6.98 6.47 17.04 5.54 6.64
13 36.53 7.41 14.09 24.4 82 23.19 20.63 20.45 20.56 20.59 7.51 7.41 6.84 6.75 19.88 6.21 8.99
14 40.44 8.79 15.61 26.76 95.54 25.99 23.42 23.22 23.35 23.38 8.45 8.79 10.44 8.79 22.5 7.21 8.16
15 44.33 10.18 16.83 29.16 110.19 28.69 26.14 25.91 26.03 26.09 9.15 10.18 9.04 8.94 25.13 8.57 10.12
Mean 20.62 4.97 8.14 15.99 39.2 11.89 10.69 10.61 10.66 10.67 4.72 4.97 4.37 4.24 10.36 4.28 5.46

% Gain 79.45 14.67 47.95 73.51 89.19 64.36 60.36 60.05 60.26 60.3 10.28 14.67 2.99 0 59.09 0.94 22.38

Average Rank 15.93 5.2 10 15.6 15.87 11.73 12.6 10.2 11 11.4 5.33 5.2 2.4 1.87 8.8 3.53 6.33

Note:
% Gain =

1
1 ≠ Mean of the Best combined Method

Mean of the Typical Method

2
◊ 100%.

di�erent mortality models to form a super-learner mortality model which captures the features of the mortality data
more adequately than any of the single mortality models.

Figure 8 also shows that the stacked regression ensembles, namely SRN, SRLa, and SRE, consistently outperform all
other model combination methods over all the forecasting horizons using England and Wales mortality data. Notably,
the competitive performance of the stacked regression ensemble is evident in medium and long-term forecasting
horizons. The stacked regression ensemble assigns weights that reflect the out-of-sample performance of the mortality
models and incorporate future mortality data uncertainty into the weights. The stacked regression ensemble also
selects and combines individual mortality models simultaneously. This inherent feature in the stacked regression
ensemble assigns higher weights to the individual GAPC mortality models, which generalize well to the new unknown
future mortality data. In other model combinations, the model selection and model combination are treated as
separate processes. Therefore, mortality models that do not generalize well on unseen data can be combined with
good models, reducing the performance of a model combination. Finally, shrinkage techniques allow only accurate
and diverse models to form the super-learner mortality model, improving forecasting accuracy.

Figure 8 further shows that SMA, BMABC, BMAB, BMAC, and SRR produce consistently close mortality rate
forecasts for both genders, reflecting the fact that these methods assign approximately the same proportion of weights
to all the individual mortality models over the forecasting horizons. All forms of Bayesian model combinations perform
poorly compared to the stacked regression ensembles because they assign weights to the individual mortality models
that reflect their goodness of fit rather than their ability to generalize the new unknown future mortality data. This
poor performance of the Bayesian model averaging is consistent with previous research (Clarke 2004; Shang 2012;
Shang and Booth 2020). Similar to Kontis et al. (2017), for all model combination methods, the improvement in
forecasting performance becomes evident as the forecasting horizon increases. This is because the e�ects of mortality
model misspecification are reduced through averaging compared to the case of the individual models, where the e�ects
are accumulated over the forecasting horizons.

Tables 3 and 4 present the percentage improvement of out-of-sample mortality forecast accuracy based on one-year-
ahead to 15-year-ahead MSEs. The percentage improvement measures the magnitude to which the MSEs of the
best model combination is smaller than the MSEs of a typical mortality model across the forecasting horizons. The
smallest mean values of MSEs are 0.00447 (SRE) and 0.00424 (SRN) for males and females, respectively. The SRE
and SRN indicate gains in prediction accuracy over the six individual mortality models of 33% to 84% and 15%
to 89% for males and females, respectively. The SRE and SRN achieved a percentage improvement of 33.42% and
14.67% over the RH model, which is the best mortality model selected based on both AIC and CVMSE criteria for
males and females, respectively. By contrast, the model averaging methods based on the Bayesian approach perform
poorly for both males and females for similar reasons given before. Both MCSV and MCSC achieved relative better
performance than the simple model averaging for both males and females because they choose and combine only the
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superior mortality models3 using equal weights.
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Figure 9: Base error reduction (BER) for the top-ranked model combination methods, namely SRE and SRN for
males and females, respectively. The BER is computed based on di�erent individual mortality models for England
and Wales male and female mortality data.

The model combination approach achieve better predictive accuracy than the individual mortality models, in the
process reducing model selection risk. The range of the MSEs of multiple model combination methods is 0.00797 and
0.00645 for males and females, respectively. By contrast, the corresponding range for the individual mortality model
is 0.0215 and 0.0342 for males and females, respectively. This signifies that even when the model combination is not
over all the best among the individual models, we can use it to forecast the mortality rates because it reduces the
model selection risk. The strength of the stacked regression ensemble is further confirmed by being ranked at the top
of both individual and combined mortality models in terms of the average ranking of the MSEs over the forecasting
horizons. The top three mortality models in terms of the MSEs are all the stacked regression ensembles, namely SRE,
SRN, and SRLa; and SRN, SRLa, SRL for males and females, respectively. The same models are also confirmed in
terms of the average ranking of the models.

To further illustrate the forecasting strength of the stacked regression ensemble (SR), we plot in Figure 9 the base
error reduction (BER) which is the di�erence between the MSEs of base learners and stacked regression ensemble
given by

BER = MSEBase Learner ≠ MSESR.

The base error reduction gives a better indicator of the improvement in the stacked regression ensemble performance
over the base learners (Aldave and Dussault 2014). A positive di�erence shows that performance accuracy is in favor of
the stacked regression ensemble and vice versa. The bigger the BER, the better the stacked regression ensemble, and
it represents a bigger gain in prediction accuracy of the stacked regression ensemble than individual mortality models.
As depicted in Figure 9, both SRE and SRN have positive BER even for the single best mortality model selected
by AIC, BIC, or CVMSE for males and females, respectively. Also, as shown in Figure 9, the forecasting accuracy
gains of the stacked regression ensemble becomes more apparent as the forecasting horizon increases. For example,
the predictive accuracy at a 15-year horizon is 13 and eight times worse than when predicting at a one-year horizon
using RH and SRE, respectively for males. That is because the uncertainity4 among the individual mortality models
increases with the forecasting horizon. This implies that mortality rate forecasts from di�erent mortality models
diverge as the uncertainty rises. Additionally, the mortality rate features change over time, and in longer forecasting
horizons, they can be better captured through combining multiple mortality models than using an individual mortality

3
MCSC and MCSV select RH as the only superior model for males and hence it is not combined with other models. Therefore, MSEs

of RH are similar to both MCSC and MCSV. For females, MCSV selects RH as the only superior model.
4
Uncertainity is the di�erence between the highest and lowest mortality rate forecasts at any given forecasting horizon.

21



Males

Mean Ranks

SRE − 1.93

SRLa − 3.27

SRN − 3.30

RH − 6.23

MCSV − 6.23

MCSC − 6.23

SRR − 7.63

SRL − 7.67

BMAB − 8.70

BMAC − 9.40

BMABC − 9.93

SMA − 10.10

M7 − 11.80

APC − 13.13

CBD − 15.47

PLAT − 15.77

LC − 16.20

0 5 10 15 20

Females

Mean Ranks

SRN − 1.90

SRL − 2.40

SRLa − 3.57

RH − 5.20

MCSC − 5.20

MCSV − 5.53

SRE − 6.40

SRR − 9.37

APC − 10.00

BMAB − 10.40

BMABC − 11.00

BMAC − 11.33

SMA − 11.43

PLAT − 11.93

CBD − 15.60

M7 − 15.80

LC − 15.93

0 5 10 15

Figure 10: Multiple comparison with the best style plot for the mortality models considered for England and Wales
males (Left panel) and females (Right panel). The average ranks are computed according to MSEs across the
forecasting horizons at a customary 5% level of significance. Any mortality model with mean rank (plotted with
•) outside the grey bounds indicating significant di�erences. The number along the y≠ axis represents the average
ranking of mortality model over the forecasting horizons. The smaller numbers represent models with better predictive
accuracy.

model (Kontis et al. 2017). Therefore, this confirms that stacked regression ensemble should be preferred relative to
individual mortality models in predicting mortality rates in longer forecasting horizons.

7.1.2.5. Statistical Test of Forecasting Accuracies

Finally, we perform a statistical test on the MSEs across the forecasting horizons to check whether the mortality
rate forecasts from both the individual and combined mortality models are statistically di�erent from each other.
The Friedman test gives p≠values of 1.889 ◊ 10≠32 and 1.652 ◊ 10≠34 for males and females, respectively. As these
p≠values are less than the customary 5%, we confidently reject the null hypothesis that the forecasting accuracy
of models is the same. We can then employ the Nemeyi test to identify explicitly models which are statistically
di�erent from each other (see Appendix A). Figure 10 displays the average ranks of di�erent mortality models. If
the confidence interval5 of two mortality models does not overlap, then their ranked forecasting performances are
statistically di�erent, and vice versa. A mortality model is statistically di�erent from other models if its mean rank
(plotted with •) is outside the grey bounds (Kourentzes and Petropoulos 2017). For males and females mortality
rates forecasting, the stacked regression ensembles, namely SRE and SRN outperform all other models, respectively.
However, their mortality rate forecasts do not di�er significantly from SRN and SRLa; and SRL and SRLa for males
and females, respectively. These results align with the results reported in Tables 3 and 4.

7.2. Application of Stacked Regression Ensemble to Other Countries

We now assess whether the stacked regression ensemble performs competitively relative to the existing individual and
combined mortality methods using mortality data from other countries. We summarize the results for 44 populations
from the Human Mortality Database with reliable mortality data from 1960 to 2015. To measure the forecast accuracy
for all the countries, we follow Kontis et al. (2017) and we average the MSEs at each forecasting horizon across all the
countries. Tables 5 and 6 show one-step-ahead to 15-step-ahead MSEs of mortality rate forecasts averaged at each
forecasting horizon for all countries for males and females, respectively. Among the investigated mortality models,

5
The confidence interval for each mortality model is R̄m ± CD, where R̄m is the mean rank of each model and CD is the critical

di�erence (see Appendix A).
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Table 5: Percentage improvement over the best model combination for males: MSEs (◊103) of male mortality rates
averaged across all the countries for one-year-ahead to 15-year-ahead forecasts by model and forecast horizon. The
SRE approaches produce gains in point forecast accuracy of 13% to 49% over the six individual mortality models for
males. The underlined and bolded values correspond to the smallest MSE within the forecast horizon.

Horizon LC RH APC CBD M7 PLAT SMA BMAB BMABC BMAC MCSV MCSC SRL SRN SRR SRLa SRE
1 4.82 2.98 4.16 6.46 2.78 2.92 2.74 2.74 2.74 2.74 3.32 2.82 2.82 2.71 2.74 3.23 2.73
2 6.1 4.1 5.28 7.44 4.24 4.06 3.66 3.66 3.66 3.66 4.31 3.81 3.8 3.63 3.66 4.07 3.64
3 7.78 5.62 6.89 8.75 6.53 5.89 4.99 4.99 4.99 4.99 5.76 5.39 5.34 4.96 4.99 5.22 4.91

4 9.9 7.68 8.92 10.51 9.71 8.36 6.8 6.79 6.8 6.8 7.67 7.37 7.53 6.76 6.78 6.99 6.62

5 12.31 10.02 11.23 12.53 13.54 11.29 8.86 8.84 8.86 8.86 9.82 9.63 9.81 8.7 8.83 8.82 8.53

6 15.14 12.59 13.97 14.98 18.16 14.83 11.32 11.29 11.32 11.32 12.36 11.83 12.14 10.9 11.26 10.78 10.75

7 18.46 15.64 17.16 17.99 23.71 19.02 14.28 14.24 14.28 14.28 15.38 14.92 15.65 13.74 14.19 13.48 13.27

8 22.37 19.15 20.93 21.58 30.23 23.94 17.84 17.78 17.84 17.84 18.99 18.33 19.43 16.85 17.69 16.89 16.58

9 26.79 22.75 25.03 25.62 37.4 29.33 21.74 21.67 21.74 21.74 23 21.4 23.35 19.89 21.52 20.1 19.8

10 31.64 26.39 29.41 30.16 45.5 35.16 26.03 25.95 26.04 26.02 27.41 24.84 26.61 23.13 25.72 23.69 22.94

11 37.06 30.57 34.45 35.39 54.4 41.95 30.91 30.8 30.92 30.9 32.3 28.71 30.6 26.96 30.5 27.98 26.49

12 42.54 34.65 39.3 40.63 63.24 48.46 35.7 35.57 35.71 35.68 37.02 32.38 34.65 30.12 35.17 31.01 29.94

13 49.37 39.35 45.48 47.24 73.83 56.31 41.73 41.58 41.75 41.72 42.99 37.07 39.2 35.89 41.08 35.39 34.37

14 56.53 45.18 52.19 54.19 84.98 64.53 48.24 48.06 48.26 48.22 49.1 43.97 46.29 41.23 47.46 42.04 39.78

15 64.04 51.32 59.1 61.45 96.51 72.81 54.99 54.78 55.01 54.97 55.3 49.01 49.06 46.4 54.1 46.44 45.4

Mean 26.99 21.87 24.9 26.33 37.65 29.26 21.99 21.92 22 21.98 22.98 20.76 21.75 19.46 21.71 19.74 19.05

% Gain 29.42 12.88 23.49 27.64 49.4 34.89 13.37 13.08 13.4 13.35 17.1 8.26 12.42 2.1 12.26 3.51 0

Average Rank 15.33 9.4 13.47 15 15.8 14.6 8.27 5.87 8.27 7.07 11.73 6.8 8.8 2.07 4.73 4.67 1.13

Note:
% Gain =

1
1 ≠ Mean of the Best combined Method

Mean of the Typical Method

2
◊ 100%.

Table 6: Percentage improvement over the best model combination for females: MSEs (◊103) of female mortality
rates averaged over all the countries for one-year-ahead to 15-year-ahead forecasts by model and forecast horizon. The
SRLa approaches produce gains in point forecast accuracy of 19% to 90% over the six individual mortality models for
females. The underlined and bolded values correspond to the smallest MSE within the forecast horizon.

Horizon LC RH APC CBD M7 PLAT SMA BMAB BMABC BMAC MCSV MCSC SRL SRN SRR SRLa SRE
1 5.99 4.1 5.67 26.46 5.34 4.04 4.34 4.36 4.33 4.33 5.08 3.91 3.87 3.83 4.27 4.77 4.15
2 7.12 5.21 6.7 27.79 11.9 4.85 5.3 5.31 5.29 5.3 5.89 4.98 4.89 4.81 5.24 5.56 5.15
3 8.39 6.71 8.16 29.09 22.71 6.27 6.73 6.73 6.73 6.73 6.92 6.31 6.19 5.94 6.65 6.34 6.4
4 9.84 8.56 9.67 30.57 37.66 8 8.62 8.6 8.61 8.61 8.19 7.28 7.71 7.27 8.46 7.39 7.75
5 11.51 10.85 11.44 32.13 56.8 10.15 10.87 10.82 10.86 10.85 9.64 8.94 9.64 8.95 10.6 8.75 9.32
6 13.25 13.32 13.28 33.95 80.3 12.53 13.49 13.41 13.47 13.45 11.17 10.48 11.72 10.43 13.01 10.04 10.66
7 15.25 16.37 15.63 36.04 108.66 15.63 16.75 16.63 16.73 16.69 13.1 12.9 14.15 12.44 15.99 11.94 12.86
8 17.41 19.74 17.92 38.37 140.27 18.84 20.32 20.15 20.28 20.23 15.21 14.76 16.88 14.65 19.16 14.11 15.05
9 19.84 23.33 20.44 40.79 174.87 22.36 24.22 23.99 24.15 24.08 17.42 17.23 19.22 16.8 22.53 16.3 17.24
10 22.38 27.07 22.9 43.45 215.32 26.08 28.54 28.24 28.46 28.35 19.71 19.94 21.25 19.03 26.22 18.58 19.44
11 25.33 31.17 25.88 46.43 256.39 30.34 33.27 32.9 33.14 33.02 22.4 23.17 24.7 22.12 30.21 21.42 22.05
12 27.99 35.27 28.07 48.98 301.09 33.89 37.72 37.27 37.55 37.4 24.7 25.73 28.31 25.35 33.84 24.33 25.25
13 31.14 39.89 31.45 52.28 349.63 38.78 43.23 42.7 43 42.83 27.65 29.48 33.26 28.65 38.41 27.43 28.08
14 34.53 45.58 34.86 55.58 397.85 43.55 48.98 48.37 48.7 48.54 30.99 33.83 37.64 32.53 43.42 31.34 31.18
15 37.72 51.95 38.41 58.75 451.77 48.51 54.92 54.22 54.56 54.45 34.39 38.05 42.45 36.49 48.76 35.46 35.3
Mean 17.41 19.74 17.92 38.37 140.27 18.84 20.32 20.15 20.28 20.23 15.21 14.76 16.88 14.65 19.16 14.11 15.05

% Gain 18.95 28.5 21.24 63.22 89.94 25.09 30.55 29.95 30.4 30.24 7.2 4.36 16.37 3.64 26.33 0 6.25

Average Rank 9.53 9.87 9.93 16.2 16.67 7.6 13.8 11.53 12.6 12 5.67 3.93 5.67 2.4 8.73 3.13 3.73

Note:
% Gain =

1
1 ≠ Mean of the Best combined Method

Mean of the Typical Method

2
◊ 100%.

SRE and SRLa achieve the smallest over all MSEs on average for males and females, respectively. Their respective
smallest mean values of MSEs are 0.019 and 0.0141 for males and females, respectively.

Tables 5 and 6 further show the gain in prediction accuracy of individual mortality models with respect to the model
combination with the smallest mean of MSEs across the forecasting horizon. The SRE and SRLa indicate the gains
in prediction accuracy over the six individual mortality models of 13% to 49% and 19% to 90% for males and females,
respectively. The model averaging methods based on the stacked regression ensemble perform competitively in both
males and females. The top three performing mortality models in terms of average ranking are stacked regression
ensembles, namely SRE, SRN, and SRLa; and SRN, SRLa, and SRE for males and females, respectively. Additionally,
the model combination attain a lower model selection risk than the individual mortality models. The range of
the MSEs of individual mortality methods is 0.0158 and 0.1229 for males and females, respectively, whereas the
corresponding range for the model combination is 0.00393 and 0.00621 for males and females, respectively. Therefore,
model combination methods improve the reliability of the mortality rate forecasts because by averaging, their range is
bounded. That is, model combination sets a lower bound on point forecast accuracy (Shang and Booth 2020). It
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is evident from Tables 5 and 6 that stacked regression ensembles are better capable of generating more accurate
mortality rate forecasts and capturing model choice uncertainty than the existing individual mortality models and
other model combination methods. This supports the significant potential of using a stacked regression ensemble in
mortality modelling.

The bottom panel of Figure 11 presents heat maps showing the average ranks of various mortality models across
di�erent forecasting horizons, genders, and countries. The stacked regression methods, namely SRN, SRE, and SRLa
are consistently ranked lower across the countries for both males and females. This confirms that stacked regression
methods perform consistently well across the countries. The Bayesian model averaging methods perform poorly across
the countries compared to both the model confidence set and stacked regression ensemble. Even when the model
combination approaches are not top-ranked for any country, they never rank the least accurate. For example, the
simple model averaging out-performs some well-known mortality models such as LC for males across most of the
countries. This confirms the potential of choosing the model combination over the individual mortality models. The
RH is one of the highly ranked among the individual mortality models but lacks consistent performance across all
the countries. PLAT and M7 perform poorly across countries for both males and females, respectively. However,
similar to the findings in Shang and Haberman (2018), PLAT outperforms all other models for the Japanese female
population. Figure 11 also visually shows that LC performs consistently better in females than males in alignment
with the findings in Atance, Debón, and Navarro (2020).

The top and middle panels of Figure 11 present heat maps visualizing the ranking of various mortality models
at one-year-ahead and 15-year-ahead forecasting horizons for males and females across di�erent countries. We
observe that complex mortality models such as PLAT and M7 perform relatively better in the short-term than in
the long-term for both males and females across the countries. This is because complex mortality models tend
to overfit and fail to generalize well in the new unknown future data, resulting in low predictive power for longer
forecasting horizons. Simple mortality models such as APC and LC tend to have better performance in longer
horizons than in shorter horizons. RH performs relatively better in both short-term and long-term horizons than other
individual mortality models. Similar to Kontis et al. (2017), model combinations perform consistently better in the
short-term and long-term forecasting horizons than the individual mortality models. Generally, there is no individual
or combined method that performs the best across all the countries. This shows that countries have di�erent mortality
characteristics, and hence the performance of a mortality model varies across the countries.

Figure 11 further shows that the SRE and SRN are the over all best models but SRE is more stable than SRN.
Also, SRE performs better in longer horizon than SRN. The SRE is more stable than SRN because it concurrently
stabilizes and slowly shrinks the weights assigned to di�erent mortality models. The better performance of SRN than
other meta-learners is consistent with prior studies which suggest non-negative least square regression as the best
choice as the meta-learner in stacked regression ensembles (Breiman 2004). This is because non-negative least square
regression imposes non-negative condition to the weights that guarantee the best interpolating model combination.
Stacked regression approaches outperform other model combination approaches. This is because the individual
mortality models are weighted di�erently depending on their ability to capture the mortality characteristics of a
particular population over the forecasting horizons. This allows the mortality forecasters to develop a mortality model
customized to a particular population to achieve reduced out-of-sample errors.

The MCSC is also a competitive model combination. MCSC achieve better performance than MCSV because MCSC
is developed such that the superior individual mortality models are chosen via cross-validation rather than using
the single validation set. Also, the outstanding performance of MCSC, SRN, SRE, and SRLa signify the potential of
allowing the individual mortality models to change depending on the forecasting horizon. Therefore, these methods
often combine few selected individual mortality models at a particular horizon. Again, SRR proves to assign more
consistent weights to the individual mortality models than SMA and hence we suggest it as the best alternative
to SMA. All the model combination approaches perform better than individual mortality models. The predictive
accuracy of model combination is also less variable than the forecasts from the individual mortality models across
forecast horizons, countries, and genders. The choice of which model combination to use will depend on ease of
implementation, computational time available, and the degree of accuracy required.

The results in Tables 5 and 6 do not confirm whether the attained gain in the forecasting accuracy by the mortality
models are statistically di�erent. Thus, to validate that, we apply the Friedman test on the MSEs of di�erent
mortality models averaged at each forecasting horizon across all the countries. The p≠values are 9.508 ◊ 10≠35 and
2.095 ◊ 10≠31 for males and females, respectively. As these p≠values are less than customary 5%, we confidently
reject the null hypothesis that the forecasting accuracy of the mortality models is the same. We proceed with the
Nemenyi test to identify explicitly which models are statistically di�erent from each other. Figure 12 visualizes the
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14 3 651716 1 1111811 7 213 159 4
16 9 761715 4 10131114 8 32 121 5

15 7 1091716 1.5 131.5312 11 65 144 8
14.5 8 651617 2 1314.519 7 311 1210 4

14 4 3115.517 6 12.515.51012.5 2 78 119 5

13 4 761517 10.5 110.5214 8 125 163 9
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14.5 6 321617 1 814.5109 4 713 1211 5
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3 5 681415 13 1111611 7 217 119 4
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12 9 871315 3 14111716 6 41 102 5

16 7 91043 1 15111417 8 52 1213 6
14.5 6 8111317 3 1014.5161 9 122 54 7

15 11 121487 17 29162 13 46 25 10

8 4 571512.5 11 212.51714 6 916 101 3
15 11 981612 13 3.56173.5 10 114 3.53.5 7

8 10 11131516 14 55175 12 17 23 9

7 10 11131716 15 1.58141.5 12 63 45 9
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2.3 9.5 9.58 5.36.5 9 9.1 12.68.4 9.816.2 7.216.6 13.97.7 1.5

4.5 3.3 4.39.3 6.710.7 11.3 8.2 2.312.3 13.115.2 12.41.7 14.77.2 15.9

16.1 6.5 9.32.9 5.53.7 4.3 13.6 6.25.5 5.29.8 14.614.3 13.413.6 8.6
13.9 5.3 2.36.5 2.710.9 8.7 3.4 5.59.7 7.514.7 16.65.5 14.212.6 13.1
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14.6 10.6 10.31.9 6.82.7 4.6 5.7 12.25.8 410.7 14.812.2 13.916.5 5.7
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Figure 11: Heat maps showing the average ranks of di�erent mortality models based on their MSEs over di�erent
forecasting horizons for males (Left panel) and females (Right panel) across di�erent countries. The mean rank for
each model and country is given, with the lowest representing the most accurate mortality model. The display ranges
from green (best model) to red (worst model).
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Figure 12: Multiple comparison with the best style plot for the mortality models considered for males (Left panel)
and females (Right panel). The average ranks are computed according to MSEs across the forecasting horizons and
countries at a customary 5% level of significance. Any mortality model with mean rank (plotted with •) outside the
grey bounds indicating significant di�erences. The number along the y≠ axis represents the average ranking of a
mortality model over the forecasting horizons. The smaller numbers represent models with better predictive accuracy.

Nemanyi test results. SRE achieved better predictive performance than all the mortality models for males, but its
predictive performance is not statistically di�erent from SRN. For females, SRN perform significantly better than the
rest of the forecasting mortality methods examined in terms of MSEs but its forecasting accuracy is not significantly
di�erent from SRE, SRLa, and MCSC. These results align with the results presented in Tables 5 and 6.

8. Conclusion and Future Research
In this paper, we have introduced and applied a stacked regression ensemble approach for combining mortality models.
In our empirical application, we find that stacking six individual mortality models increases the predictive accuracy of
mortality rate forecasts. The stacked regression ensemble methods, namely SRE and SRN outperform both individual
and combined mortality methods for males and females, respectively. SRE and SRN are capable of optimally
combining the features of multiple individual mortality models, which capture the mortality dynamics of particular
mortality data better than individual mortality models. The success of these methods is attributable to their ability
to simultaneously estimate the optimal combining weights that depend upon the length of the forecasting horizon and
implicitly selecting the accurate and diverse individual mortality models to combine from the list of models considered.
The choice of the lasso, non-negative least squares, and elastic regressions as the meta-learners automatically trim
the mortality models which produce similar mortality rate forecasts or have the least forecasting accuracy at each
forecasting horizon. Therefore, model selection is crucial in developing a competitive model combination. This is
confirmed by the outstanding performance of lasso, non-negative least squares, elastic regressions, and the model
confidence set variant based on cross-validation.

We also show that the optimal weights for combining the individual mortality models vary depending on the
meta-learner, forecasting horizon, country, and gender. Mortality forecasters need to develop a model combination
customized to the forecasting horizon and mortality data. This is contrary to the weights estimated using the Bayesian
model averaging methods, simple model averaging, and model confidence set that vary less among the methods and the
forecasting horizons. Also, estimating weights or choosing the individual mortality models via cross-validation proves
to be a crucial step. Cross-validation allows the mortality forecasters to incorporate future mortality data uncertainty
in the weights or model selection. Finally, the stacked regression methods like SRE and SRN are statistically di�erent
from other mortality methods across the countries and genders. However, both SRLa and MCSC are almost as good
as SRE and SRN.
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Future research could include more mortality models outside the family of the GAPC models. The mortality models
to be included should capture di�erent mortality data features such as linearity, non-linearity, trends, data size, and
statistical considerations such as ensuring the smoothness of death rates, capturing outliers, and giving the recent
mortality data more weights than the very past mortality data. The models should also capture unexpected events such
as COVID-19 pandemic. This is expected to increase the forecasting accuracy of the model combinations, especially
for higher mortality countries like in central and eastern Europe. However, even without considering mortality models
other than GAPC, it is still prudent to combine the GAPC models as their combination reduces model selection
risks and gives better and consistent mortality rate forecasts than selecting the single best mortality model. Finally,
this study focuses on central projection; therefore, an important future improvement could be developing model
combination approaches that can simultaneously generate central mortality projections and their corresponding
probabilistic distributions.
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Appendix
Appendix A. Multiple Comparison of Forecasting Performance

Friedman’s test compares the average ranking of M mortality models across multiple data. The forecasting mean
squared errors are set in a matrix consisting of h rows representing di�erent forecasting horizons and M columns
which represent di�erent mortality models. The mean squared errors for di�erent models over di�erent forecasting
horizons are then ranked in ascending order, and the mean rank for each column is computed. If two or more mortality
models tie, the average ranks are assigned. When the forecast mean squared errors di�er among methods, there will
be a significant di�erence in the sum of the ranks at least for one column. We can evaluate if the di�erences are
statistically di�erent by setting up the null and alternative hypotheses

H0 : The forecast accuracy is the same for all the models,
H1 : The forecast accuracy di�ers between models.

The decision rule is to reject H0 if the Friedman test statistic, F , given as

F = 12
Mh

Mÿ

m=1

R
2

m ≠ 3h(M + 1),

is greater than a critical value of –% level of significance. Here, Rm is the sum of ranks in column m and F is
chi-squared distributed with M ≠ 1 degrees of freedom given that h > 10 and M > 5 (Demöar 2006).

If we reject the null hypothesis, H0, at a given significance level –, then we apply the Nemenyi test to identify which
models are statistically di�erent from each other (Demöar 2006). The Nemenyi test is a two-sided procedure with the
null hypothesis that the two mortality models yield similar average ranks. The Nemenyi test uses a critical di�erence
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as the threshold to identify which models are statistically di�erent from each other. Demöar (2006) calculate the
critical di�erence (CD) at a particular significance level – as

CD = q–

Ú
M(M + 1)

6h
,

where q– is the studentized range statistic divided by
Ô

2, M is the number of models used in the comparison, and h

is the number of data sets (forecasting horizons) applied. If the critical di�erence between the average ranking of the
models is greater than the computed critical di�erence, then the mortality models perform statistically di�erent from
each other.

Appendix B. Combining the Mortality Models Using the CoMoMo Package

CoMoMo is a user-friendly open-source R package that combines di�erent mortality models using weights generated by
di�erent model combination methods. CoMoMo combines the mortality rate forecasts from the generalized age-period-
cohort models implemented in StMoMo package (Villegas, Kaishev, and Millossovich 2018). CoMoMo has methods for
estimating model combination weights using Simple Model Averaging, Bayesian Model Averaging, Model Confidence
Set, and Stacked Regression Ensemble. CoMoMo uses the block cross-validation approach implemented in the StMoMo

package. Currently, CoMoMo is available in Github at https://github.com/kessysalvatory/CoMoMo. We shall make
the CoMoMo available in the CRAN after peer review of this paper. In what follows, we use England and Wales male
mortality data to describe the steps required to implement di�erent model combination in CoMoMo.

1. Install the CoMoMo package

The CoMoMo development version can be installed with the following commands:
devtools::install_github("amvillegas/StMoMo", ref = "GroupLasso", force = TRUE)

devtools::install_github("kessysalvatory/CoMoMo")

2. Download the mortality data

To fit the mortality models to England and Wales males data, we need to download the data from the Human
Mortality Database. We do that using the demography package (Hyndman et al. 2019).
library(demography); library(StMoMo)

MorData <- hmd.mx(country = �GBRTENW�, username = username, password = password)

DataStMoMo <- StMoMoData(MorData, "male")

agesFit <- 50:89; yearsFit <- 1960:1990

nAg <- length(agesFit); nYr <- length(yearsFit)

The username and password above are for the Human Mortality Database and should be replaced appropriately.

3. Define the mortality models

We can specify the list of the mortality models that we want to combine. Currently, we can only select the generalized
age-period-cohort mortality models supported by StMoMo.
LC <- lc(); APC <- apc(); CBD <- cbd(link = "log"); M7 <- m7(link = "log")

RH <- rh(approxConst = TRUE); PLAT <- plat()

models <- list("LC" = LC, "RH" = RH, "APC" = APC, "CBD" = CBD, "M7" = M7, "PLAT" = PLAT)

4. Generate the metadata

We generate the metadata for the stacked regression ensemble using block cross-validation described in Subsection 6.1.
First, we train the mortality models via cross-validation to produce the cross-validated forecasts at the forecasting
horizon h. We then combine the mortality rate forecasts and observed mortality rates to form metadata. We use
the function stackMetadata(models, data = NULL, Dxt = NULL, Ext = NULL, ages.fit = NULL, years.fit

= NULL, ages = NULL, years = NULL, h = NULL) to generate the metadata which is of class stackmeta as follows:
library(CoMoMo)

metaData <- stackMetadata(models, data = DataStMoMo, ages.fit = agesFit, years.fit = yearsFit,

h = 15)

5. Compute the weights
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We can compute the weights using di�erent model combinations methods as follows:

• Stacked Regression Ensemble

We can use di�erent meta-learners as explained in Subsection 6.2 to estimate the weights. The CoMoMo package
currently supports linear (Linear), non-negative least regression (nnls), ridge (Ridge), lasso (Lasso), and elastic
net (Elastic) regressions as the meta-learners. The nnls is the default meta-learner because it has proven to have
outstanding performance than most other meta-learners. We use the function stack(), which takes an argument of
the class stackmeta and a meta-learner to compute the weights as follows:
# When normalize = TRUE all the weights sum to a unit
stack_nnls_weight <- stack(metaData, metalearner = "nnls", normalize = TRUE)

# When normalize = False all the weights may not sum to a unit
stack_elastic_weight<- stack(metaData, metalearner = "Elastic", normalize = FALSE)

We can plot the weights using the function plot() and it supports all the features of ggplot2 (Wickham 2016).
library(ggplot2)

plot(stack_nnls_weight) + labs(x = "Forecasting Horizon", y = "Weight") +
theme(panel.grid.major = element_blank(), panel.background = element_blank(),

axis.line = element_line(colour = "black")) + theme(legend.text = element_text(size = 10)) +
theme(plot.title = element_text(size = 10, hjust = 0.5)) + theme(legend.position="bottom")+
scale_colour_manual(values = c("brown", "blue", "red","purple","orange","skyblue4")) +
scale_linetype_manual(values = c("solid", "dashed", "dotted", "solid", "dotdash", "twodash"))
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Figure 13: Horizon-specific optimal combining weights learned using non-negative least squares (SRN) for England
and Wales males mortality data from 1960 to 1990 and ages 50 to 89.

Note that Figure 13 is similar to the second graph in the third panel of Figure 6.
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• Bayesian Model Averaging (BMA)

We estimate the Bayesian model weights using the function bma(models, method = "cv", data = NULL, Dxt

= NULL, Ext = NULL, ages.fit = NULL, years.fit = NULL, ages = NULL, years = NULL, holdout, h =

NULL). We can use either a single-validation set (sv) or a cross-validation approach (cv) to estimate the weights. The
holdout is the amount of the data withheld for estimating the projection bias when we specify the method = sv.
The argument holdout takes a default value of one-third of the training data.
bma_weight_val <- bma(models, data = DataStMoMo, ages.fit = agesFit, years.fit = yearsFit,

h = 15, method = "sv")

bma_weight_cv <- bma(models, data = DataStMoMo, ages.fit = agesFit, years.fit = yearsFit,

h = 15, method = "cv")

• Model Confidence Set (MCS)

We estimate the weights using the function mcs(models, method = "cv", data = NULL, Dxt = NULL, Ext

= NULL, ages.fit = NULL, years.fit = NULL, ages = NULL, years = NULL, holdout, h = NULL, B =

5000, l = 3, alpha = 0.1). B is the bootstrap samples with default sample of B = 5000, l is the block length
with the default value of l=3 and alpha is the level of the test with the default value of alpha = 0.1.
mcs_weight_val <- mcs(models, data = DataStMoMo, ages.fit = agesFit, years.fit = yearsFit,

h = 15, method = "sv")

mcs_weight_cv <- mcs(models, data = DataStMoMo, ages.fit = agesFit, years.fit = yearsFit,

h = 15, method = "cv")

6. Fit the mortality models

We use the function fitCoMoMo(models, data = NULL, Dxt = NULL, Ext = NULL, ages.fit = NULL,

years.fit = NULL, ages = NULL, years = NULL) to fit multiple mortality models as follows:
modelFits <- fitCoMoMo(models, data = DataStMoMo, ages.fit = agesFit, years.fit = yearsFit)

7. Combine the fitted mortality models and combination weights.

We use the function CoMoMo() to combine the fitted mortality models and di�erent combination weights as follows:
modcom <- CoMoMo(modelFits, weight = stack_nnls_weight)

8. Forecast the mortality rates

We use the function forecast() to generate the combined mortality rates using the weights from di�erent combination
methods as follows:
morFor <- forecast(modcom, h = 15)
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