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There is a long standing controversy over the magnitude of the
Frisch labor supply elasticity. Macro economists using DSGE models
often calibrate it to be large, while many micro data studies find it
is small. Several papers attempt to reconcile the micro and macro
results. We offer a new and simple explanation: Most micro studies
estimate the Frisch using a 2SLS regression of hours changes on
income changes. But available instruments are typically “weak.” In
that case, we show it is an inherent property of 2SLS that estimates
of the Frisch will (spuriously) appear more precise when they are
more shifted in the direction of the OLS bias, which is negative.
As a result, Frisch elasticities near zero will (spuriously) appear
to be precisely estimated, while large estimates will appear to be
imprecise. This pattern makes it difficult for a 2SLS t-test to detect
a true positive Frisch elasticity. We show how the use of a weak
instrument robust hypothesis test, the Anderson-Rubin (AR) test,
leads us to conclude the Frisch elasticity is large and significant in
the NLSY97 data. In contrast, a conventional 2S5LS t-test would
lead us to conclude it is not significantly different from zero. QOur
application illustrates a fundamental problem with 25LS t-tests that
arises quite generally, even with strong instruments. Thus, we argue
the AR test should be widely adopted in lieu of the t-test.

Keywords: Frisch elasticity, labor supply, weak instruments, 2SLS,
Anderson-Rubin test

JEL: J22, D15, C12, C26

I. Introduction

The elasticity of labor supply with respect to predictable wage changes — known
as the Frisch elasticity — plays a key role in many economic policy debates. The
Frisch is special because predictable wage changes have pure substitution effects.
As an example of its importance, Conesa, Kitao and Krueger (2009) argue that
higher values of the Frisch imply a higher optimal tax rate on capital income. And
macro models where real shocks play a key role in business cycles often require
the Frisch to be large to match observed fluctuations in work hours over the
cycle, see Prescott (2006). Because of its importance, a large literature attempts
to estimate the Frisch elasticity, as exemplified by classic papers by MaCurdy
(1981) and Altonji (1986) and surveyed in Keane (2011, 2021).

* CEPAR & School of Economics, UNSW. Corresponding author: m.keane@Qunsw.edu.au
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Classic micro data studies in the style of MaCurdy (1981) typically find the
Frisch elasticity is small, while macro economists using DSGE models often cali-
brate it to be large. This led to a long-standing “macro-micro controversy” over
the magnitude of the Frisch. Keane and Rogerson (2012, 2015) discuss attempts
to resolve the controversy. Here we present a new type of resolution based on a
critique of the micro-econometrics itself: We argue the classic studies were inher-
ently biased against finding the Frisch is both large and significant, due to weak
instrument problems and a little appreciated generic property of 2SLS t-tests.

The basic idea behind most micro studies is as follows: Given panel data on
workers observed over time, one may run an OLS regression of changes in log work
hours on changes in log wages. But this fails to deliver the elasticity of hours with
respect to predictable wage changes — as some wage changes are surprises. Instead,
the approach pioneered by MaCurdy (1981) involves running a 2SLS regression
where one instruments for the change in log wages using an instrument with two
properties: First, it predicts wage growth at the individual level. Second, it is
known at the start of the time period over which changes in wages are calculated
(so it is uncorrelated with surprise wage changes). Then, fitted values from the
first-stage give us predictable changes in wages, and the second stage delivers an
estimate of the elasticity of hours with respect to these predictable wage changes,
which is the Frisch concept.

Unfortunately, the literature on estimating the Frisch elasticity has been ham-
pered by weak instrument problems. This is because it is hard to find variables
that are both known in advance and are good predictors of a person’s wage growth
during the next year. In other words, the lion’s share of annual wage growth at
the individual level appears to be idiosyncratic or unpredictable.

A little appreciated property of 2SLS is that it generates a strong association be-
tween the 2SLS estimate and the standard error of regression, which is minimized
when the 2SLS estimate is close to E(Bors), see Phillips (1989). In Keane and
Neal (2021) we show how this generates a strong association between the 2SLS
estimates and their standard errors, and this association is positive if the OLS
bias is negative. This makes it difficult for a 2SLS t-test to detect a true positive
Frisch elasticity, especially if instruments are weak. Using NLSY97 data, we show
how the Anderson-Rubin (AR) test, which is robust to weak instruments and less
subject to this problem, leads us to conclude the Frisch elasticity is large and
highly significant, while a conventional 2SLS t¢-test indicates it is not significantly
different from zero. Thus, application of an appropriate inferential procedure —
the AR test — reveals clear evidence to support a large Frisch elasticity.

It is important to emphasize that our critique of the classic micro studies is
deeper than a claim that weak instruments make the micro estimates of the Frisch
imprecise. Instead, we show it is an inherent property of 2SLS that estimates of
the Frisch will (spuriously) appear more precise when they are more shifted in the
direction of the OLS bias, which is negative. This will systematically bias micro
data studies that rely on 2SLS ¢-tests against concluding the Frisch is large.
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II. Estimating the Frisch Labor Supply Elasticity

We estimate the Frisch elasticity using data from the National Longitudinal Sur-
vey of Youth 1997 (NLSY97). The NLSY97 follows a sample of American youth
born in 1980-84. The 8,984 respondents were aged 12-17 when first interviewed
in 1997.1 We use data from rounds 11 through 15, which contain information on
labor income and work hours in 2005 to 2010. The regression we run is:

(1) AlnHy; = a+ BAInW; + vCir + €54

where H;; is annual hours worked for respondent ¢ in year t, W, is the wage, and
C,¢ is a vector of control variables which includes year dummies (to capture busi-
ness cycle effects on hours worked) as well as respondent age and race/ethnicity.

Our hours measure is “Total annual hours worked at all civilian jobs during the
year in question” while our income measure is “Annual income from wages, salary,
commissions, and tips before tax deductions.” We obtain an annual wage measure
by taking the ratio of annual income to annual hours. Regressions that involve
percentage changes can be quite sensitive to measurement error and outliers, as
these can generate extreme percentage changes. So, as is typical in this literature,
we implement a number of sample screens designed to eliminate outliers.?

Obviously, OLS estimation of (1) fails to identify the Frisch elasticity, as pre-
dictable and unpredictable wage changes have different effects on labor supply.
A surprise wage increase has both substitution and income effects. In contrast,
a predictable wage increase has no income effect (precisely because it was pre-
dictable), so it induces a pure substitution effect that increases labor supply. It
is this Frisch substitution effect of predictable wage changes we want to estimate.

Our key task then is to choose an instrument that is known to workers at the
start of each year, and that generates predictable wage growth during the year.
MaCurdy (1981) and many subsequent papers use education as the instrument
for wage growth. The motivation is that annual wage growth tends to be faster
for more educated workers.> We adopt a closely related approach: The NLSY97
administered an aptitude test called the Armed Services Vocational Aptitude
Battery (ASVAB) to respondents when they were 13 to 18 years old.* We find that
the ASVAB percentile score is a stronger predictor of wage growth than education,
so we use that as our instrument. But the idea is similar: Not surprisingly, wage
growth is predictably faster for higher ability workers.

LOf that, 6748 is a random sample of the birth cohort while 2236 is an over-sample of minority groups.

20bservations were excluded if income was less than $3,000, the annual wage was less than $2.70 per
hour worked, the total number of hours worked was less than 400 or above 4,160 (roughly 80 hours a
week), or if the percentage change in wages from the last year was below -50% or above 70%.

3He also used interactions of education and age, to allow the effect of education to differ by age.

4The ASVAB measures aptitude in several areas including mathematics, general science, paragraph
comprehension, and mechanical skills. It was administered in summer 1997 to spring 1998, when the
youth were aged 13 to 18 (those aged 13 to 14 were given an easier version of the test). The NLS grouped
respondent’s into three-month age windows and calculated a youth’s percentile rank within his age group.



We did the analysis separately for men and women, as prior literature has
shown that their labor supply behavior differs in important ways. Interestingly,
the ASVAB score is a much better predictor of wage growth for men than women.”
For this reason, we decided to focus only on results for men. Our full data set
has 5,931 annual observations on 2,100 young men aged 22 to 30 who we observe
over 2 to 6 years (the average being 3.8 years).

III. NLSY97 Estimates of the Frisch Elasticity

Table 1 shows the results from estimating regressions of changes in log hours
on changes in log wages, as in equation (1). The first column shows OLS results.
The coefficient on the log wage change is -0.42 and very highly significant, with
a standard error of 0.015.% This implies that a 10% wage increase is associated
with a 4.2% reduction in hours of work. There are two reasons for a negative
relationship: As we already noted, surprise wage changes may generate income
effects that reduce labor supply. But it is implausible that income effects alone
could generate such a large negative effect.

Another important factor driving the OLS estimate negative is the phenomenon
of “denominator bias” that plagues many labor supply studies. The problem is
that the wage rate is measured as the ratio of earnings to hours. If the hours
variable in the denominator is measured with error, it causes a worker’s measured
wage to be too low precisely when his/her measured hours are too high. This
induces an (artificial) negative covariance between measured hours and measured
wages that drives the estimated elasticity negative. As a result, the OLS estimate
cannot be interpreted causally. A second virtue of instrumenting for wage changes
is that it also deals with this measurement error problem - see Altonji (1986).

Next we look at the 2SLS results. The second column of Table 1 shows the
first stage of 2SLS, where we regress log wages changes on the ASVAB percentile
score to construct predictable wage changes. The coefficient is 0.039 and highly
significant (standard error 0.012). This means a male worker in the 100th per-
centile of ability is predicted to have annual wage growth 3.9% higher than a male
worker in the 1st percentile. The heteroskdasticity robust F-test for significance
of ability in the first stage regression is 10.12, which gives a p-value of 0.002. This
implies significance at much better than the 1% level.

It is important to note, however, that the R? of the first stage regression is only
.007, implying a correlation between our predictions and actual wage changes of
.084. In fact, the partial R? that shows the fraction of wage variation explained
by the ASVAB test alone is .002, implying a partial correlation of only .041.

51t is not clear if this is because wages grow relatively faster for high ability men than for high ability
women, or because the ASVAB is not as good a proxy for labor market skills of women.

6All standard errors and F-statistics reported in this paper are heteroskedasticity robust or cluster
robust. The cluster robust standard errors account for both heteroskedasticity and serial correlation.
They are always slightly smaller, because the errors in the hours change regression exhibit negative serial
correlation. Hence the heteroskedasticty robust statistics are slightly more conservative.
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TABLE 1—FRISCH ELASTICITY ESTIMATES - NLSY97

OLS 2SLS 2SLS Reduced
1%t Stage 2"¢ Stage Form
Dependent Variable: AH AW AH AH
Wage Change -0.416 0.597
(0.015) (0.403)
[0.015] [0.363)]
ASVAB Ability Score 0.039 0.024
(0.012) (0.011)
[0.011] [0.010]
F-Stat (Hetero-o Robust) 10.12 4.47
p-value 0.002 0.035
F-Stat (Cluster Robust) 12.23 5.64
p-value 0.001 0.018
R? 0.210 0.007 0.009

Note: Heteroskedasticity robust standard errors are in parentheses and clus-
tered standard errors (by individual) are in square brackets. All regressions
controls for year effects, age, and race/ethnicity. N = 5,931

This illustrates the point that annual wage growth is very hard to predict. It is
important to emphasize, however, that a higher R? in the first stage would not
necessarily be a good thing. Measured wage changes contain both unpredictable
and measurement error components that we specifically want to filter out, so we
actually want the R? of the first stage regression to be much less than one.

Now consider the second stage 25LS results, where we regress log hours changes
on log predictable wage changes to obtain an estimate of the Frisch elasticity.
This is reported in the third column of Table 1. Strikingly the estimate is 0.597,
implying that a 10% predictable wage increase generates a 6% increase in work
hours. So the use of 2SLS flips the sign of the coefficient.

This 2SLS estimate is clearly more reasonable: Economic theory predicts a
positive Frisch elasticity, as a predictable wage increase should have a positive
substitution effect on labor supply. And a Frisch elasticity of 0.6 is well within
the range of estimates surveyed in Keane (2011, 2021).

Notice however, that the (heteroskedasticity robust) standard error on the 2SLS
estimate is a substantial .403, giving a t-statistic of only 1.48 and a p-value of
0.138. So, while the estimated Frisch elasticity is a substantial 0.6, it is not even
significantly different from zero at the 10% level.” This imprecision leaves us in
a quandry over what we ought to conclude from the analysis.

"The cluster robust standard error is slightly smaller, at 0.363, because the serial correlation in the
hours change regression is negative. But even then the ¢-stat is only 1.65 (p-value = 0.099).



The imprecision in our 2SLS estimate is a consequence of the fact that the
ASVARB score only explains a small part of the variance of wage changes. Because
the partial correlation between the ASVAB score and wage changes is .041, the
standard error goes up by a factor of 25 when we go from OLS to 2SLS (i.e., 1/.041
~ 25). This imprecision in 2SLS estimates has plagued the entire literature on
estimating the Frisch elasticity using the 2SLS approach.

IV. An Example of the Weak Instrument Problem

The situation we see here, which is very typical of attempts to estimate the
Frisch elasticity, is a classic example of the “weak instrument” problem. This
refers to a situation where the instrument is statistically significant in the first
stage of 2SLS, but it only explains a small part of the variance in the endogenous
variable. In the present case, the ASVAB score is highly significant in the first
stage (p=.002), but it it only explains a small part of the variance in wage changes
(partial correlation = 0.04). It is statistically significant because even small effects
tend to be significant when sample size is this large (N = 5,931).

Unfortunately, 2SLS results can be very unreliable when instruments are weak.
In particular, 2SLS t¢-tests may be unreliable, and 2SLS estimates may be biased
towards OLS. The important paper by Bound, Jaeger and Baker (1995) made
applied economists acutely aware of these problems. This in turn led to an ex-
plosion of theoretical work on the “weak instrument problem.” This work seeks
to find criteria that instruments should satisfy for 2SLS results to be reliable.

The key insight of the weak instrument literature is that the quality of 2SLS
estimates depends crucially on the size of the first stage partial F-statistic that
tests significance of the instrument, where bigger is better. It is useful to recall
the basic relationship that F = NR?/(1— R?). Properties of 2SLS do not depend
on N or first-stage R? per se, but only how they combine to form F. So a large
sample size alone is not sufficient to ensure that 2SLS will deliver reliable results.

In an important paper, Staiger and Stock (1997) studied behavior of the 2SLS
estimator at different levels of instrument strength. They developed the well-
known “Staiger-Stock” rule of thumb, which says that the first-stage F’ should be
at least 10 before we have confidence in 2SLS results. This F > 10 advice has
been widely adopted in practice and presented in textbooks.® Of course, this is
only meant as a rough guide, so a first stage-F' near 10 puts one in a borderline
case where weak instruments may or may not be a problem.

In our application to estimating the Frisch elasticity, the heteroskedasticity
robust first-stage partial F-statistic for testing significance of the ASVAB in-

8For example, Stock and Watson (2015, p.490) say: “One simple rule of thumb is that you do need
not to worry about weak instruments if the first stage F-statistic exceeds 10.”

9Stock and Yogo (2005) proposed critical values for F based on maximal size distortion in t-tests one
is willing to tolerate. F' > 16.4 ensures that a two-tailed 5% t-test will reject at a 10% rate or less. In
other words, it has a size distortion of no more than 5%. But passing such a test does not imply the
t-test will have acceptable power, as we illustrate in Keane and Neal (2021).
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strument is 10.12. So we are right on the borderline between a “weak” and an
acceptably strong instrument.'® Should we trust the 2SLS results in this case?
Is the 2SLS t-test, which tells us that the Frisch elasticity is not significantly
different from zero, really reliable?

V. The Anderson-Rubin Approach

Early in the history of IV methods, Anderson and Rubin (1949) developed
an alternative method that we can also use to test if our estimate of the Frisch
elasticity is significant. The Anderson-Rubin (AR) test relies on a reduced form
regression of the outcome of interest on the instrument itself, along with the
control variables. In our case this means a regression of the change in log hours
on the ASVAB score itself, along with the controls (time, age, race). The AR
test judges the Frisch elasticity estimate to be significant if the ASVAB score is
significant in the reduced form regression.

The logic of the AR test is simple: A fundamental assumption of the IV method
is that the instrument only affects the outcome of interest indirectly through its
effect on the endogenous variable. Hence, if the instrument is significant in the
reduced form, it implies that the endogenous variable has a causal impact on the
outcome of interest. In our case, if the ASVAB score is significant in the reduced
form, it means that predictable wage changes influence work hours.

Of course the ASVAB score could appear significant in the reduced form merely
because it somehow affects hours growth directly (not indirectly via its effect on
wage growth). That is, the ASVAB score may be significant because the exclusion
restriction is violated. But in that case the ASVAB score is not a valid instrument,
so the 2SLS results are completely invalid anyway, and the t-test result is also
meaningless. The very assumptions that make the IV approach valid in the first
place also make the AR test valid.

The last column of Table 1 reports the reduced form results. Here, the ASVAB
score is clearly significant, with a t-stat of 2.18 (p-value 0.035). So we are left
with a quandry: The AR test says our 2SLS estimate of the Frisch elasticity is
significant, while the ¢-test says it isn’t. Which result should we believe?

The AR test is recommended by theory as clearly superior to the ¢-test when
instruments are weak, and no worse when instruments are strong - see Andrews,
Stock and Sun (2019). This is because the AR test has two major advantages:
First, it is “robust” to weak instrument problems, which means a 5% level AR test
rejects a true null hypothesis at the correct 5% rate regardless of the strength or
weakness of the instruments. In contrast, the t-test is unreliable: If instruments
are weak, a 5% t-test may reject a true hypothesis at rates far above/below 5%,

10 Andrews, Stock and Sun (2019) point out that in general it is inappropriate to use either a
heteroskedasticity-robust or conventional F-test to assess instrument strength in non-homoskedastic
settings, and suggest using the Olea and Pflueger (2013) effective first-stage F-statistic. However, as
they point out, in the single instrument just-identified case that we consider here, this reduces to the
conventional heteroskedasticity-robust F'.



depending on details of the situation. Second, Moreira (2009) shows that in the
case of a single instrument (which is what we have here) the AR test is the most
powerful robust test: If the null hypothesis is false, the AR test will reject the
null, and conclude the parameter of interest is significant, at least as frequently
as any other robust test.!!

Despite its clear advantages, the AR test has been widely neglected by applied
researchers. In fact, as far as we know, it has never been adopted in the large
literature on estimating the Frisch elasticity. In our Frisch elasticity application,
given that the first-stage F' statistic is only slightly above 10, conventional wisdom
says we are in a borderline case where weak instruments may or may not be a
concern. Clearly the AR test should be viewed as more reliable than the t-test
in this context. It turns out the difference in performance between the two tests
is not at all subtle. In the next section we present a numerical experiment based
on our data that shows the AR test is dramatically superior in practice.

VI. Monte Carlo Experiment

In this section we compare the AR test and the t-test to see which is a more
reliable guide to the statistical significance of our Frisch elasticity estimate. To
do this, we conduct the following experiment: We start from the NLS sample
of N=5,931 observations that we used to generate the estimates in Table 1. We
can then “bootstrap” a new artificial dataset by sampling 5,931 observations with
replacement from the original sample. We do this 10,000 times to form 10,000
artifical datasets. We then repeat the analysis of Table 1, applying OLS and 2SLS
to all 10,000 datasets, and summarize the results in Table 2.12

TABLE 2—RESULTS FROM MONTE CARLO BOOTSTRAP SAMPLES

~ OLS ~ 25LS First Stage Reduced Form
I} S.E. 15} S.E. F' Statistic T S.E.

Median -0.4163 0.0146 0.5998  0.4013 10.1314 0.0238 0.0112
Mean -0.4164 0.0146 0.7185  4.7202 11.0923 0.0237 0.0112
Std. Dev. 0.0148 0.0004 3.8636 251.4631 6.4577 0.0111 0.0003

Note: N =5,931 for each of the 10,000 samples used to form the results.

11 Andrews, Stock and Sun (2019) argue that the AR test should be widely adopted by applied re-
searchers. They state its advantages more formally: “In just-identified models ... Moreira (2009) shows
that the AR test is uniformly most powerful unbiased. ... Thus, the AR test has (weakly) higher power
than any other size-a unbiased test no matter the true value of the parameters. In the strongly identified
case, the AR test is asymptotically efficient in the usual sense and so does not sacrifice power relative to
the conventional t-test. ... Since AR confidence sets are robust to weak identification and are efficient in
the just-identified case, there is a strong case for using these procedures in just-identified settings.”

12By sampling with replacement from the original 5,931 observations we break the panel structure of
the data. As a result, the standard errors and F' statistics in Table 2 will mimic the heteroskedasticity
robust statistics in Table 1, not the cluster robust statistics.
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A. OLS Estimates and Standard Errors

The first thing to notice in Table 2 is that both the median and mean of the
OLS estimates of the Frisch elasticity (across all 10,000 datasets) are equal (to
three decimal places) to the (downward biased) value of -0.416 we obtained using
the original NLS sample. This is as expected, as our 10,000 artificial “bootstrap”
datasets mimic the covariances of the variables in the original NLS sample.

The third row of Table 2 reports the standard deviation of the OLS estimates
across the 10,000 artificial samples is 0.015, which equals (to three decimal places)
the OLS standard error estimate reported in Table 1. Thus, the estimated OLS
standard error is a very good guide to how the OLS estimates actually vary across
the different samples. In other words, the OLS standard error estimate is useful
for making judgements about statistical significance.

B. 2SLS Estimates and Standard Errors

Now we examine how the 2SLS estimates and standard errors behave. The
first thing to note in Table 2 is that the median 2SLS estimate of the Frisch
elasticity (across all 10,000 datasets) is 0.600, which is very close to the 2SLS
estimate 0.597 we obtained using the original NLS dataset. Again, this is exactly
as expected. As all 10,000 of our artificial datasets were constructed from our
original NLS sample, we can think of the NLS sample as the “population” from
which all 10,000 datasets are drawn. In this population, 0.597 is in fact the true
value of the Frisch elasticity. We see that the median 2SLS estimate accurately
uncovers the true Frisch elasticity value (while of course OLS does not).

Second, note that the median of the estimated 2SLS standard errors, reported in
the first row of Table 2, is 0.401. This agrees closely with the 2SLS standard error
estimate of 0.403 in Table 1. However, the actual empirical standard deviation
of the 2SLS estimates across the 10,000 data sets is 3.864. In contrast to OLS,
this bears no resemblance to the estimated 2SLS standard errors. This is our
first indication that the 2SLS standard errors are not a good guide to the actual
variability of the 2SLS estimates across samples.' This in turn means that 2SLS
t-statistics — which rely on those standard error estimates — will not be a useful
guide to significance of 2SLS estimates.

To further explore the behavior of the 2SLS standard error, Figure 1 plots the
2SLS standard errors against the 2SLS estimates of the Frisch elasticity from
each of the 10,000 samples. A striking aspect of the figure is the strong positive
association between 2SLS estimates and their standard errors: The Spearman

13Table 2 also reports the mean and median of the estimated OLS standard error across the 10,000
artificial datasets. These are again 0.015. And the variation across samples of this standard error estimate
is trivially small. So we have an even stronger result: The estimated standard error in each individual
sample is a good guide to the actual variability of the OLS estimates across all samples.

141n fact, in the single instrument case the mean and variance of the 2SLS estimator do not exist,
which means that if we did many more than 10,000 runs the estimates wouldn’t converge to anything in
particular. This means the standard deviation of the 2SLS standard error cannot be bootstrapped.
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correlation is an extraordinarily large 0.905. This means that in samples where
the estimated Frisch elasticity is larger, the standard error is also larger. As we
will see, this pattern has extremely important empirical implications.

The association between 2SLS estimates and their standard errors is not specific
to this application. It is a generic but little-appreciated property of the 2SLS
estimator. We can start to understand the source of this phenomenon using exact
finite sample theory. Phillips (1989) derives two key properties of 2SLS in the
unidentified case (when the instrument is irrelevant). First, the 2SLS estimator
converges in distribution to a scale mixture of normals centered on E(Bors).
Second, the 2SLS variance estimator (62) converges in distribution to a quadratic
function of BQSLS, with a minimum at E(BOLS). This means the standard error
of regression (§) is minimized when fBagr is close to E(Bors). Of course, the
standard error of the regression (&) is a fundamental driver of the standard error
of BQSLS. Thus, in the unidentified case, the standard error of Bgs Ls tends to be
minimized when the estimate is near E(SoLs).

Importantly, the properties of 2SLS in the unidentified case have a major influ-
ence on the behavior of 2SLS estimates and standard errors in strongly identified
models. In fact, Phillips (1989) calls this the “leading case” as it provides the
leading term of the series expansion of the density of the estimator in the general
case. As a result, even in strongly identified models, the standard error of Ba51.5
tends to be minimized when the estimate is near E(Sors), as we see in Figure 1.
In Keane and Neal (2021) we give an intuitive explanation for why the association
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between 2SLS estimates and their standard errors exists in identified models, and
we fully explore the implications of this phenomenon.'® For our present purposes
it suffices to note the following: Because of this pattern, large positive 2SLS es-
timates of the Frisch elasticity will have relatively large standard errors, while
estimates near zero will have much smaller standard errors.

This bring us to our key point: The positive association bewteen 2SLS estimates
of the Frisch elasticity and their standard errors has important implications for
statistical inference. As we now show, this mechanical relationship makes it very
hard for a 2SLS t¢-test to detect a true positive Frisch elasticity.

Recall that our 10,000 simulated data sets are constructed so the true value of
the Frisch elasticity in these data sets is 0.597. Thus, if the 2SLS ¢-test is reliable
it should have two properties: First, if we run 5% t-tests of the hypothesis that
the true Frisch elasticity is zero we should reject that false hypothesis at a high
rate (indicating the test has good power). Second, if we run 5% t-tests of the
true hypothesis that the Frisch is equal to 0.597 (the true value) we should reject
that hypothesis approximately 5% of the time (indicating the test has correct
size). Furthermore, those rejections should be evenly split between cases where
the estimated Frisch elasticity is above and below the true value.

In the left panel of Figure 1 we shade in red the cases where the 2SLS t-test
rejects the false null hypothesis that the true Frisch elasticity is equal to zero.
These are the cases where the ratio of the estimate to the standard error exceeds
the 5% critical level of 1.96 (in absolute value). Notice how the red shaded area
is very small. In fact, the false null hypothesis is only rejected 5.1% of the time.
This is an abysmally low level of power. In fact, if the null hypothesis were true,
we would expect a well behaved 5% level ¢-test to reject it 5% of the time, and
this is scarcely better than that!

In the right panel of Figure 1 we shade in red the cases where the 2SLS ¢-test
rejects the null hypothesis that the true Frisch elasticity is equal to the true value
of 0.597. The test rejects the null hypothesis 6.6% of the time. This is not so bad
when viewed in isolation, as it is not too far from the correct rate of 5%. But
more importantly, the rate of rejecting the true hypothesis that the Frisch equals
0.597 is actually greater than the rate of rejecting the false hypothesis that the
Frisch equals 0. This is truly awful behavior for a statistical test.

15Basically, this pattern arises for the following reason: As we discussed in Section III, in the original
NLS sample the partial correlation between the ASVAB score and wage growth is 0.04. When we look
across our 10,000 subsamples, the correlation fluctuates around that value due to sampling variation.
Two things happen in samples where that correlation is relatively high:

First, the 2SLS standard error estimate is smaller: The stronger is the correlation between the instru-
ment and the endogenous variable, the smaller is the 2SLS standard error.

Second, the 2SLS estimate is more shifted in the direction of the OLS bias (which is negative). This
is because, as we discussed in Section III, if the predictable part of wage growth is small, then a high
correlation between the instrument and the endogenous variable is not really a good thing. In samples
where that correlation rises above 0.04, the instrument is picking up some of the endogenous part of
wage growth that arises due to measurement error and surprise wage growth. This in turn means the
2SLS estimate will be shifted in the direction of the OLS bias (negative).

Putting these two facts together, it means that 2SLS estimates that are most shifted in the direction
of the OLS bias (negative) appear to be more precise. This is exactly the pattern we see in Figure 1.



12

Another notable aspect of the right panel of Figure 1 is that the cases where we
reject the null of Frisch = 0.597 are not evenly split between cases where the esti-
mate is above and below the true value. In fact, all the rejections occur when the
estimated Frisch elasticity is very small (near zero). This is a direct consequence
of the positive association between 2SLS estimates and their standard errors. As
large positive estimates of the Frisch elasticity have large standard errors, there
is very little chance of concluding a large positive estimate is significant.

C. Anderson-Rubin Test Results

Figure 2 reports the same results for the AR test. The contrast with the ¢-test
is dramatic. We again plot the 2SLS standard errors against the 2SLS estimates,
as in Figure 1. But now we plot in red the cases where the AR test rejects the
false null hypothesis that § = 0 at the 5% level. In the left panel we see that
the red region is quite large. The AR test rejects the false null that the Frisch is
equal to zero 56.5% of the time. This is a good level of power that is more than
ten times greater than the 5.1% rate acheived by the t-test.

FIGURE 2. STANDARD ERROR OF BQSLS PLOTTED AGAINST BQSLS ITSELF (AR TEST)
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Note: Runs with standard error > 1 are not shown. In the left panel, red dots indicate
Hy : B = 0 is rejected at the 5% level using the AR test. In the right panel red dots
indicate Ho : B = 0.597 rejected at the 5% level using the AR test. Blue and green
indicate rejections at the 10% and 20% levels, respectively.

The right panel of Figure 2 shows the rate of rejecting the true null hypothesis
that the Frisch equals 0.597. The AR test rejects 4.9% of the time, which is
almost exactly equal to the correct 5% rate. Furthermore, we plot in blue and
green the cases where 10% and 20% AR tests reject. These rates are 10% and
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19.5%, so again almost perfect. This illustrates how the AR test is “robust”
to weak instruments, meaning that is has correct size (rejection rates) even if
instruments are weak or borderline. Thus we see that the AR test has correct size
and ten times the power of the t-test.

The only limitation of the AR test is that it doesn’t quite generate symmetric
rejections when the estimates are above and below the true value. For example,
of the 4.9% rejections in the 5% test, 3.6% occur when the estimate is below 0.597
and 1.3% occur when it is above. This is because, like the t-test, the AR test
tends to attribute greater precision to estimates shifted in the (negative) direction
of the OLS bias, and less precision to large positive estimates. But this problem
is much less severe for the AR test than the ¢-test.'6

These results make it very obvious that in the data environment of our empirical
application the AR test provides a far more reliable guide to the significance of
the estimate of the Frisch elasticity than does the t-test. Yet, in the extensive
literature on estimating the Frisch elasticity, we are not aware of any work that has
used the AR test. The consequence is that prior work that relied on 2SLS ¢-tests
will have tended to obtain insignificant results even if the true Frisch elasticity is
well above zero.

The superiority of the AR test over the t-test is not specific to this example.
In Keane and Neal (2021) we show that the superiority of the AR test is evident
across a wide range of contexts. 2SLS t-tests perform poorly in general due to the
strong association between 2SLS estimates and their standard errors. As a result
of this pattern, t-tests have difficulty detecting true negative (positive) effects
when the OLS endogeneity bias is positive (negative). This problem is relevant
across a wide range of empirical applications, including cases where instruments
are much stronger than here. The AR test is much less susceptible to this problem.

VII. Interpreting the Empirical Results in Light of the Experiment

Returning to our empirical results in Table 1, we now assess them based on what
we have learned from the Monte Carlo study. Recall that our 2SLS estimate of
the Frisch elasticity based on the ASVAB instrument is 0.597, but the 2SLS ¢-test
indicates this is not significantly different from zero at the 5% level. However,
while the ASVAB score is a highly significant predictor of wage growth, it only
explains a small fraction of the variance. The Monte Carlo experiment clearly
indicates that the ¢-test is not reliable in this weak instrument environment.

Much more reliable is the weak instrument robust AR test, which is based on
the significance of the instrument (ASVAB) in the reduced from regression of
hours changes on wages changes. The AR test indicates that our Frisch elasticity
estimate is significant at the 3.5% or 1.8% level, depending on whether we rely
on the heteroskedasticity robust or cluster robust standard error.

16In Keane and Neal (2021) we show that the power asymmetry in the AR test vanishes quickly as
instruments become stronger. But the power asymmetry in the ¢-test remains substantial even with very
strong instruments.
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We can also invert the AR test to obtain a weak instrument robust confidence
interval, as discussed in Anderson and Rubin (1949).!7 Using cluster robust
statistics we obtain a 95% confidence interval for the Frisch elasticity of 0.082
to 2.03, which is clearly bounded above zero, and covers most of the range often
used to calibrate macro models.

VIII. Results Based on Multiple Instruments

As we discussed in Section II, much of the prior work on estimating the Frisch
elasticity used education as the instrument for wage growth, but we rely on the
ASVAB score as we find it is a stronger instrument in the first stage of 2SLS. In
this section we consider using both education and the ASVB score as instruments.
In order to keep the sample identical to that in Table 1, we code education as zero
if it is missing, and introduce a dummy for missing education as an additional
instrument. As we see in the first column of Table 3 both the ASVAB score
and education are significant in the first stage of 2SLS, suggesting they capture
somewhat different dimensions of ability.'®

We also report two versions of the partial F-statistic for joint significance of
the instruments in the first stage (heteroskedsaticity and cluster robust), as well
as the Olea-Pfleuger effective F-test for weak instruments in a non-iid setting.
These statistics range from 4.3 to 5.1, so they are well below conventional weak
instrument testing thresholds. Thus weak instruments are clearly a concern and
the 2SLS t-test cannot be viewed as reliable.

The 2SLS estimate of the Frisch elasticity is 1.017, which is much larger than
the estimate of 0.597 we obtained in Table 1. Notably, the heteroskedasticity
robust standard error increases from 0.403 to 0.481, so t=2.12 (p=.034) and a
5% t-test judges our estimate significant.'® It may seem surprising that the 2SLS
standard error increases despite the efficiency gain from adding an additional
relevant instrument in the first-stage. But we have discussed how the increase
in the Frisch estimate from .597 to 1.017, which moves us further from the OLS
bias, will mechanically cause the 2SLS standard error of regression to increase.
This tends to inflate the standard error of the 2SLS estimate.

Now consider the AR test, which in the over-identified case is simply the F-test
for joint significance of the three instruments in the reduced form. The cluster
robust version of the AR test gives a p value of .0026. Moreover, the AR test
is not the most powerful test in the over-identified case: the weak instrument
robust conditional likelihood ratio (CLR) test of Moreira (2003) is more efficient.
The cluster-robust CLR test has a p-value of .0012, so the evidence for a positive
Frisch elasticity based on the robust statistics is very strong.

17The basic idea of AR test inversion is to run regressions of y — zb on the instrument and control
variables, and find the lower and upper cutoffs for b where the AR test p-value is exactly .05.

18To be precise, the p-values for education are .047 or .071 based on the cluster robust or heteroskedas-
ticity robust standard error, respectively.

9The cluster robust standard error increases from 0.363 to 0.442, giving t=2.30 (p=.021).
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TABLE 3—FRISCH ELASTICITY - OVER-IDENTIFIED MODELS

2SLS 2SLS Reduced GMM-2S GMM-CU
1%t Stage 2"¢ Stage Form 2nd Stage 274 Stage
Dependent Variable AW AH AH AH AH
Wage Change 1.017 0.896 1.310
(0.481) (0.474)  (0.548)
[0.442] [0.433] [0.487]
ASVAB Ability Score 0.028 -0.007
(0.014) (0.017)
[0.012] [0.016]
Education 0.002 0.006
(0.001) (0.003)
[0.001] [0.002]
Education Missing 0.033 0.033
(0.034) (0.044)
[0.035] [0.043]
F-Stat (Hetero-o Robust) 4.31 4.21
p-value 0.005 0.006
F-Stat (Cluster Robust) 5.14 4.75
p-value 0.002 0.003
Olea-Pfleuger Effective F 4.57
Exogeneity Test (AR or J) 2.77 3.19 3.00
p-value 0.428 0.203 0.224
R? 0.008 0.013

Note: ‘GMM-2S’ refers to the 2-step GMM, while ‘GMM-CU’ refers to continuously updated GMDM.
Heteroskedasticity robust standard errors are in parentheses and clustered standard errors are in

square brackets. All regressions controls for year effects, age, and race/ethnicity. N = 5,931.

So here we see a milder version of the pattern in Table 1: The 2SLS t-test implies

the Frisch elasticity estimate is (just) significant at the 5% level, while the weak
instrument robust statistics (the AR and CLR tests) imply much higher levels of
confidence. The relative weakness of the 2SLS t-test result is again attributable
to the positive covariance between 2SLS estimates and standard errors, which
makes it difficult for 2SLS t-tests to detect a positive Frisch elasticity.

A useful feature of the AR test is that we can evaluate it at ﬁgSLS rather than
0 to obtain a test of the 2SLS over-identifying restrictions. This is just an F-
test for joint significance of the excluded instruments in a regression of the 2SLS
residuals on all the instruments. Henceforth, we refer to these as the AR(0) and
AR(BQSLS) tests to distinguish the two. As we see in Table 3, the AR(,@QSLS)
test statistic is 2.77. The test is distributed x?(3) so the p-value is .428. Thus we
cannot reject the exogeneity of the instruments. This is important, as a failure of
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the over-identification test would invalidate the AR test, as it would suggest the
instruments may be significant in the reduced form merely because they affect
hours changes directly (rather than only indirectly via wages as 2SLS assumes).
So the AR(0) and AR(fBa51,5) statistics should be evaluated in conjunction.

To assess the relative performance of the AR and ¢-test in the three instrument
case, we ran a Monte Carlo analysis like that of Section VI, but using the 2SLS
estimated model in Table 3 as the data generating process.?? In terms of power,
we find that a 5% t-test rejects the false null Hy : =0 at a 60.2% rate, compared
to 88.4% for the AR test, and 94.7% for CLR. So the ranking is as expected.

If we invert the AR test (cluster robust F version) we obtain a 95% confidence
interval for the Frisch elasticity of 0.241 to 4.336, while inverting the CLR test
gives 0.269 to 4.461.2! These intervals sit comfortably above zero, and cover the
range of values typically used to calibrate macro models.

Finally, the last two columns of Table 3 report the two-step and continuously
updated GMM results. These GMM estimates of the Frisch elasticity are 0.896
and 1.310 respectively. Notice how the increase in the point estimate to 1.310,
moving it even further from the OLS bias, coincides with a further increase in the
GMM-CU standard error to 0.548. The GMM estimates and standard errors have
the same positive covariance as the 2SLS estimates and standard errors. Thus
the GMM standard errors are also unreliable in this context.

However, Stock and Wright (2000) develop a weak instrument robust test that
generalizes the AR test to the GMM case. This “S-statistic” is the GMM objective
function evaluated at B =0. For GMM-CU we find S=20.47. The test is distributed
x2(3) so the p-value is .0001 and the Frisch estimate is highly significant. Finally,
we consider Hansen’s test of over-identifying restrictions. As we see in Table 3 the
J-test has p >0.20, indicating we cannot reject the exogeneity of the instruments.
This is important, as a failure of the J-test would invalidate the S test.

In summary, in the over-identified case the weak instrument robust AR and
S tests indicate that the 2SLS and GMM estimates of the Frisch elasticity are
highly significant. We caution that both tests may reject Hp:5=0 either because
the null is false or because the instruments are endogenous. Hence, before relying
on the AR(0) and S test results, it is important to verify, as we have here, that
the AR(BQS rs) and Hansen J-tests do not reject exogeneity of the instruments.??
However, we emphasize that failure of the exogeneity tests would invalidate 2SLS
t-test results as well, so the reliance of the AR(0) and S test results on validity of
the instruments is not a disadvantage of these robust tests relative to the t-test.

20Tn the one instrument case the instrument is uncorrelated with the 2SLS residuals. So when we treat
the full sample as the “population,” the instrument has zero population covariance with the structural
error by construction. But in the over-identifed case the instruments do have small correlations with the
2SLS residuals. We need to partial out those correlations to set up the experiment.

21We use the Stata command developed by Finlay and Magnusson (2009) to implement the cluster
robust version of the CLR test and to do the inversion.

22In the single endogenous variable, K instrument case, the AR(BQSLS) and J-tests have power to
detect if at least one instrument is endogenous, provided the model is over-identified, which means at
least two instruments must be relevant. But power of these tests will be low if K-1 instruments are weak.
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IX. Conclusion

The magnitude of the Frisch labor supply elasticity — how work hours respond
to predictable wage changes — lies at the center of many economic policy debates,
because the pure substitution effect measured by the Frisch is a vital input into
tax policy. For example, higher values of the Frisch imply lower optimal tax rates
on labor income. Because of its importance, there is a large literature estimating
the Frisch elasticity using instrumental variable methods. But this literature has
been plagued by weak instrument problems because it is hard to find instruments
that strongly predict wage growth. Hence the value of the Frisch elasticity remains
a topic of intense debate.

Here we revisit that debate. Using the ASVAB ability test as an instrument for
wage growth, we estimate a large Frisch elasticity of 0.597 for young men using
data from the NLSY97. But, as is typical of this literature, the 2SLS standard
error is 0.403, implying our estimate of the Frisch elasticity is very imprecise.
Based on this, we can’t even reject the hypothesis that it is zero at conventional
levels — a result that is typical of many prior papers.

Importantly, the first stage F-statistic for our ASVAB instrument is 10.12,
which is right on the borderline for whether weak instrument problems are a
concern. This is again typical of prior work on estimating the Frisch elasticity.

Econometric theory strongly suggests that if weak instruments are a concern,
2SLS t-tests are unreliable, and the Anderson-Rubin (AR) test should be used
instead. The AR test is robust to weak instruments and it is efficient. When we
implement the AR test, we find our estimate of the Frisch elasticity is significantly
greater than zero at the 5% level. In fact, it is significant at the 3.5% level.

These contradictory results led us to conduct an experiment to evaluate the
reliability of the t-test vs. the AR test. In our data environment we find the AR
test has correct size and ten times the power of the t-test. In fact, the power of
the t-test is so poor that a 5% level test is more likely to reject a hypothesis that
the Frisch equals its true value than a false hypothesis that it equals zero.

Given the clear theoretical guidance, along with empirical and Monte Carlo
results like we present here, it is difficult to understand why applied researchers
have not widely adopted the AR test in preference to 25LS t-tests. The most likely
explanation is that they are simply not aware of the severity of the problems with
2SLS t-tests that we document here.?2 When we use the appropriate inferential
procedure (the AR test) we conclude the Frisch elasticity is fairly large (.597) and
highly significant for young males in the NLSY97.

Our estimated Frisch elasticity for young men (.597) may still appear small
compared to the values of 1.0 or more often used to calibrate macro models.

23In addition, applied researchers may be unfamiliar with AR tests and think they are difficult to
implement. That is obviously not true, but the econometric theory literature on AR tests presents them
at such a high level of generality that it is indeed difficult for applied researchers to penetrate. And of
course, applied researchers may be wedded to t-tests simply because they are so familiar. But we hope
that inertia may be overcome so that empirical practice can be improved.
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However, there is accumulating evidence that the Frisch elasticity increases sub-
stantially with age (see, e.g., Borella, De Nardi and Yang 2019, Erosa, Fuster
and Kambourov 2016, French 2005 and Keane 2021), and clear evidence that it
is greater for women than men (see Keane 2011). So a value of .597 for young
men is quite consistent with a value of 1.0 or more in the aggregate.

We also consider an over-identified model using both education and ASVAB as
instruments for wage growth. Then our estimate of the Frisch increases to 1.02,
and the 2SLS ¢-test indicates it is significant at the 3.4% level. However, the
2SLS standard error is again inflated due to its mechanical positive covariance
with the estimate. An additional Monte Carlo experiment shows the AR test has
correct size and twice the power of the ¢-test in this environment. The AR test
gives a much higher significance level of 0.3%. If we invert the AR test we obtain
a 95% confidence interval for the Frisch elasticity of 0.241 to 4.336, which covers
the range of values typically used to calibrate macro models.

Of course, there have been numerous previous attempts to reconcile the small
and sometimes insignificant 2SLS estimates of the Frisch elasticity that have often
been obtained using micro data with the large values of the Frisch often used in
macro calibrations. The various approaches are detailed in Keane and Rogerson
(2012, 2015). These reconciliations fall into two broad categories: One set of
explanations, exemplified by Imai and Keane (2004) and Domeij and Floden
(2006) takes issue with the specification of equation (1), arguing that more general
models of labor supply (e.g., models that account for human capital or liquidity
constraints) imply that estimation of this equation will give downward biased
estimates of the Frisch elasticity. The other set of explanations, exemplified by
Chang and Kim (2006) and Rogerson and Wallenius (2009), argue that, once
one accounts for the participation margin of labor supply and aggregation issues,
it is possible for the macro level Frisch elasticity to be large even if the micro
level elasticity is small. More recently, Gottlieb, Onken and Valladares-Esteban
(2021) have shown how a large macro level Frisch elasticity can be reconciled with
modest reactions to tax holidays due to a combination of income and equilibrium
effects. These arguments are complementary to our argument here.

Our argument is new in that we criticise the micro-econometric literature on its
own terms: Suppose the assumptions necessary for 2SLS estimation of equation
(1) to deliver consistent estimates of the Frisch elasticity do hold. Even then, we
show that the econometric methods that have been used to draw inferences from
those estimates are inherently biased against finding the Frisch is both large and
significant. We hope our straightforward econometric argument will prove con-
vincing to economists who have not been convinced by the more subtle theoretical
arguments based on more complex labor supply models or aggregation issues.

We conclude by re-stating our key econometric point: The main reason robust
statistics lead to different conclusions about the Frisch elasticity from conven-
tional 2SLS t-tests is a basic property of 2SLS that has been generally neglected:
Specifically, when the OLS bias is negative, as is the case here, 2SLS estimates
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and their standard errors have a positive association (as they vary across random
samples from the population). This mechanical positive association causes large
positive estimates of the Frisch to appear spuriously imprecise, making it difficult
for 2SLS t-tests to detect a true positive. Robust statistics like the Anderson and
Rubin (1949) test are much less affected by this problem, so they are better able
to detect a true positive Frisch elasticity.

In a different context, where the OLS bias is positive, this pattern would be
reversed, and 2SLS standard errors on positive estimates would be spuriously
precise. That would make it difficult for 2SLS t-tests to detect a true negative.
In the classic application of instrumental variables to estimate a treatment effect
given positive selection into treatment, 2SLS ¢-tests have difficulty detecting true
negative effects, violating a “first do no harm” principle in policy evaluation.

In Keane and Neal (2021) we explore the implications of the association between
2SLS estimates and their standard errors in more detail. There we show that the
serious problems with 2SLS ¢-tests that we have documented here persist even
when instruments are strong, because the association between 2SLS estimates
and their standard errors does not vanish as instrument strength increases. Thus
it is advisable to use the AR test (or other robust tests) in lieu of the t-test even
when instruments are strong.
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