
 

 
 
 
 
 
 
 

ARC Centre of Excellence in Population Ageing 
Research 

 
 Working Paper 2016/04 

 
 
 
 
 
 
The Impact of Systematic Trend and Uncertainty on Mortality 
and Disability in a Multi-State Latent Factor Model for 
Transition Rates 
Zixi Li1, Adam W. Shao2 and Michael Sherris3 

 
 
 
 
1School of Risk and Actuarial Studies and Centre of Excellence in Population Ageing 
Research (CEPAR), UNSW Business School, UNSW Australia 
2CEPAR, UNSW Business School, UNSW Australia, email: 
wenqiang.shao@unsw.edu.au 
3CEPAR, School of Risk and Actuarial Studies, UNSW Business School, UNSW 
Australia, email: m.sherris@unsw.edu.au  
 
This paper can be downloaded without charge from the ARC Centre of 
Excellence in Population Ageing Research Working Paper Series available at 
www.cepar.edu.au 
 

http://www.cepar.edu.au/


The Impact of Systematic Trend and Uncertainty on Mortality and

Disability in a Multi-State Latent Factor Model for Transition Rates

Zixi Li, Adam W. Shao and Michael Sherris∗

School of Risk and Actuarial Studies and ARC Centre of Excellence in Population Ageing
Research (CEPAR), UNSW Australia.

February 8, 2016

Abstract

Multiple state functional disability models do not generally include systematic trend
and uncertainty. We develop and estimate a multi-state latent factor intensity model
with transition and recovery rates depending on a stochastic frailty factor to capture
trend and uncertainty. We estimate the model parameters using U.S. Health and
Retirement Study (HRS) data between 1998 and 2012 with Monte Carlo maximum
likelihood estimation method. The model shows significant reductions in disability and
mortality rates during this period and allows us to quantify uncertainty in transition
rates arising from the stochastic frailty factor. Recovery rates are very sensitive to
the stochastic frailty. There is an increase in expected future lifetimes as well as
an increase in future healthy life expectancy. The proportion of lifetime spent in
disability on average remains stable with no strong support in the data for either
morbidity compression or expansion. The model has widespread application in costing
of government funded aged care and pricing and risk management of LTC insurance
products.
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1 Introduction

Aged care, also referred to as long term care, is a significant and increasing cost as life

expectancy increases. According to Australia’s 2015 Intergenerational Report (Treasury of

the Commonwealth of Australia, 2015), the number of Australians aged 65 and over will be

more than doubled by 2055; aged care cost as a percentage of GDP will rise from 0.9% to

1.7% over the same period. By 2055, the number of people aged 15-64 for every person aged

65 and over in Australia will halve from 4.5 people today to 2.7 people. These demographic

trends are also found in many other countries. Mortality improvement will have a significant

impact on long term care costs, reflecting the extent of morbidity compression or expansion

(e.g. Gruenberg, 1977, Fries, 1980, Manton, 1982).

Increasingly individuals are recognizing the importance of funding their own health care

costs, as government budgets come under pressure. This highlights the important role that

private Long Term Care (LTC) insurance can play in financing these costs. A viable long

term care insurance market requires sophisticated models to project health care costs, to

fairly price the products and to manage the associated risks. The aim of this paper is to

propose and estimate a multiple state functional disability model with transition rates that

include systematic trend and uncertainty, suitable for long term costing and assessing risks

for LTC insurance.

Systematic improvement trends in mortality have been modeled at an aggregate population

level. Among these models, the most widely used include the Lee-Carter model and its

extensions (Lee, 2000; Lee and Carter, 1992), the Cairns-Blake-Dowd model and its varia-

tions (Cairns et al., 2006, 2011, 2009), the affine mortality models (Biffis, 2005; Dahl, 2004;

Schrager, 2006), and the subordinated Markov model (Liu and Lin, 2012). There is evidence

that systematic mortality trends vary by individual characteristics. Xu et al. (2015) model

systematic mortality improvement with the Lee-Carter model using U.S. Health and Retire-
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ment Study (HRS) data and consider a number of risk factors by classifying individuals into

sub-populations. Mortality also varies by level of functional disability as shown in Fong et al.

(2015) and Kwon and Jones (2008). Mortality improvement trends are expected to vary de-

pending on level of functional disability. The incidence, recovery and mortality of disability

will be impacted by systematic uncertainties which cannot be eliminated by pooling.

Multi-state Markov Chain models are widely used for LTC modeling. Olivieri and Pitacco

(2001) have a single level of disability and Rickayzen and Walsh (2002) include two levels of

disability. Fong et al. (2015) include recovery rates and Shao et al. (2015) apply the model

to estimate premiums and solvency capital requirements for a wide range of LTC insur-

ance products. Many prior studies estimate health transition rates based on cross-sectional

prevalence data (Olivieri and Pitacco, 2001; Rickayzen and Walsh, 2002). As individual level

data become available, recent studies calibrate their models to these data using longitudinal

methods (e.g. Fong et al., 2015; Stallard, 2007, 2011). None of these studies, however, include

systematic trend and volatility in health status transitions. Majer et al. (2013) develop a

multi-state model with transition probabilities that depend on age and calendar time. They

apply the Lee-Carter method to forecast future transition probabilities using Dutch popu-

lation data. The model does not directly include recovery and is calibrated to aggregate

population level data.

We develop a multi-state model for health state transitions incorporating systematic im-

provement and estimate transition rates using individual level U.S. Health and Retirement

Study (HRS) data. We adopt the multi-state latent factor intensity (MLFI) model with a

common stochastic factor, referred to as a frailty, and time trend. This has been used to

model credit rating migrations, which are analogous to transitions among multiple health

states, in Koopman et al. (2008). The MLFI model is a more parsimonious and consistent

model than that used in Majer et al. (2013). It directly allows for a range of character-

istics, or covariates, such as age and sex and allows estimation of the improvement trend
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simultaneously with the transition rates using individual data. The model readily allows for

the inclusion of other covariates. The Markov assumption can also be relaxed in the MLFI

model which is relevant for LTC model development. We estimate the MLFI model using

the U.S. Health and Retirement Study (HRS) data.

Simulations are used to investigate the effect of systematic uncertainties on distributions

of healthy life expectancy and time spent in disability. We obtain some interesting results.

We quantify the significant improvement in healthy-dead transition (mortality) rates for

both genders, which is not found in mortality rates for disabled lives. Recovery rates are

shown to be highly sensitive to the stochastic frailty factor. The systematic improvement

in transition rates, after including a time drift term and a stochastic frailty factor and

taking uncertainties into account, produces substantial increases in the older-age survival

probabilities, and increases total and healthy life expectancy, for both genders. As total life

expectancy increases, the number of old-aged disabled individuals also increases, resulting

in a stable expected proportion of time spent in disability.

This paper is structured as follows. In Section 2, the models and estimation methodology

are explained. In Section 3, we provide a brief description of the HRS data used. Section 4

presents the model parameter estimation results including the frailty factor using the HRS

data. Section 5 presents transition rate estimates and uncertainties along with simulated

survival curves. Section 6 shows the simulated distributions of disability. In Section 7, an

analysis of future expected lifetimes along with expected time spent in disability is provided.

We conclude the paper in Section 8.

2 Model Framework

Based on Fong et al. (2015) the multi-state LTC model contains 3 states: healthy, disabled

and dead (absorbing state), as shown in Figure 1. The model allows for recovery from
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disability. There are four types of transitions - healthy to disabled (inc), disabled to healthy

(rev), healthy to dead (hd), and disabled to dead (dd).

H

D

M

Figure 1. Simple three-state LTC transition model allowing for recovery;
H = Healthy/abled, M = Morbid/disabled, and D = Dead.

2.1 Model Specification

We adopt a proportional hazard specification, similar to that used in Koopman et al. (2008)

for credit rating transitions. The transition intensity for transition type s for an individual

k at time t is assumed to be of the form:

λsk(t) = exp[βs + γ′swk(t) + αsψ(t)]×Hsk(t), (1)

where βs is the baseline log-intensity for transition type s, with s ∈ {inc, rev, hd, dd}, inde-

pendent of time and common across all individuals. The vector wk(t) contains the observed

covariates for each individual k, and we restrict our covariates to gender and age. We assume

the transition rates are piecewise constant for integer ages. ψ(t) is the unobserved stochastic

process that drives systematic uncertainties, also referred to as a frailty. The parameter

vector γ′s and scalar αs measure the sensitivities of logarithm of λsk(t) with respect to wk(t)

and ψ(t). Lastly, the scalar function Hsk(t) is the baseline hazard function introduced by

Koopman et al. (2008) to allow for duration dependence. If a semi-Markov process is as-

sumed, then Hsk(t) depends on the duration spent in the current state up to time t; whereas
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Hsk(t) = 1 in case of the Markov assumption. Note that both transition intensities and the

latent process change at discrete time points.

We adopt the Markov assumption, i.e., Hsk(t) = 1 for computational reasons and to reflect

the available data. Prior studies have shown evidence of a non-Markovian property in disabil-

ity dynamics (Hardy and Gill, 2004) and a number of studies have used semi-Markov models

for LTC (e.g. Biessy, 2015; Lepez, 2006; Tomas and Planchet, 2013). Given the widely

spaced measurement intervals in almost all population-based panel studies, Markov models

are widely used in LTC (e.g. Leung, 2006; Levantesi and Menzietti, 2012; Pritchard, 2006;

Brown and Warshawsky, 2013; Shao et al., 2015). Since we have a two-year window between

two consecutive waves in the HRS, accurate measurement of durations in the disabled state

is not possible, limiting us to the Markov model assumption.

The latent dynamic process ψ(t) is modeled with a simple random walk process. The latent

process produces uncertainty in the transition intensities with the direction and magnitude

varying for different transition types. The magnitude of the effect for type s is given by the

coefficients αs.

We adopt three models for estimation: no-frailty model, no-frailty model with linear time

trend, and the frailty model with time trend:

1. In the “no frailty” model, the transition rate λskx is assumed to be dependent on

age and sex only. For the simplest case, the logarithm of λskx is linear in age, the

specification under the Markovian assumption is as follows:

ln{λskx} = βs + γages · x+ γfemales · F. (2)

The coefficients γages and γfemales describe the sensitivity of ln{λskx} to age x and to

the female indicator variable F . The coefficient βs is the reference level of ln{λskx}
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and varies by transition type.

2. To allow the transition rates to change over time, we add a linear time index into the

no-frailty model. The no-frailty model with linear time trend is

ln{λskx(t)} = βs + γages · xt + γfemales · F + φst, (3)

where t indicates the time period, and φs measures the slope of change in ln{λskx(t)}

with respect to the time index t.

3. The systematic latent factor is then included to give the frailty model with time trend:

ln{λskx(t)} = βs + γages · xt + γfemales · F + φst+ αsψ(t), (4)

where αs measures the sensitivity of the log transition rates to the common latent factor

or frailty ψ(t). The frailty factor ψ(t) can be interpreted as a mortality index with

respect to time, similar to the κt in the Lee-Carter model, which is usually modeled as

a simple random walk with drift term (e.g. Majer et al., 2013). With the linear time

variable t to capture the deterministic time drift, the latent factor ψ(t) is modeled as

a simple random walk:

ψ(t) = ψ(t− 1) + εt, εt ∼ NIID(0, σ2). (5)

We restrict σ to be independent of time. Not all αs parameters and σ can be identified

simultaneously, so without loss of generality we assume σ = 1.

2.2 Parameter Estimation

Maximum likelihood is used for estimation of the no-frailty models. Let θ denote the pa-

rameters of interest, then the likelihood functions for the no-frailty model and the no-frailty
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model with time trend are

L(θ|FT )no frailty =
T∏
t=1

K∏
k=1

S∏
s=1

exp

{
Ysk(t) ln[λskx]−Rsk(t)

∫ t

t−1
λskxdu

}
, (6)

and

L(θ|FT )no frailty with time =
T∏
t=1

K∏
k=1

S∏
s=1

exp

{
Ysk(t) ln[λskx(t)]−Rsk(t)

∫ t

t−1
λskx(u)du

}
, (7)

respectively, where dummy variables Ysk(t) = 1 if individual k experiences a transition type

of s at time t and Rsk(t) = 1 if individual k is exposed to transition type s between time

t− 1 and t.

For the frailty model, the likelihood function is given by:

L(θ|FT ) =

∫
L(θ|FT ,Ψ)p(Ψ)dΨ, (8)

where the likelihood function conditional on Ψ, which denotes the complete path of ψ(t), is:

L(θ|FT ,ΨT ) =
T∏
t=1

K∏
k=1

S∏
s=1

exp

{
Ysk(t) ln[λskx(t)]−Rsk(t)

∫ t

t−1
λskx(u)du

}
. (9)

The high-dimensional integral makes maximum likelihood computationally intensive. Monte

Carlo techniques are used where we simulate N paths of Ψ from p(Ψ) denoted by Ψ[1],...,Ψ[N ],

for a large number N . We then use the Monte Carlo estimator of Equation (8) computed as

L̂(θ|FT ) = N−1
N∑
j=1

L(θ|FT ,Ψ[j]), (10)

for parameter estimation.

Koopman et al. (2008) propose an alternative approach that is a combination of importance
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sampling and the Kalman filter and smoother. This involves constructing an approximating

linear Gaussian state space model, according to criteria in Durbin and Koopman (1997). In

the approximating linear Gaussian state space model, the observation is the indicator variable

Ysk(t) and the hidden state is a vector vt that contains the frailty ψ(t). The observation

Ysk(t) is then linked to the state vt with a linear equation. The Kalman filter and smoother

algorithm is used to retrieve the conditional distributions of vt, from which the conditional

sample of the frailty is simulated. A more detailed explanation of this approach can be found

in Koopman et al. (2008).

This alternative approach is not used for estimation for a number of reasons. It is more

complex to implement, requiring smoothing and simulation in each step of the maximisation

process, leading to a reduction in computational speed. The efficiency of the approach

depends on how effective the approximating linear Gaussian model recovers the unobserved

ψ(t) process from the observed data. Koopman et al. (2008) perform a simulation experiment

to show that the for their problem the algorithm is adequate. In their simulation experiment,

log transition rates of each type are restricted to the sum of a constant term and the frailty

effect, whereas in our health state transitions the constant term is replaced by an age-

dependent variable. Note that in the approximating Gaussian model, the observation (an

indicator variable, Yskt that equals one when a transition occurs) is the sum of log(λskt) and

a random observation noise. The observation noise in our case has a higher variance than

the one in the simulation experiment carried out by Koopman et al. (2008). A more volatile

observation noise reduces the effectiveness of the Kalman filter and smoother to track the

latent ψ(t).

To demonstrate this, we consider a simple linear state space model with a random walk state

process plus observation noise. We apply the Kalman filter and smoother to the models with

σ = 1 and σ = 10, where σ is the standard deviation of the observation noise. Both state

space models are based on the same latent state process, and the standard deviation of the

9



state noise is 1. As shown in Figure 2, the approach performs less adequately than suggested

by Koopman et al. (2008) when the observation noise has a larger variance relative to the

state noise.

(a) σ = 1
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(b) σ = 10
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Figure 2. True vs. Smoothed Estimate of the Latent State Process in a Simple Linear State Space
Model

In our case the time horizon, denoted by T , is 7, whereas in Koopman et al. (2008), T >

14, 000 which also limits the benefits from the conditional simulation of ψ(t) in the model

estimation.

The approximating Gaussian state space model is however used to retrieve the unobserved

frailty process based on the parameter estimates and observations which we discuss in the

next section.

2.3 Recovery of the Frailty Process

The main idea of the state space model is to use a linear function to link the observation

(whether a transition occurs, denoted by Ysk(t)) and the corresponding log transition rate,

which is dependent on the state vt. Intuitively, the larger the magnitude of the transition

rate, the more likely a transition will occur.
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In order to estimate the frailty factor in the frailty model with trend specified in Equation

(4) the following state space model representation is used:


vt = Ftvt−1 + R̃tηt, ηt ∼ NIID(µ, σ2),

Ysk(t) = Zsktvt + ξskt, ξskt ∼ N(cskt, Cskt),

(11)

where the “state” vt is a vector containing the constant coefficients, coefficients of the ob-

servable variables, and the “frailty” ψ(t). The system matrix Ft and the selection matrix R̃t

are defined according to our specification of ψ(t) in Equation (5). The vector Zskt contains

the observable information and the parameter αs. We have

vt =

(
β1, ..., βS, γ

age
1 , ..., γageS , γfemale1 , ..., γfemaleS , φ1, ..., φS, ψ(t)

)′
, (12)

and

Zskt = {e′s, e′s ⊗ x, e′s ⊗ F, e′s ⊗ t, αs}, (13)

where es is the sth column of an S × S identity matrix IS. With this model representation

we see that ln{λskx(t)} = Zsktvt if the person is exposed to the risk, which is equivalent to

Equation (4).

The matrix Ft and the vector R̃t are defined to be consistent with the form of the latent

process ψ(t). For the frailty model specified in Equations (4) and (5), this gives

Ft = Ip, R̃t =

 Op−1

1

 , (14)

where Ip is a p× p identity matrix and Op−1 is a vector of zeros of length p− 1, with p being

the total number of elements in the vector vt. For instance, in the frailty model, p = 17.
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The state space model specified in Equation (11) is then used to estimate the path of the

systematic latent factor given the observations and the estimates of the parameters:

{
β1, ..., βS, γ

age
1 , ..., γageS , γfemale1 , ..., γfemaleS , φ1, ..., φS, ψ(t), α1, ..., αS

}
.

In order to make the model parsimonious we assume Cskt = κ2t and cskt = ζt. Following

Durbin and Koopman (1997), we choose κ2t and ζt such that the non-Gaussian density and

the approximating Gaussian density are as close as possible in the neighbourhood of the last

element in vt, i.e. ψ(t). This requires

∂lt(v)

∂ψ(t)
= 0, (15)

and

∂2lt(v)

∂ψ(t)2
= 0, (16)

where lt(v) = ln p(z|v,FT )t − ln g(z|v,FT )t, p(z|v,FT ) denotes the non-Gaussian density,

and g(z|v,FT ) denotes the approximating Gaussian density. Solving Equations (15) and

(16) simultaneously gives the estimates for κ2t and ζt.

To determine the estimate of the frailty, an initial guess for ψ, denoted by ψ̂[0], is used with

the Kalman filter and smoother by computing κ2t and ζt iteratively, based on estimates of ψ

denoted by ψ̂[j] for j = 1, 2, .... This continues until convergence of parameter estimates is

achieved.

3 Health and Retirement Study Data

We use the Health and Retirement Study (HRS) data from the University of Michigan to

estimate the health transition models. The HRS data is a comprehensive and ongoing U.S.

national longitudinal household survey of people aged 50 and above starting from 1992.
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The cohorts are interviewed every two years, covering information on basic demographics,

income, assets, health status, health care expenditures, job history, family structure, etc.

We use data from wave 1998 onward as there were inconsistencies in the survey questions

before wave 1998 (Shao et al., 2015). The latest available wave at the time of writing is in

2012, which contributes an additional wave of data to that included in Fong et al. (2015)

and Shao et al. (2015).

Health states and transitions are determined using the HRS data on self-reported difficulties

in six Activities of Daily Livings (ADLs) which allow assessment of incidence of disability

and recovery. The six ADLs are dressing, walking, bathing, eating, transferring (i.e. getting

in and out of bed or up from chair), and toileting. Two or more difficulties in any of

the six ADLs is categorised as the disabled state, otherwise individuals are in the healthy

state if alive. The death, and the date of death, of an individual are also reported in the

data allowing identification of transitions to death. Since there are approximately two years

between waves, we assume transitions to disability or recovery occur at the mid-point of the

period. This mid-point assumption is also used for deaths if the exact death date is not

given in the data. Withdrawals are treated as non-informative right censoring.

Crude age- and sex-specific transition rates for each sex are calculated as:

ms(x) =
Ys(x)

Rs(x)

=
number of transitions of type s for those aged x last birthday

exposure years to transition type s for those aged x last birthday
, (17)

where x is the integer age. The log crude rates are shown in Figure 3 and these are consistent

with the results in Fong et al. (2015).

The logarithms of the transition intensities show an almost linear pattern with respect to age

for both genders, which supports the proportional hazard specification in Equation (1). The

gender difference in the crude transition rates across ages is close to parallel or insignificant.
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(b) Disabled to Healthy
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(c) Healthy to Dead
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(d) Disabled to Dead
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Figure 3. Log transformation of crude transition rates.

This is supported by the results in Xu et al. (2015) where it is shown that the male and

female sub-populations in the HRS data do not have significantly different deviations from

aggregate systematic mortality improvement. Slight curvature is observed in the plots for

disability inception rates (healthy to disabled). Females have higher incidence of disability

than males. Females generally have lower mortality rates than males at all ages regardless

of health states. Recovery rates are more noisy and decline with age at older ages for both

males and females.
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4 Estimation of Model Parameters and Frailty Factor

Table 1. Parameter estimates (Monte Carlo MLE)

Transition Type H - M M - H H - D M - D
s = 1 2 3 4

No Frailty

β̂s
-7.9488*** 0.9150*** -10.0296*** -6.2067***
(0.1080) (0.1263) (0.1155) (0.1467)

γ̂ages

0.0678*** -0.0320*** 0.1001*** 0.0648***
(0.0014) (0.0017) (0.0014) (0.0017)

γ̂females

0.2894*** 0.0501 -0.4558*** -0.3775***
(0.0284) (0.0400) (0.0271) (0.0357)

Log Likelihood -51,772

No Frailty w/ Time

β̂s
-7.9224*** 0.9319*** -9.8901*** -6.1982***
(0.1085) (0.1267) (0.1156) (0.1485)

γ̂ages

0.0681*** -0.0321*** 0.1016*** 0.0648***
(0.0014) (0.0017) (0.0014) (0.0018)

γ̂females

0.2900*** 0.0493 -0.4567*** -0.3777***
(0.0284) (0.0400) (0.0271) (0.0357)

φ̂s
-0.0143** -0.0025 -0.0674*** -0.0029
(0.0069) (0.0096) (0.0069) (0.0086)

Log Likelihood -51,722

Frailty

β̂s
-7.9237*** 0.9163*** -9.8886*** -6.1963***
(0.1085) (0.1268) (0.1157) (0.1484)

γ̂ages

0.0682*** -0.0318*** 0.1015*** 0.0648***
(0.0014) (0.0017) (0.0014) (0.0018)

γ̂females

0.2896*** 0.0481 -0.4568*** -0.3780***
(0.0284) (0.0400) (0.0271) (0.0357)

φ̂s
-0.0117 0.0243** -0.0777*** 0.0036

(0.0075) (0.0102) (0.0076) (0.0094)

α̂s
0.0173 0.2065*** -0.0664*** 0.0449

(0.0202) (0.0304) (0.0204) (0.0253)
Log Likelihood -51,697

H = “healthy/non-disabled”, M = “morbid/disabled”, and D = “dead”
* p < 0.10; **p < 0.05; ***p < 0.01
λskx(t) calculated from figures above are bi-annual rates, and for the frailty model N = 1, 000

Table 1 gives the parameter estimates for the models. The no frailty models and the frailty

model give consistent estimation results for age and gender effects.

• Age: Transition rates are all strongly age-dependent and consistent with the results in

Fong et al. (2015). Disability and mortality rates ( H - M, H - D, and M - D) increase

with age and recovery rates from disability (M - H) decrease. Exits from disability can

15



be either by recovery or death. The estimated γ̂age2 and γ̂age4 , as well as the β̂’s, show

that before the age of 75 approximately, exit from disability for males is mostly due to

recovery, consistent with the crude data in Figure 3. The mortality rate for a healthy

individual rises with age more quickly than the disability rate (γ̂age3 vs. γ̂age1 ). Thus

exit from the healthy state is mostly by death rather than disability at older ages. As

we show later, this pattern of rates means that for a healthy population aged 50, the

number of disabled will increase initially and then start declining around the age of 75.

• Gender: As expected, gender plays a significant role in most health state transitions,

although there is no significant gender difference in recovery rates. Females have higher

risks of becoming disabled than males, in line with the results in Fong et al. (2015). For

the frailty model, γ̂female1 = 0.2896 whereas γ̂age1 = 0.0682, which implies that, all else

being equal, a healthy female aged 60 has the same risk of disability as a healthy male

aged 64 (approximately). Females have significantly lower mortality rates than males,

regardless of health status (γ̂female3 < 0 and γ̂female4 < 0). A female aged 60 has an

equivalent risk of dying as her 55.5-year-old male counterpart if she is non-disabled or

to her 54-year-old male counterpart if she is disabled. As we show later, this pattern

of rates results in a more rectangular survival curve and longer life expectancy for

females. Since women have higher disability rates than men, women spend more time

in disability than men even though they live longer.

• Time trend: There has been a significant mortality improvement trend for the healthy

population in both the no frailty model and the frailty model. In the frailty model, the

estimated φ̂3 was consistently significant in the Monte Carlo MLE for differing values

of N ranging from 100 to 1,000, with value around −0.07. Since the length between

jumps in time is 2 years (survey cycle of the HRS), this value of φ̂3 implies that, all

else being equal, a healthy 67-year-old in 2012 has roughly the same mortality rate as

a healthy 65-year-old in 2006. There has also been improvement in healthy-disabled
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transition rates, but this improvement is not significant in the frailty model.

• Systematic uncertainty (“frailty”): For the frailty ψ(t), recovery rates and healthy

lives’ mortality rates are significantly impacted by the stochastic frailty process. Thus,

M - H and H - D transitions need to take into account systematic uncertainties. The

signs of α̂2 and α̂3 are different, so that the frailty factor has opposite effects on recovery

rates and healthy mortality rates.

Using these estimated parameters, the posterior mean of the frailty process is estimated as

described in Section 2. The results are shown in Figure 4, where each year on the horizontal

axis represents a wave, e.g. φ(2010) denotes the frailty factor for the period between 2010

and 2012. The posterior mean of the frailty has been slightly declining from 1998 to 2010

and the sign of the frailty is negative in the later years.

1998 2000 2002 2004 2006 2008 2010
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Year

95% CI
Posterior Mean of the Latent Factor

Figure 4. Posterior mean of the latent frailty factor ψ(t).

Kass and Raftery (1995) use the Bayes factor for model comparison, given by B10 =

P(Data|H1)
P(Data|H0)

=
L̂H1

(θ̂H1
|FT )

L̂H0
(θ̂H0

|FT )
. Table 2 shows the results for model comparison for each pair of

models denoted by H0 and H1 respectively.

We see that the inclusion of the time trend and the frailty factor improves model fit. We will

use all these models to project simulated lives for healthy individuals in order to assess the
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Table 2. Model comparison based on test statistic 2 ln(B10).

H1
H0

No Frailty No Frailty w/Time

No Frailty w/Time 100 -
Frailty w/Time 150 50

impact of systematic trend and uncertainty on expected future lifetimes as well as expected

healthy life times.

5 Survival Curves

We use simulation to quantify future lifetime and future healthy lifetime along with the un-

certainty around the expected values implied by the estimated models. Survival curves are

initially produced from the simulations before considering the proportion of individuals in

the disabled state and the uncertainty in these proportions. We then consider life expectan-

cies. We do not include parameter uncertainty in the simulations. The standard errors of

parameter estimates are relatively small as shown in Table 1 and the conclusions that we

draw based on the systematic uncertainty are not changed if this was included.

We use the parameter estimates for the three models to simulate the life path of a healthy

individual at differing ages for a large number of times. The maximum attainable age is 120.

The simulation is performed for ages x = 50, 55, 60, 65, 70 and 75, and for both genders. For

the no-frailty models, with and without time trend, 10,000 homogeneous lives are simulated

for each starting age and gender. For the frailty model, 10,000 paths of the latent frailty

factor are simulated and 10,000 homogeneous lives are simulated for each path. The initial

value for the simulated frailty process is set to be the posterior mean of ψ in 2010. The

simulation results in this study provide predicted life trajectories for an individual aged x in

2010.

Figure 5 shows the transition rates, along with uncertainties for the frailty model given
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(b) Disabled to Healthy, Female
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(c) Healthy to Dead, Female
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(d) Disabled to Dead, Female
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Figure 5. Simulated transition rates for females (annualised).

by 95% confidence intervals, for females aged 50 in 2010 until the age of 100, based on

the parameter estimates. The disability rates show small reductions by age when a time

trend is included and there is little uncertainty in these rates arising from the frailty factor.

Systematic mortality improvement for the healthy population over time is significant, shown

by the much flatter slope of the healthy to dead transition rates with respect to age for the

models with time trend. The frailty produces greater uncertainties in recovery rates and

healthy mortality rates than in the other two transition rates. In particular, recovery rates

show a high level of uncertainty arising from the frailty factor, such that it is not possible

to observe any statistically significant impact of a time trend. Similar comments apply to
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the disabled mortality rates where the uncertainty arising from the frailty factor is lower but

there is no significant effect of the time trend. The confidence intervals for both healthy to

disabled and healthy to dead transitions show that systematic improvement over time has

been significant. Similar results hold for males except that males have lower disability rates

and higher mortality rates than their female counterparts.

(a) 50-Year-Old Healthy Males
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(b) 65-Year-Old Healthy Males
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(c) 50-Year-Old Healthy Females
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(d) 65-Year-Old Healthy Females
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Figure 6. Simulated survival curves for for x = 50, 65.

Figure 6 shows the simulated survival probabilities for ages 50 and 65. The frailty model

survival probabilities are significantly higher than those for the no-frailty model without the

time trend, as expected. For the no frailty model with a linear time trend, there is less

difference between the survival curves. The mortality improvement in terms of older-age
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survival probabilities for a 50 year-old healthy individual is more substantial than those

for a 65 year-old healthy individual. This reflects the fact that the younger cohort will

experience future systematic improvement for a longer period than the older generations.

Females have more rectangular survival curves than their male counterparts, reflecting the

fact that females have significantly lower mortality rates than males regardless of health

status.

6 Distribution of Disability

Although survival curves capture the impact of the systematic improvement factor on mor-

tality, they do not allow us to quantify the impact on disability. To do this we simulate a

cohort of healthy individuals and estimate the proportion that are disabled under the differ-

ent models, along with the uncertainty in these proportions from the frailty factor. Figure

7 shows the expected percentage of an initial 10,000 healthy individuals aged x in 2010 that

will be in the disabled state in the future, for initial ages x = 50 and 65. The results reflect

the interaction between mortality and disability. Since these percentages are based on the

initial 10,000 lives, they also reflect the relative numbers disabled at future ages.

In Figure 7 the proportion of individuals in disability initially rises with age and declines

around the age of 80. Since females have higher disability rates and lower mortality rates,

the peaks of the curves for females reach higher values and take place at slightly older

ages than males. Initially, higher disability rates lead to a higher proportion of disabled

individuals and as age increases, more healthy females than healthy males survive due to

lower healthy mortality rates. This results in a higher exposure to becoming disabled for the

female population. As noted earlier, at older ages, when the exit from disability is mainly

driven by death rather than recovery, disabled females also have lower mortality risks than

their male counterparts, leading to a delayed decline of the proportion disabled.
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(a) 50-Year-Old Healthy Males
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(b) 65-Year-Old Healthy Males
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(c) 50-Year-Old Healthy Females
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(d) 65-Year-Old Healthy Females
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Figure 7. Simulated proportion of disabled individuals for x = 50, 65.

The frailty factor generates significant variations in the expected percentage of disabled

individuals after around 5 years from the initial age x. This reflects the large uncertainties

in the mortality and recovery rates. Nonetheless, the uncertainty reduces at very old ages

as the total population alive reduces. Over the first 5 years of the simulations the frailty

model produces almost the same expected number of disabled individuals as the no-frailty

models. The transition rates in Figure 5 show that the improvement in the disability rates

is not as profound, despite the moderate statistical significance of φ̂1. A postponement of

the disability inception age is expected for the population as more individuals live longer

and become disabled at older ages which will arise due to the higher exposures to becoming

22



disabled at old ages (more old-age survivors) rather than a significant reduction in disability

transition rates. These results are consistent with Crimmins and Beltrán-Sánchez (2011)

who claim there has been no elimination or delay of diseases in the U.S.

At the older ages the impact of the time trend from the systematic improvement factor

becomes clear with more people being in disability than is expected from the no-frailty model

without time trend. Under the models with time trend there are more healthy survivors at

older ages, arising from the improvement in healthy mortality rates, leading to higher levels

of disability transitions at older ages. The impacts of systematic improvements on disability

prevalence are not likely to be observed until the older ages.

Cross sectional data and analysis of recent disability data will not detect these longer run

changes, which requires the modeling and simulation approach used here.

7 Expected Future Lifetimes

Systematic improvement will lead to higher life expectancies. The frailty model with time

trend allows us to determine the impact of uncertainty on both expected future life times

and the confidence interval for this life expectancy. Table 3 shows simulation results for

remaining life expectancy for a healthy individual aged x = 50, 55, 60, 65, 70, and 75.

Comparing the models with time trend to the no-frailty model without time trend we see

that the remaining life expectancy is significantly extended due to the systematic mortality

improvement. For example, a 65-year-old healthy male, on average, will live to age 81.8 if

projected without time trend and to 82.9 with time trend. Using the frailty model this same

65 year old male would on average live to 83.4, with a 95% confidence interval between 82

and 85.1. Similar results apply for a 65-year-old healthy woman who on average have 2.3 to

3 additional years of remaining life expectancy than their male counterparts.

At the younger ages, 65 and below, the lower confidence interval in the frailty model is higher
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Table 3. Simulated expected lifetime

Number of Years

Age No Frailty No Frailty w/Time Frailty

Males

50 29 33.2 34.2 (30.7, 37.5)
55 24.9 27.7 28.5 (26.0, 31.1)
60 20.6 22.4 23.1 (21.1, 25.1)
65 16.8 17.9 18.4 (17.0, 20.1)
70 13.4 13.9 14.1 (13.0, 15.4)
75 10.3 10.4 10.6 (10.0, 11.4)

Females

50 32.2 36.5 37.2 (34.2, 40.5)
55 27.8 30.8 31.7 (29.5, 34.2)
60 23.5 25.7 26.2 (24.5, 28.5)
65 19.6 20.9 21.3 (19.9, 23.1)
70 15.9 16.5 16.8 (15.8, 18.2)
75 12.6 12.8 12.9 (12.3, 13.7)

Note: maximum attainable age is assumed to be 120.

than the expected future life time for the no frailty model without time trend. Projections

of future expected life times for these ages that do not include time trend will significantly

understate future survival prospects. The difference in life expectancy between the frailty

model with time trend and the no frailty models is much reduced at the older ages, as is the

uncertainty in the expected future lifetime.

To consider the impact of systematic improvement allowing for disability, we estimate the

expected future life time in the healthy state. Table 4 shows the simulation results for

remaining healthy life expectancy for a healthy individual aged x = 50, 55, 60, 65, 70, and

75. Reflecting the results for total remaining life expectancy, there is an increase in remaining

healthy life expectancy, which decreases with the initial age x. For example, a 65-year-old

healthy male and a 65-year-old healthy female are predicted to spend approximately 1.5 and

1.7 more years, respectively, in the healthy state if systematic improvement in transition

rates is not included.

There is an increase, or expansion, in healthy life expectancy. Since total life expectancy

also increases, the expected time in the disabled state can be determined by differencing the

total life expectancy and the healthy life expectancy. In absolute terms the expected time
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Table 4. Simulated expected lifetime in healthy state

Number of Years

Age No Frailty No Frailty w/Time Frailty

Males

50 27.2 31.1 32.2 (28.5, 36.9)
55 23.1 25.7 26.7 (23.9, 29.8)
60 18.9 20.5 21.4 (19.3, 24.1)
65 15.3 16.3 16.8 (15.4, 18.8)
70 12.0 12.5 12.7 (11.6, 14.4)
75 9.2 9.2 9.5 (8.7, 10.4)

Females

50 29.1 32.7 33.9 (30.1, 39.2)
55 24.7 27.2 28.4 (25.3, 32.1)
60 20.5 22.4 23.1 (20.9, 26.3)
65 16.8 18.0 18.5 (16.8, 20.9)
70 13.4 13.9 14.2 (12.8, 16.2)
75 10.3 10.5 10.7 (9.8, 11.8)

Note: maximum attainable age is assumed to be 120.

spent in disability, taking into account systematic trend, increases by a small amount for

most ages.

To better understand the impact of systematic improvement estimated from HRS data on

morbidity compression or expansion we consider the proportion of life expectancy that is

healthy life expectancy and compare the results for the no frailty model with the frailty

model with time trend. The ratio is calculated as:

HLE

TLE
=

healthy life expectancy

total life expectancy
. (18)

Table 5 shows the means and quantiles of the HLE/TLE ratios derived from the simulations.

We see that, for both genders, the HLE/TLE ratio declines with age so that more time is

spent on average in disability for older aged individuals. The ratio for females declines with

a steeper slope than for males, so females spend more time on average in disability as a

proportion of remaining lifetime than males.
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Table 5. HLE/TLE

Age No Frailty No Frailty w/Time Frailty

Males

50 0.938 0.936 0.941 (0.917, 0.967)
55 0.929 0.928 0.934 (0.910, 0.955)
60 0.920 0.916 0.925 (0.903, 0.948)
65 0.911 0.909 0.915 (0.896, 0.938)
70 0.900 0.897 0.903 (0.884, 0.928)
75 0.889 0.891 0.892 (0.874, 0.913)

Females

50 0.901 0.897 0.908 (0.866, 0.951)
55 0.887 0.884 0.897 (0.859, 0.934)
60 0.874 0.873 0.882 (0.848, 0.922)
65 0.859 0.859 0.867 (0.834, 0.907)
70 0.841 0.840 0.847 (0.809, 0.888)
75 0.822 0.825 0.828 (0.796, 0.861)

Note: maximum attainable age is assumed to be 120.

Although the average ratio is slightly lower for most ages when a time trend is included in the

no-frailty model, suggesting some expansion in time spent in disability, this is the reverse

for the frailty model with time trend. The mean of the HLE/TLE ratio for the frailty

model is slightly higher than the no-frailty models. An examination of Figure 8 highlights

the substantial uncertainties around the expected values. Allowing for this, based on the

HLE/TLE ratios, there is no strong evidence for either morbidity compression or expansion

based on the HRS data for the United States. Variations around the mean of the HLE/TLE

ratio for females are larger than those for males.

8 Conclusions

Systematic improvement in mortality has attracted significant attention in recent years.

Despite this, stochastic health transitions in LTC have received little attention. Transition

rates are typically modeled without a stochastic component for systematic risk, and estimated

mostly using aggregate data, rather than individual level data. In this paper we introduce

the multi-state latent factor intensity (MLFI) model, which has been used in modeling credit

rating transitions, into LTC modeling and estimate it using individual panel data from the

HRS. The MLFI model allows us to incorporate a time trend and frailty capturing systematic
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Figure 8. Ratio of healthy life expectancy (HLE) to total life expectancy (TLE).

trend and uncertainty in a parsimonious way, compared to the Lee-Carter specification used

in Majer et al. (2013). The model is flexible and can easily incorporate covariates.

Fitting the model to HRS individual level data shows a significant improvement in mortality

rates for both genders and allows us to quantify the impact of the systematic factor, or

frailty, on disability rates and recovery rates. Mortality rates for disabled lives show less

improvement than for healthy lives. Recovery rates from disability are found to be highly

uncertain arising from the inclusion of the stochastic frailty factor. Survival probabilities

improve and more healthy individuals are expected to survive to old ages resulting in higher

exposures to disability. This results in an expected postponement of the disability inception

age.

Healthy life expectancy, for both genders, is expected to increase although the expected time

spent in disability is expected to increase much less in absolute terms. Uncertainty in the

ratio of healthy life expectancy to total life expectancy shows that there is a high level of

uncertainty as to the extent of morbidity compression or expansion for the U.S. population

aged 50 and above. While total life expectancy has expanded and the number of old-aged

disabled individuals has increased, the proportion of expected time spent in disability reflects
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the significant variability in the number of disabled individuals in our simulations.

These results demonstrate how studies that do not include systematic trend and uncertainty

may well come to differing conclusions around whether or not there has been expansion or

contraction in disability. Our results suggest that there may, on average, be some disability

compression, but the uncertainty in future mortality and disability rates may well lead to

either compression or expansion.

Importantly, our methodology can be applied to a range of significant research issues around

modeling and projecting disability including estimation of long term care costs, budgetary

implications for government of improving longevity and the risks and uncertainties for pricing

and risk management of LTC insurance products.
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