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This paper presents the AffineMortality R package which performs pa-
rameter estimation, goodness of fit analysis, simulation and projection of fu-
ture mortality rates for a set of affine mortality models for use in pricing and
reserving. The computational routines build on the univariate Kalman Fil-
tering approach of Koopman & Durbin (2000) along other numerical methods
to enhance the robustness of the results. This paper provides a discussion
of how the package works in order to effectively estimate and project the
models, and describes the available functions. Illustration of the package for
mortality analysis of the US HMD dataset is provided.
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1. Introduction

The analysis of mortality rates is fundamental for actuaries as these used to develop and
set the premium for life insurance products, to estimate liabilities, and to develop the
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corresponding risk management strategies.
It is widely acknowledged in practice how the development of future mortality rates

is the outcome of a stochastic process (Cairns et al. 2006a). The seminal work of Lee &
Carter (1992) attracted significant attention in the last three decades towards the devel-
opment and the extension of stochastic mortality models, which, to different degrees, are
capable of capturing the different features of the mortality surface, such as the presence
of the cohort effect (Willets 2004). These models have been originally developed for the
analysis of data in discrete time, such as integer ages and integer calendar (or birth)
year. Some examples include the Cairns-Blake-Dowd model (Cairns et al. 2006b), the
Poisson log-bilinear approach of Brouhns et al. (2002), the Plat model (Plat 2009) and
the functional approach of Hyndman & Shahid Ullah (2007).

More recently, models developed using the tools of financial mathematics gained atten-
tion in the literature, following the work of Milevsky & Promislow (2001). For example,
the papers of Schrager (2006), Biffis (2005), Dahl (2004), Blackburn & Sherris (2013),
Jevtić et al. (2013), Jevtić & Regis (2019) and Jevtić & Regis (2021) propose the use
of the affine interest rate modelling framework developed by Duffie & Kan (1996) for
the analysis of mortality dynamics. In this way, it is possible to obtain closed-form
formula for the survival curves, for use in pricing longevity-related securities and devise
risk management strategies for these products. These models assume that the mortality
intensity process is driven by a set of latent variables, whose dynamics are character-
ized by a stochastic differential equation with mean reversion. This implies that the
closed-form survival curve is an exponentially affine function of the latent variables.

An advantage of the continuous-time approach for mortality modelling is the use of
financial pricing techniques which are familiar to market practitioners. Specifically, a
no-arbitrage valuation framework can be used for pricing life-contingent products and
developing appropriate risk management strategies for these products using the analyt-
ical results for affine processes (Biffis 2005).

This paper describes the R package AffineMortality, which supports an extensive
analysis of continuous time affine mortality models in the spirit of Blackburn & Sherris
(2013), Huang et al. (2022) and Ungolo et al. (2023). More precisely, the package
estimates the parameters of these models using mortality data collected at discrete time
points and ages. In addition, the package facilitates the analysis of model fit and the
simulation and projection of future mortality rates. These tasks require us to discretize
the continuous-time models and to recast the inferential problem in a state-space form.

Schrager (2006) and Ungolo et al. (2023) describe how the estimation of these models
using the base Kalman filter can be problematic due to the numerical issues which
follow from the multiplication and inversion of large-dimensional matrices. Hence, they
advocate the use of the univariate Kalman filter of Koopman & Durbin (2000). For
this reason, the computational routines in AffineMortality are implemented using the
univariate Kalman filtering approach, together with other numerical tricks described in
Ungolo et al. (2023) which make the Kalman filtering procedure more stable.

The package allows to implement and assess among others, the Blackburn-Sherris
model with independent factors, the Blackburn-Sherris model with two and three de-
pendent factors, the Arbitrage-Free Nelson-Siegel mortality model with independent and
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dependent factors, and the Cox-Ingersoll-Ross mortality model. The plan is to further
expand the library of models available for analysis, and to extend the existing ones by
accounting for cohort or period specific factors.

To the best of our knowledge, currently available software focus on the analysis of
mortality models in discrete time. For example, the R package StMoMo (Villegas et al.
(2018)) allows for the analysis, among others, of the Lee-Carter (Lee & Carter (1992)),
CBD (Cairns et al. (2006b)) and the age-period-cohort model by Renshaw & Haber-
man (2006). In a similar fashion, StanMoMo (Barigou et al. (2023)) performs a Bayesian
analysis of stochastic mortality models using Stan. The R package demography (Hynd-
man et al. 2022) instead provides functions for demographic analysis including: lifetable
calculations; Lee-Carter modelling; functional data analysis of mortality rates, fertility
rates, net migration numbers, and stochastic population forecasting.

Furthermore, there are R packages for the analysis of state-space models, such as dse
(Gilbert 2009), sspir (Dethlefsen et al. 2022), dlm (Petris 2010), FKF (Luethi et al. 2022)
and KFAS (Helske 2017) (see also Tusell (2011) for a comprehensive review). However,
these packages do not readily adapt to the state-space model used for the analysis of
affine mortality models. This is because the system matrices of the affine mortality
models follow as the solution of an ordinary differential equation, as we briefly illustrate
in Section 3, and its subsequent discretization.

R and RStudio may be subject to crashes. Since the optimization process may take a
long time to perform, the functions in AffineMortality which require a lot of time to
execute (e.g. affine fit() for estimating the model parameters) allow the user to stop
the process without losing the computations performed thus far. The package deals with
fault tolerance by allowing the user to input a directory where the work can be saved as
an .Rdata file.
AffineMortality can be installed by using the following commands1:

library(devtools)

install_github("ungolof/AffineMortality")

library(AffineMortality)

The source code of AffineMortality is available through the Github repository https:

//github.com/ungolof/AffineMortality.
The paper develops as follows: Section 2 introduces the data to be used as input for

the analysis, Section 3 summarizes the affine mortality modelling framework and briefly
describes the mortality models supported by the package, and Section 4 describes their
parameter estimation procedure. Section 5 describes how the package can be used to
perform the goodness-of-fit analysis and compare affine models, and Section 6 describes
the function affine project(), which can be called to project future cohort survival
curves. The package provides two methods to analyse parameter uncertainty, described
in Section 7: the first estimates the covariance of the parameter estimates by using the
bootstrap, while the other implements a multiple imputation based method. The step-
by-step illustration of the package is provided in Section 8. Section 9 describes other
functions in AffineMortality and Section 10 concludes.

1The required R package devtools should be already installed on the machine.
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2. Input data

Let µx,t denote the force of mortality for an individual aged x last birthday in calendar
year t. Without loss of generality µx,t is approximated as the central death rate mx,t,
when we assume that the force of mortality is constant between each integer age x and
x + 1, and between each calendar year t and t + 1. The central death rate mx,t is
empirically estimated as the ratio between the observed number of deaths dx,t and the
central exposure at risk years Ecx,t.

The survival probability at time t of an individual aged x at time t until age x+T − t
is given by:

Sx (t, T ) =

T−t∏
j=1

exp (−µx+j−1,t) = exp

− T−t∑
j=1

µx+j−1,t

 (2.1)

The estimation of affine mortality models uses the average force of mortality denoted
for each calendar year t and each age as:

µ̄x (t, T ) =
1

T − t

T−t∑
j=1

µx+j−1,t ≈
1

T − t

T−t∑
j=1

mx+j−1,t (2.2)

Here, x is fixed and denotes the smallest age in the age-range of interest (for example,
equal to 50 in Ungolo et al. (2023) and Huang et al. (2022)). The dataset for the analysis
is a matrix of dimension N×K, where N = (T − t) is the number of ages in the age-range
of interest and K is the number of calendar years for the analysis.

Conversely, given the average force of mortality, we can obtain µ, by means of the
following recursion, starting from µx,t = µ̄x (t, t+ 1):

µx+i,t = iµ̄x (t, t+ i)− (i− 1) µ̄x (t, t+ i− 1) (2.3)

for i = 2, . . . , N . Furthermore, let us define the column vector µ̄t = [µ̄x (t, t+ 1) , . . . , µ̄x (t, t+N)]′

(we drop the reference on x for practical reasons).
When processing the force of mortality data µx,t, the function rates2avg() in AffineMortality

can be used to transform the N × K-dimensional matrix of µx,t rates into the corre-
sponding matrix of µ̄ rates. The inverse operation can be carried out using the function
avg2rates().

The matrix of average forces of mortality is the key input for the estimation of the
affine mortality models. The use of the average forces of mortality yields smoother data
which renders the estimation process more stable. This is the approach adopted within
the interest rate literature (see Christensen et al. (2011)), as well as in the analysis of
affine mortality models (Blackburn & Sherris (2013), Huang et al. (2022) and Jevtić &
Regis (2019)).

A similar data set can be set up for the analysis of age-cohort mortality rates, as
discussed in Huang et al. (2022) and Ungolo et al. (2023).
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3. Affine Mortality Models

In this section, we provide a brief overview of the affine mortality modelling framework,
and describe the different mortality models supported by AffineMortality. We present
the framework in a risk-neutral probability space (Ω,F , Q) where Q is an appropriate
pricing measure for both the financial and insurance markets. The Q measure ensures a
consistent pricing property for the fitted survival probabilities. In Section 3.5, we apply
the Girsanov’s theorem to specify the model dynamics under the historical probability
measure in order to estimate the model parameters. We consider a filtration F = {Ft}t≥0
which can be decomposed as F = G ∨H, where G is a filtration containing all financial
and actuarial information, except the time of death, which is contained in H. See, for
example, Biffis (2005) and Blackburn & Sherris (2013) for further details.

The random time of death of an individual, currently aged x, is assumed to be a
doubly-stochastic stopping time with intensity process µx (t), which is modelled as an
affine function of an M -dimensional, F-adapted, latent factor process X(t); that is, there

exist ρ
(x)
0 ∈ R and ρ

(x)
1 ∈ RM , possibly dependent on the base age x, such that

µx(t) = ρ
(x)
0 + (ρ

(x)
1 )′X(t), t ≥ 0.

The process X(t) is assumed to be a solution of the (vector) stochastic differential
equation

dX(t) = ∆(θQ −X(t))dt+ ΣD(X(t), t)dWQ(t), X(0) = x0 ∈ RM , (3.1)

where ∆ ∈ RM×M , θQ ∈ RM , and Σ ∈ RM×M . D(X(t), t) is an M -dimensional diagonal
matrix with diagonal elements dii(X(t), t) is given by

dii(X(t), t) =
√
αi(t) + βi1(t)X1(t) + · · ·+ βiM (t)XM (t), i = 1, . . . ,M,

where αi and βi := (βi1, . . . , β
i
M )′ are bounded and continuous functions, and WQ is a

standard M -dimensional Q-Brownian motion. The quantities ∆, θQ, and Σ represent
the rate of mean reversion, the long-run mean, and the volatility of X(t) respectively.

Let Sx(t, T ) := EQ[exp{−
∫ T
t µx(s)ds}|Ft] denote the (risk-neutral) probability that

an individual aged x at time t, conditional on being alive at time t, survives up to time
T . Hence, following the affine framework set in Duffie & Kan (1996) and Duffie et al.
(2000), Sx(t, T ) is an exponentially affine function of X(t):

Sx(t, T ) = exp{Ax(t, T ) +Bx(t, T )′X(t)},

where Ax and Bx are solutions of the system of ODEs

dBx(t, T )

dt
= ρ

(x)
1 + ∆′Bx(t, T )− 1

2

M∑
k=1

[Σ′Bx(t, T )Bx(t, T )′Σ]k,k(β
k(t))′

dAx(t, T )

dt
= ρ

(x)
0 +Bx(t, T )′∆θQ − 1

2

M∑
k=1

[Σ′Bx(t, T )Bx(t, T )′Σ]k,kα
k(t)

(3.2)
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with terminal condition A(T, T ) = 0 and B(T, T ) = 0.
Therefore, the average force of mortality over the period [t, T ], defined as µ̄x(t, T ) :=
− 1
T−t logSx(t, T ) is an affine function of the latent state process X (t), i.e.

µ̄x(t, T ) = −Ax(t, T )

T − t
− Bx(t, T )′

T − t
X(t).

In correspondence to equation (2.2), µ̄x(t, T ) represents the average force of mortality
for an individual aged x at time t from ages x to x+ (T − t).

The affine representation of the average force of mortality allows us to cast the pa-
rameter estimation problem into that for a state-space model where µ̄x(t, T ) are the
observations and X(t) is the unknown state process.

In the following sections, we discuss the affine mortality models we implement in
AffineMortality. Specifically, we state the corresponding SDE for X (t) and the func-
tional form of µx(t). For each model, the factor loadings Ax(t, T ) and Bx(t, T ) are
available in closed form and are functions of only T − t, the survival time from time t to
time T . For all models, except the Gompertz-Makeham law, the mortality intensity is
not dependent on x, hence we drop it from the notation.

3.1. Blackburn-Sherris model

The Blackburn & Sherris (BS) model assumes that

µ(t) = X1(t) + · · ·+XM (t),

i.e. ρ0 = 0 and ρ1 = (1, . . . , 1)′, where X(t) = (X1(t), . . . , XM (t))′ with dynamics

dX(t) = −∆X(t)dt+ ΣdWQ(t). (3.3)

The components of X(t) can be assumed to be independent by specifying ∆ and Σ as
diagonal matrices, i.e. ∆ = diag(δ1, . . . , δM ) and Σ = diag(σ1, . . . , σM ). Dependence
among the components of X(t) can be induced by setting

∆ =


δ1 0 0 . . . 0
δ12 δ2 0 . . . 0
...

...
...

. . .
...

δ1M δ2M δ3M . . . δM

 , Σ =


σ1 0 0 . . . 0
σ12 σ2 0 . . . 0

...
...

...
. . .

...
σ1M σ2M σ3M . . . σM

 .

In AffineMortality, the user can specify as many latent factors as desired in the
independent factor case. The factor loading expressions for the independent factor case
can be found in Blackburn & Sherris (2013). However, while the factor loadings are still
available in closed form in the dependent factor case, one cannot obtain a scalable nested
expression for the factor loadings. AffineMortality currently supports the two-factor
and three-factor Blackburn-Sherris model with dependent factors. The factor loading
expressions for the dependent case can be found in Huang et al. (2022, Appendix A).
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3.2. Gompertz-Makeham model

The Gompertz-Makeham model (see Schrager 2006) introduces age-dependence in the
mortality intensity process. Specifically, the model assumes that X(t) has the same
dynamics outlined in equation (3.3), and

µx(t) = X1(t) + eγxX2(t)

for some γ > 0. The functional specification of µx(t) implies that the mortality intensity
increases exponentially in the base age x and it is X2(t) which drives the stochasticity in

the intensity process at older ages. In this case, we have ρ
(x)
0 = ρ0 = 0 and ρ

(x)
1 = (1, eγx)′.

As before, dependence between the latent factors can be introduced by replacing ∆ and
Σ by lower-triangular matrices. The factor loading expressions for both the independent
and dependent factor cases can be found in Appendix B.1.

3.3. Arbitrage-Free Nelson-Siegel model

The Arbitrage-Free Nelson-Siegel model (AFNS), proposed by Christensen et al. (2011)
for modelling the term structure of interest rates, assumes that there are three latent
factors, identified as Level (L), Slope (S) and Curvature (C), with risk-neutral dynamics:dL(t)

dS(t)
dC(t)

 = −

0 0 0
0 δ −δ
0 0 δ

L(t)
S(t)
C(t)

 dt+

σL 0 0
0 σS 0
0 0 σC


dW

Q
L (t)

dWQ
S (t)

dWQ
C (t)

 . (3.4)

The AFNS model assumes that the mortality intensity is the sum of the level and slope
factors,

µ(t) = L(t) + S(t).

The structure of ∆ implies that the factor loadings BL, BS , and BC control for the
shape (i.e. level, slope, and curvature, respectively) of the average force of mortality,
with randomness driven by the dynamics of L, S, and C, see Christensen et al. (2011,
Proposition 1 and Section 2.3) for the closed-form expressions for the factor loadings.

A key feature of the AFNS model is the connection between the latent factors and the
shape of the average force of mortality curve through the structure of ∆. We can induce
factor dependence through the diffusion matrix Σ. Specifically, we replace Σ by a lower
triangular matrix in the dependent factor case. As such, BL, BS , and BC remain the
same in the dependent factor case; see Christensen et al. (2011, Appendix B) for the
formula of A(t, T ).

3.3.1. Arbitrage-Free Generalized Nelson-Siegel model

The Arbitrage-Free Generalized Nelson-Siegel (AFGNS) model is an extension of the
AFNS model proposed by Christensen et al. (2009) which includes an additional slope
and curvature factor. The AFGNS model was proposed as an arbitrage-free version of
the four-factor Nelson-Siegel-Svensson model, which extends the AFNS model by adding
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a second curvature factor. The AFGNS model is thus a five-factor model whose latent
factors, in the independent factor case, satisfy the SDE

dL (t)
dS1 (t)
dS2 (t)
dC1 (t)
dC2 (t)

 = −


0 0 0 0 0
0 δ1 0 −δ1 0
0 0 δ2 0 −δ2
0 0 0 δ1 0
0 0 0 0 δ2



L (t)
S1 (t)
S2 (t)
C1 (t)
C2 (t)

 dt+


σL 0 0 0 0
0 σS1 0 0 0
0 0 σS2 0 0
0 0 0 σC1 0
0 0 0 0 σC2




dWQ
L (t)

dWQ
S1

(t)

dWQ
S2

(t)

dWQ
C1

(t)

dWQ
C2

(t)

 ,

where δ1 6= δ2. As in the AFNS model, the dependent factor case consists of replacing
a diagonal diffusion matrix with a lower triangular one. As in the AFNS model, under
the AFGNS model, the mortality intensity is modelled as the sum of the level and the
two slope factors,

µ(t) = L(t) + S1(t) + S2(t).

Factor loading expressions for the independent factor case can be found in Christensen
et al. (2009, Proposition 3.1). In the dependent factor case, only the form of A(t, T )
changes; this can be found in Christensen et al. (2009, Appendix).

3.3.2. Arbitrage-Free Reduced Nelson-Siegel model (AFRNS)

We introduce a version of the AFNS model without the curvature factor and call it the
Arbitrage-Free Reduced Nelson-Siegel (AFRNS) model. This model has been included
in the package in order to assess the effect of the curvature on the resulting model.
Experiments we conducted on the mortality data of several countries showed that the
presence of the curvature factor may produce negative mortality rates in some cases
when projected 25 years ahead, despite the better in-sample performance of the AFNS
and AFGNS models.

We consider two latent factors, with dynamics(
dL(t)
dS(t)

)
= −

(
0 0
0 δ

)(
L(t)
S(t)

)
dt+

(
σL 0
0 σS

)(
dWQ

L (t)

dWQ
S (t)

)
,

for the independent factor case. As before, we replace the volatility matrix with a lower
triangular matrix in the dependent factor case. The resulting factor loadings for both
the independent and dependent factor cases can be found in Appendix B.2.

3.3.3. Arbitrage-Free Unrestricted Nelson-Siegel model

We also introduce a variation of the AFNS model where the elements of the drift coeffi-
cient matrix ∆ have possibly unequal values. We call this model the Arbitrage-Free Un-
restricted Nelson-Siegel (AFUNS) model. The latent factor dynamics under the AFUNS
model are given bydL(t)

dS(t)
dC(t)

 = −

0 0 0
0 δ1 δ2
0 0 δ3

L(t)
S(t)
C(t)

 dt+

σL 0 0
0 σS 0
0 0 σC


dWQ

L (t)

dWQ
S (t)

dWQ
C (t)

 . (3.5)
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As before, the mortality intensity is modelled as the sum of the level and slope factors,

µ(t) = L(t) + S(t).

We recover the AFNS model by setting δ2 = −δ1 and in the limit as δ3 → δ1. The
dependent factor case is obtained by replacing the volatility matrix by a lower triangular
matrix.

3.4. Cox-Ingersoll-Ross Model

Under the CIR model, the mortality intensity is modelled as the sum of the components
of the latent factor process X(t),

µ(t) = X1(t) + · · ·+XM (t),

where each Xi(t) is a square-root diffusion process given by

dXi(t) = δi(θ
Q
i −Xi(t))dt+ σi

√
Xi(t)dW

Q
i (t).

This implies that each component of X(t) is nonnegative Q-almost surely and is strictly
positive Q-almost surely if Xi(0) > 0 and 2δiθ

Q
i ≥ σ2i . Each Xi(t) is asymptotically

Gamma distributed (as t → ∞) (Cox et al. 1985), hence the CIR mortality model can
capture the heterogeneity of mortality rates at older ages (Pitacco 2016). The factor
loadings for the CIR model are given by

Bi(t, T ) = − 2(eϑi(T−t) − 1)

(δi + ϑi)(eϑi(T−t) − 1) + 2ϑi
, i = 1, 2, . . . ,M

A(t, T ) =

M∑
i=1

2δiθ
Q
i

σ2i
log

[
2ϑie

1
2
(δi+ϑi)(T−t)

(δi + ϑi)(eϑi(T−t) − 1) + 2ϑi

]
,

where ϑi =
√
δ2i + 2σ2i . Their application in the analysis of HMD national mortality

data can be found in Huang et al. (2022) and Ungolo et al. (2023).

3.5. Risk-free to real world dynamics

The mortality models illustrated so far were characterized under the risk-neutral measure
Q. However, parameter estimation must be performed using historical data on mortality
rates. We thus need to specify the dynamics of the latent factors under the real-world
probability measure P .

To this end, we follow Duffee (2002) and adopt the essentially affine specification
of the market price of longevity risk or the longevity risk premium. This allows us to
preserve the affine structure of the latent factor dynamics when changing from Q to P
and vice versa. By Girsanov’s theorem, the latent factor dynamics under the P measure
is given by the SDE

dX(t) = κ(θP −X(t))dt+ ΣD(X(t), t)dWP (t), X(0) = x0,
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where κ ∈ RM×M , θP ∈ RM , and WP is a standard M -dimensional Brownian motion
under P . See Blackburn & Sherris (2013, Definition 5) and Huang et al. (2022, Section
2.3) for further details. We note that the diffusion term does not change when the change
of measure is parameterized by the essentially affine specification.

Another advantage of the flexibility of the essentially affine specification of the market
price of risk is that we are free to choose κ and θP while preserving any special structures
in the Q measure. For example, this is especially relevant for the class of AFNS models
for which the level, slope, and curvature interpretations of the latent factors are directly
related to the specification of ∆ in the Q-dynamics. Thus, we set θP = 0 for all models
except CIR, and assume that κ is a diagonal matrix κ = diag(κ1, . . . , κM ) for all models.
Further details on the application of the essentially affine specification in the context of
affine mortality models can be found in Ungolo et al. (2023) and Huang et al. (2022).

4. Parameter estimation

The model parameters are estimated using data collected in discrete time, as illustrated
in Section 2. By discretizing the stochastic differential equation of each model, and
using the affine representation of the average force of mortality, we obtain the following
equally time-spaced state-space formulation:

X (t) = ΦtX (t− j) + ηt ηt ∼ N (0, Rt) (4.1)

µ̄t = At +BtX (t) + εt εt ∼ N (0, H) t = 1, . . . , T (4.2)

where At = [A (t, t+ 1) , . . . , A (t, t+N)]′ and Bt = [B (t, t+ 1) , . . . , B (t, t+N)]′. The
age subscript has been omitted for notational convenience.

The state equation (4.1) describes the dynamics of the factor as an autoregressive
process of order 1 with system matrix Φt = e−κj and stochastic noise ηt ∼ N (0, Rt).
The measurement equation (4.2) describes µ̄t ∈ RN as an affine function of the latent
variable X (t) with error term εt ∼ N (0, H). We assume that ηt and εt are independently
distributed.

For the models so far implemented in AffineMortality, A, B, H and Φ = e−κj do
not depend on t. For Gaussian models, such as the Blackburn-Sherris and the AFNS
models, we have Rt = R:

R =
[
I − e−κj

]
ΣΣ′

[
I − e−κj

]′
. (4.3)

For the CIR model, because of the independence between the factors, Rt is a diagonal
matrix with kth diagonal rt,k equal to:

rt,k = σ2
(

1− e−κk
κk

)(
1

2
θP
(
1− e−κk

)
+ e−κkX (t)

)
.

Here, Φ, A, B, Rt and H depend on the parameters that we estimate based on the
statistical inference for the dynamics of the mortality rates. Furthermore, H is a diagonal
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matrix, where the diagonal elements ω2
i are equal to

ω2
i = rc + r1

i∑
k=1

exp (r2k) /i (4.4)

for i = 1, . . . , N . In this way, the measurement equation (4.2) accounts for the increasing
variation in the mortality rates at older ages.

The parameters are estimated using maximum likelihood. Let ψ denote the vector of
parameters to be estimated. The likelihood function is readily obtained from the univari-
ate Kalman Filter recursion (see Koopman & Durbin (2000) and Ungolo et al. (2023) for
its implementation in the context of affine mortality models), given the observed average
mortality rates µ̄1:T :

logL (ψ | µ̄1:T ) = −TN
2

log 2π − 1

2

T∑
t=1

N∑
i=1

(
logFt,i + ν2t,iF

−1
t,i

)
, (4.5)

where νt,i = µ̄t,i − ai − bix̂t,i is the measurement error, and Ft,i = biΣ̂t,ib
′
i + ω2

i the
covariance of µ̄t,i (denoting µx (t, t+ i)) taking into account the uncertainty about the
latent state X (t). Here, ai denotes the ith element of At, bi the corresponding row of the
matrix Bt, and x̂t,i and Σ̂t,i are the univariate Kalman Filter updates of the moments
of X (t) (see Appendix A for additional details).

For the CIR mortality model, the estimated parameter vector ψ̂ corresponds to the
quasi-maximum likelihood estimator. See Chen & Scott (2003) and Jevtić & Regis (2021)
for additional details.

4.1. Implementation

The parameter estimation task includes the initial state variable X (0) among the set of
unknown parameters. Other numerical tricks to foster reasonable parameter estimates,
e.g. ensuring the positive-definiteness of the covariance matrix, are described in Ungolo
et al. (2023).

We recommend the use of multiple starting values due to the high non-linearity of
the log-likelihood function, which may have multiple local maxima. Some initial values
are provided in AffineMortality though the list object sv default, which we briefly
illustrate in Section 8. These are based on previous analysis on country mortality rates.
When fitting dependent factor models we recommend the use as starting values of the
parameter estimates obtained from the correspondent independent factor models.

4.2. affine fit()

The function affine fit() of the package AffineMortality allows to carry out the
parameter estimation task. The log-likelihood function of equation (4.5) is optimized
sequentially by group of parameters (Coordinate Ascent) by using the gradient-free sim-
plex Nelder-Mead method as recommended by Christensen et al. (2011). This routine
is readily available in R within the function optim.
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The function affine fit() takes the following input:

• model = c("BS", "AFNS", "AFGNS", "AFUNS", "AFRNS", "CIR", "GMk"), to se-
lect one of the model family to be fitted. Its default value is BS;

• fact dep=c(FALSE, TRUE), to select whether the model accounts for factor de-
pendence (default FALSE);

• n factors, to select the number of factors (only for the BS and the CIR models;
default set to 3);

• data, the rectangular data set of µ̄ rates used for the analysis;

• st val, corresponding to the set of starting values for the parameters. These must
be supplied as a list of parameters, e.g.

st_val=list(x0=c(6.960591e-03, 9.017154e-03, 5.091784e-03),

delta=c(0.04268782 , -0.03122758 , -0.08573677) ,

kappa=c(1.162624e-02, 6.787268e-02, 5.061539e-03),

sigma=exp(c( -6.806310 , -6.790270 , -7.559145)) ,

r1=exp ( -3.327060e+01), r2=exp ( -6.086479e-01), rc=exp ( -1.553156e+01))

for the Blackburn-Sherris model with three independent factors. For dependent
factor models we instead supply sigma dg, which is the parameter denoting the
standard deviation, and Sigma cov indicating the elements of the off-diagonal ele-
ments of the covariance matrix (generally a vector of zero, as suggested in Section
4.1);

• max iter: maximum number of iterations for the coordinate ascent algorithm
(default 200);

• tolerance: maximum log-likelihood value increase between iterations such that
the optimizer can stop (default 0.1);

• wd: working directory to save the intermediate values of the parameters throughout
iterations;

This function returns a list with

• model: same as input;

• fit: list with:

– par est: list of parameter estimates;

– log lik: value of the log-likelihood function;

– CA par: Table listing the value of the parameters throughout the coordinate
ascent algorithm iterations;

• n.parameters: total number of estimated parameters;

12



• AIC: value of Akaike Information Criterion (see Section XX - Goodness of fit);

• BIC: value of Bayesian Information Criterion;

affine fit() can be run as follows:

affine_fit(model="BS", fact_dep=FALSE , n_factors=3, data=mu_bar_USA ,

st_val=st_val , max_iter =200, tolerance =0.1)

During its execution the console shows the value of the parameters, the log-likelihood
function and the iteration number:

[1] "X(0)_1 0.005" "X(0)_2 0.006" "X(0)_3 0.004"

[1] "delta_1 0.053" "delta_2 -0.018" "delta_3 -0.087"

[1] "kappa_1 0.032" "kappa_2 0.007" "kappa_3 -0.003"

[1] "sigma_1 0.001" "sigma_2 0.001" "sigma_3 0"

[1] "r1 0" "r2 0.548" "rc 0"

[1] "log_lik 10538.37"

[1] "1 % iteration"

[1] "---------------------------------"

[1] "X(0)_1 0" "X(0)_2 0.007" "X(0)_3 0.007"

[1] "delta_1 0.043" "delta_2 -0.022" "delta_3 -0.086"

[1] "kappa_1 0.017" "kappa_2 0.002" "kappa_3 0.01"

[1] "sigma_1 0.001" "sigma_2 0.001" "sigma_3 0"

[1] "r1 0" "r2 0.556" "rc 0"

[1] "log_lik 10623.92"

[1] "2 % iteration"

5. Goodness of fit

The fitted rates, denoted as ̂̄µt (which areN -dimensional vectors, for t = 1, . . . ,K), of use
for the analysis of the goodness of fit of each model with respect to historical data, can
be obtained using the function mubar hat(), which takes the following as input: model,
fact dep, n factors, parameters, data. Again, the input parameters is supplied as a
list, similar to the starting values of affine fit(). The resulting fitted rates can then
be used to analyze the goodness-of-fit of each model with respect to historical data.

5.1. Numerical measures

AffineMortality considers four goodness-of-fit measures, following Blackburn & Sherris
(2013) and Huang et al. (2022):

• Akaike Information Criterion (AIC, Akaike (1974)):

AIC = −2 logL
(
ψ̂ | µ̄1:K

)
+ 2k (5.1)

• Bayesian Information Criterion (BIC, Schwarz (1978)):

BIC = −2 logL
(
ψ̂ | µ̄1:K

)
+ 2kKN (5.2)
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• Root Mean Squared Error (RMSE):

RMSE =
1

KN

∑
x

∑
t

(
µ̄x,t − ̂̄µx,t)2 (5.3)

• Mean Absolute Percentage Error (MAPE, by age x):

MAPEx =
1

K

K∑
t=1

|µ̄x,t − ̂̄µx,t|
µ̄x,t

(5.4)

where k is the number of parameters, t = 1, . . . ,K and N is the number of ages consid-
ered in the analysis.

The AIC and BIC can be obtained as the output of affine fit() (see Section 4.2).
The RMSE is obtained by running RMSE(fitted, observed), where fitted is the N ×
K-dimensional matrix of the fitted rates obtained using the function mubar hat(), and
observed is the corresponding matrix of the µ̄-rates used for parameter estimation. The
function MAPE row(fitted, observed) yields an N -dimensional vector, which can be
used to assess how the model fits at every age in the range of interest.

A desirable characteristic of affine mortality models is that their parameters ensure
that the probability of negative rates is negligible. This is a potential limitation of
Gaussian models, since X(t) can assume any real value.

At this purpose, the function prob neg mu() yields an N -dimensional vector with
the probability of negative mortality rates at each age (based on the input data set) for
a specific h-year ahead projection, based on the simulated values of X(t). prob neg mu()

takes as input model, fact dep, n factors, parameters, data, years proj, n simulations

(default value set to 100,000).

5.2. Residuals

The function std res() returns an N×K-dimensional matrix of the standardized resid-
uals for the model of interest. These are computed as N -dimensional vectors for each
year t = 1, . . . ,K as:

rt =

(√
V̂ (µ̄t)

)−1 (
µ̄t − ̂̄µt) , (5.5)

Further details about this formula can be found in Ungolo et al. (2023). A heatmap of
the standardized residuals by age and year (Figure 5.1) can be generated by using the
function heatmap res():

std_resid <- std_res(model="BS", fact_dep=TRUE , n_factors=3,

parameters=par_list , data=mu_bar)

heatmap_res(residuals=std_resid , color=FALSE)

In this way, we can visually detect the presence of period effects (if analysing age-
cohort data) or of cohort effects (if analysing age-period data).
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Figure 5.1: Heatmap of the standardized residuals for the Blackburn-Sherris model with
three independent factors. Source: Ungolo et al. (2023)

6. Projection

The function affine project() returns the projected survival curve for h time periods
ahead (cohort or calendar year, depending on the analysed data set), based on the
optimal forecast of the average force of mortality under the quadratic loss (Christensen
et al. (2011)):

µ̄x (t+ h, T + h) = −Bx (t, T )

T − t
E [X (t+ h) | X (t)]− Ax (t, T )

T − t
, (6.1)

The corresponding survival probability is given by

Sx (t+ h, T + h) = exp
(
Bx (t, T )′ E [X (t+ h) | X (t)] +Ax (t, T )

)
. (6.2)

The function affine project() is illustrated in Section 8 when analysing the Blackburn-
Sherris model with three dependent factors for the US dataset. Its input structure is
similar to affine fit(), with the additional argument years proj corresponding to
the h time periods ahead for the projection.

7. Parameter uncertainty

A further source of risk when projecting cohort survival curves is the uncertainty inher-
ited from the parameter estimation process.

The function par cov(), returns the variance-covariance matrix of the parameter
estimates and their corresponding standard errors. It allows the user to choose between

15



two methods for estimating parameter uncertainty, namely multiple imputation and
bootstrap.

The first method, described in Ungolo et al. (2023), can be chosen by setting method="MI"

within par cov(). It is recommended for Gaussian affine mortality models. Briefly, it
consists of a procedure which randomly imputes a value of the latent state variable
X (t) sampled from the smoothing distribution at the value of the parameter estimates.
In this way, we obtain a set of ”completed” data sets such that parameters are then
re-estimated. The number of completed data sets can be specified through the argu-
ment D se. This method turns out useful, because on one hand, it may not be possible
to numerically compute the Information matrix from the optimization process of the
likelihood function due to its very flat surface. On the other hand, the alternative boot-
strap method (briefly described later) may be computationally expensive if carried out
hundreds of times, as recommended in practice. The downside of multiple imputation,
is that unlike the bootstrap, it may tend to underestimate the standard errors, since
it is a delta method. From a computational perspective, a potential downside is the
need to invert a Hessian matrix of larger dimensions, although this task is simpler than
the inversion of the Hessian matrix from the estimation procedure (whose likelihood is
marginalized with respect to the latent states). This method is not recommended, nor
implemented for the CIR model, due to the lower truncation of the latent variable X (t).

When parameter uncertainty is assessed by multiple imputation, the function par cov

returns a list with two elements: Cov par est, the variance-covariance matrix of the
parameters and St err which is a list of the standard error of the parameters.

The bootstrap method draws on the work of Stoffer & Wall (2009), and was used by
Blackburn & Sherris (2013) in the context of affine mortality models. It can be imple-
mented in AffineMortality by specifying the argument method="BS" in the function
par cov(). In few words, this method consists of an iterative procedure which first
computes the standardized innovations from the measurement error, in order to obtain
a bootstrapped dataset of average mortality rates. These are used to obtain a new
set of parameter estimates. Hence, once n BS parameter estimates are obtained, their
variance-covariance is computed. In this case, the function par cov() provides an ad-
ditional element given by the parameter estimates over the bootstrapped samples. The
argument t excl (default value set to 4 (Stoffer & Wall 2009)) sets the number of the
oldest residuals in terms of t to adjust for the Kalman Filter startup irregularities.

Both multiple imputation and bootstrap algorithms are initialized at the parameter
estimates in order to better explore the likelihood surface in the neighborhood ψ̂. The
use of both methods is illustrated in Section 8.

We recommend to use the bootstrap for models with a large number of parameters,
such as the AFGNS and for the CIR model with any number of factors.
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8. Illustration

Data preparation

AffineMortality provides the data set of the average mortality rates for the US males
aged 50-99 born in the years 1883-1915 analysed in Ungolo et al. (2023), which can be
loaded as follows:

data(mu_bar)

This dataset will be used for illustrating the analysis of the Blackburn-Sherris model
with three dependent factors.

If we want for example we want to analyse the data from the Human Mortality
Database, we can use the package HMDHFDplus (Riffe 2015) to source the death counts
and the exposure-at-risk years for the computation of the µ and µ̄ rates for the set of
ages and periods/cohorts of interest:

deaths <- readHMDweb(CNTRY = "DNK", item = "Deaths_1x1", username ,

password , fixup = TRUE)

exposures <- readHMDweb(CNTRY = "DNK", item = "Exposures_1x1", username ,

password , fixup = TRUE)

Deaths and exposure-at-risk years data are then used to calculate the µx,t rates, which
are then transformed into the µ̄-rates matrix using the function rates2avg() (see Section
2).

mu_bar <- rates2avg(mu_xt_matrix)

Appendix C shows an example of R code which can be used to obtain the matrix of
µx,t-rates mu xt matrix.

Parameter estimation

A critical aspect of the analysis of affine mortality models is the specification of the
starting values for the algorithm. As emphasized in Ungolo et al. (2023) and Blackburn
& Sherris (2013) the likelihood function can have multiple local optima, hence the fitting
algorithm should be initialised several times. In AffineMortality we provide a set of
starting values (sv default in an R list format), which can be used by the researcher
for a first exploration of the models.

For example, to get the default starting values for the Blackburn-Sherris model with
dependent factors, then we run the following code:

starting_values <- sv_default$BSd

For the other supported models we can use sv default$

• BSi for the Blackburn-Sherris model up to four factors;

• AFNSi and AFNSd for the AFNS model with independent and dependent factor
respectively;
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• GMki and GMkd for the Gompertz-Makeham model with independent and dependent
factor respectively;

• AFGNSi and AFGNSd for the AFGNS model with independent and dependent factor
respectively. Similar for the AFRNS and AFUNS models;

• CIR for the Cox-Ingersoll-Ross model up to four factors;

As highlighted in Section 4.1, a general recommendation when analysing models with
dependent factors is to initialize affine fit() with the parameter estimates of the
corresponding independent factor models, and to set the starting values of the additional
parameters (such as the off-diagonal elements of the covariance matrix of X(t) and of
the mean reversion matrix ∆) to zero.

We can thus estimate the parameters with affine fit() as follows:

pe_BSd_3F <- affine_fit(model="BS", fact_dep=TRUE , n_factors=3,

data=mu_bar , st_val=starting_values , max_iter=5, tolerance =0.1,

wd="working_folder_directory")

In practice, we run the fitting process for a larger number of iterations. For example, in
Ungolo et al. (2023) the authors set max iter=200.

Goodness of fit analysis

Once we obtain the object pe BSd 3F, we run the following lines to obtain the AIC and
the BIC

> pe_BSd_3F$AIC
-21405.58

> pe_BSd_3F$BIC
-21292

This output can be used to compare between different models. Suppose we want to
compare it with the AFNS model with independent factor, then we run the following
lines:

pe_AFNSi <- affine_fit(model="AFNS", fact_dep=FALSE , st_val=sv_default$AFNSi ,
data=mu_bar , max_iter=5, tolerance =0.1)

> pe_AFNSi$AIC
-20842.76

> pe_AFNSi$BIC
-20772.45

Since the Blackburn-Sherris model with dependent factors has a smaller value of both
AIC and BIC compared to the AFNS model with independent factors, then we conclude
that the former shows a better in-sample fit.

The fitted average mortality rates can be then obtained by using mubar hat()
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fitted_BSd <- mubar_hat(model="BS", fact_dep=TRUE , n_factors=3,

parameters=pe_BSd_3F$fit$par_est , data=mu_bar)

The fitted average mortality rates obtained using mubar hat() can be used to calculate
the RMSE and the MAPE for each age in the range of interest:

> RMSE(mu_bar , fitted_BSd)

[1] 0.002011956

MAPE_age(mu_bar , fitted_BSd)

which can be similarly used for comparing the models.
Furthermore, we can obtain the fitted µ-rates by using the function avg2rates()

described in Section 2:

avg2rates(fitted_BSd)

In order to ensure that the probability of negative rates for the projected 10-years
ahead cohort is negligible for the model under analysis, we run the function prob neg mu()

> prob_neg_mu(model="BS", fact_dep=TRUE , n_factors=3,

parameters=pe_BSd_3F$fit$par_est , data=mu_bar , years_proj = 10,

n_simulations =1000)

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This shows vector of zeros indicating that the fitted model has zero probability of yielding
negative rates for the cohort born in 1925.

Projection

The vector of the 1-year ahead (hence for the US males born in 1916) survival rates for
the age-range of interest can be obtained by using the affine project() function and
then plotted as follows:

BSd_3F_proj <- affine_project(model="BS", fact_dep=TRUE , n_factors=3,

parameters=pe_BSd_3F$fit$par_est , data=mu_bar , years_proj = 1)

plot(rownames(mu_bar), BSd_3F_proj , type="l", ylab = "S(t)", xlab = "Age")

Parameter uncertainty

The estimation of the parameter uncertainty by multiple imputation through the func-
tion par cov() described in Section 7 can be carried out as follows:

par_unc_MI <- par_cov(method="MI", model="BS", fact_dep=TRUE , n_factors=3,

parameters=pe_BSd_3F$fit$par_est , data=mu_bar , D_se=5, max_iter=10,

tolerance =0.1, wd=0)

We recommend to set the number of imputations D se at least equal to 50 to obtain
a more robust estimate of the parameter uncertainty. In this illustration, we have the
following set of standard errors of the parameters as an R list object:
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Figure 8.1: 1-year ahead projected survival curve for the Blackburn-Sherris model with
three dependent factors

> par_unc_MI$St_err
$delta
[1] 0.0038258337 0.0738215285 0.0024289977 0.0529585515 0.0020585681 0.0004005845

$kappa
[1] 0.041057554 0.010218757 0.004028687

$sigma_dg
[1] 1.850683e-06 5.515050e-05 4.927546e-05

$Sigma_cov
[1] 0.000446849 0.015596337 0.005928911

$r1
[1] 8.016628e-16

$r2
[1] 0.005309632

$rc
[1] 1.330768e-09

Similarly, we can also estimate the parameter uncertainty by using the bootstrap
method:

par_unc_Bts <- par_cov(method="Bootstrap", model="BS", fact_dep=TRUE ,

n_factors=3, parameters=par_list , data=mu_bar , t_excl=4, BS_s=5, max_iter=3,

tolerance =10, wd=0)
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When using the bootstrap in practice, Blackburn & Sherris (2013) set the number of
bootstrap samples BS s equal to 500, while the default value of the number of residu-
als to be excluded t excl=4 follows from Stoffer & Wall (2009). As for the function
affine fit(), the arguments max iter and tolerance are usually set to 200 and 0.1
respectively, although the user can set any desired value.

9. Other functions

The function xfilter has the same input structure as mubar hat and returns a list of
conditional mean and covariance of the filtering distribution of the latent variable as
obtained from the application of the univariate Kalman-Filter of Koopman & Durbin
(2000). More precisely, the matrix X t returns the value of E [X (t) | µ̄1:t] (time-update
step), for t = 0, . . . ,K while the matrix X t c returns the value of E [X (t) | µ̄1:t−1]
(forecasting step). S t and S t c are the corresponding covariance matrix of X (t). For
a brief illustration, this can be run as follows:

X_filtered <- xfilter(model="BS", fact_dep=TRUE , n_factors=3,

parameters=pe_BSd_3F$fit$par_est , data=mu_bar)

The function xsmooth implements the Rauch-Tung-Striebel (Rauch et al. (1965))
smoothing procedure to obtain the conditional mean and covariance matrix of the dis-
tribution of X (t) conditional to µ̄1:T , that is, the entire time-series of the observations.
It uses as input the results from the xfilter function and the value of the parameter
kappa driving the dynamics of the SDE illustrated in Section 3 under the real-world
probability measure.

X_smoothed <- xsmooth(filterobject=X_filtered ,

kappa=pe_BSd_3F$fit$par_est$kappa)

10. Conclusion and further developments

This paper describes the AffineMortality R package, which allows the user to estimate,
compare, project and assess the uncertainty of affine mortality models. These models can
be analysed from an age-period as well as from an age-cohort perspective. The package
can be used to support researcher about a wide range of questions involving stochastic
mortality, including pricing of mortality contingent securities (Xu et al. (2020a) and Xu
et al. (2020b)), risk management of mortality contingent products, assessment of the
natural hedging of life insurance policies and life annuities (Blackburn et al. (2017) and
Sherris et al. (2020)) as well as the design of innovative mortality pooling products.

The authors plan to further expand the range of models which can be fitted, such as
the Squared Gaussian model used in interest rates modelling (Leippold & Wu (2002)),
and incorporate other features, such as cohort specific factors and other age-dependent
models. Further additions will encompass the possibility to account for incomplete
cohort data and the inclusion of models whose mean-reversion parameter is non zero.
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Another strand of future developments of AffineMortality include the possibility of
using alternative optimization methods, such as the Subplex algorithm of Rowan (1990),
which is available in R through the package nloptr (Johnson (2020)).
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A. Univariate Kalman Filtering

Following the outline in Ungolo et al. (2023), the ith element of the vector µ̄t can be
written as:

µ̄t,i = ai + bixt,i + εt,i, εt,i ∼ N (0, ωi) , (A.1)

Hence, the state equation corresponding to each observation µ̄t,i is:

xt+1,1 = Φxt,N + ηt, (A.2)

xt,i+1 = xt,i

for i = 1, . . . N − 1 and t = 1, . . . ,K, given initial state x0,N = X (0). Let µ̄1:t =
[µ̄1, . . . , µ̄t] and µ̄t,1:i = [µ̄t,1, . . . , µ̄t,i].

Given initial state x0,N := X (0) and initial conditional covariance Σ0,N = diag
(
10−10, . . . , 10−10

)
:

1. Forecasting (i = 1 only):

x̂t,1 = E (xt,1 | µ̄1:t−1) = Φx̂t−1,N , (A.3)

Σ̂t,1 = V (xt,1 | µ̄1:t−1) = ΦΣ̂t−1,NΦ′ +R;

2. Time-update (i = 1, . . . , N − 1 on the left-hand side):

x̂t,i+1 = E (xt,i+1 | µ̄1:t−1, µ̄t,1:i) = x̂t,i +Kt,iνt,i, (A.4)

Σ̂t,i+1 = V (xt,i+1 | µ̄1:t−1, µ̄t,1:i) = Σ̂t,i −Kt,iFt,iK
′
t,i

= (I −Kt,ibi) Σ̂t,i (I −Kt,ibi)
′ +Kt,iω

2
iK
′
t,i,
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where the scalar quantities νt,i and Ft,i, and the M ×1-dimensional vector Kt,i are
given by

νt,i = µ̄t,i − ai − bix̂t,i, (A.5)

Ft,i = biΣ̂t,ib
′
i + ω2

i ,

Kt,i = Σ̂t,ib
′
iF
−1
t,i .

B. Factor Loading Expressions

B.1. Gompertz-Makeham Model

In the independent-factor Gompertz-Makeham model, the factor loadings are given by

B1(t, T ) = −1− e−δ1(T−t)

δ1

B2,x(t, T ) = −eγx e
(γ−δ2)(T−t) − 1

δ2 − γ

Ax(t, T ) = −σ21

[
T − t
2δ21

− 1− e−δ1(T−t)

δ31
+

1− e−2δ1(T−t)

4δ31

]

− σ22e
2γx(T−t)

(δ2 − γ)2

[
1− e2γ(T−t)

2γ
− 2

1− e(γ−δ2)(T−t)

δ2 + γ
+

1− e2δ2(T−t)

2δ2

]
.
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In the dependent factor case, we have

B1(t, T ) = (a1 + a2)e
−δ1(T−t) − (a1 + a2e

−δ2(T−t))

B2(t, T ) = −e
γx

δ2
(1− e−δ2(t− T ))

A(t, T ) = − 3

2δ2

[
σ22e

2γx

2δ22
+
σ212e

2γx

2δ32

]
+ (T − t)

[
σ22e

2γx

2δ22
+
σ212e

2γx

2δ32
+
a1σ1σ12e

γx

2δ2
+
a1σ1

2
+
a1σ1σ12e

γx

4δ2

]
− (1− e−δ1(T−t))

[
3σ1σ12e

γx(a1 + a2)

4δ1δ2
+
a1σ

2
1(a1 + a2)

δ1

]
+ (1− e−δ2(T−t))

[
(a1 − 1)σ1σ12e

γx

2δ22
+
a1a2(σ

2
1 + 2)

2δ2
− σ1σ12e

γx(a1 − a2)
4δ22

]
+ (1− e−2δ1(T−t))σ

2
1(a1 + a2)

2

4δ1

+ (1− e−2δ2(T−t))
[
a22
2δ2
− a2σ1σ12e

γx

2δ22
− σ1σ12e

γx

4δ22

]
− (1− e−δ1(T−t)−δ2(T−t))

[
2a22 + a22σ

2
1 + 2a1a2 + a1a2σ1
2(δ1 + δ2)

+
σ1σ12e

γx(a1 + a2)

4δ2(δ1 + δ2)

]
+ e−2δ2(T−t)(4eδ2(T−t) − 1)

[
σ22e

2γx

4δ32
+
σ212e

2γx

4δ42

]
,

where, for convenience, we define

a1 =
1

δ1
− δ12e

γx

δ1δ2
, a2 = − δ12e

γx

δ22 − δ1δ2
.

B.2. Arbitrage-Free Reduced Nelson-Siegel (AFRNS) Model

In the independent factor case, the factor loadings are given by

BL(t, T ) = −(T − t)

BS(t, T ) = −1− e−δ(T−t)

δ

A(t, T ) =
σ21
6

(T − t)3 + σ22(T − t)

[
1

2δ2
− 1− e−δ(T−t)

(T − t)δ3
+

1

4

1− e−2δ(T−t)

δ3

]
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On the other hand, in the dependent factor case, we have

BL(t, T ) = −(T − t)

BS(t, T ) = −1− e−δ(T−t)

δ

A(t, T ) =
1

12δ3

[
6σLσLS(e−δ(T−t) − 1) + 6δσLσLSe

−δ(T−t)(T − t)

+ 2δ3σ2L(T − t)3 + 3δ3σLσLS(T − t)2
]

− 1

4δ3

[
2σLσLS + 3(σ2LS + σ2S) + σ2Se

−2δ(T−t) − 2(σLσLS − 2(σ2LS + σ2S))e−δ(T−t)

− 2δ(σ2LS + σ2S)(T − t)− δ2σLσLS(T − t)2 − 2δσLσLSe
−δ(T−t)(T − t)

]
.

B.3. Arbitrage-Free Unrestricted Nelson-Siegel (AFUNS) Model

In the independent factor case, we have the following expressions for the factor loadings

BL(t, T ) = −(T − t)

BS(t, T ) = −1− e−δ1(T−t)

δ1

BC(t, T ) = −δ2(T − t)
1− e−δ1(T−t)

δ1
+

1− e−δ3(T−t)

δ3(δ1 − δ3)

A(t, T ) =
1

6
σ21(T − t)3 +

σ22
2δ21

(T − t)− 1− e−δ1(T−t)

δ31
+

1− e−2δ1(T−t)

4δ31

+
T − t

2

(
σ3δ3
δ1 − δ3

)2
{[

1− 2(1− e−δ1(T−t))
δ1(T − t)

+
1− e−2δ1(T−t)

2δ1(T − t)

]
1

δ21

+

[
1− 2(1− e−δ3(T−t))

δ3(T − t)
+

1− e−2δ3(T−t)

δ3(T − t)

]
1

δ23

+ 2

[
1− 1− e−δ1(T−t)

δ1(T − t)
− 1− e−δ3(T−t)

δ3(T − t)
+

1− e−(δ1+δ3)(T−t)

(δ1 + δ3)(T − t)

]
1

δ1δ3

}
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Meanwhile, the expression for A(t, T ) in the dependent factor case are given by

A(t, T ) =
1

6
σ2L(T − t)3 +

1

2

[
c1
δ1

+
c2c3
δ1

+
c2c3
δ3

]
(T − t)2

+

[
c4 + c3c5 + 2c3

2δ21
+
c3c5 + 2c3 + 2c3c6

2δ1δ3
+

(
1

δ1
+

1

δ3

)(
c23c6 − c3c5

2

)]
(T − t)

+

[
c1 + 2c2c3

2δ31

](
e−δ1(T−t)δ1(t− T )− (1− e−δ1(T−t))

)
+
c2c3
δ33

(
e−δ3(T−t)δ3(t− T )− (1− e−δ3(T−t))

)
+

[
c3c5 − c4 + 2c3 + c3c5

δ31
+
c3 − c3c5 + c23c6

δ21δ3
− c3c5

2δ21

](
e−δ1(T−t) − 1

)
+

[
2c23c6 − c3c5

2δ23
+
c3 + c23c6
δ1δ23

](
e−δ3(T−t) − 1

)
+

[
c3c5 − c4 − 2c3 + c23c6

4δ31
− c3c5

4δ21δ3

](
e−2δ1(T−t) − 1

)
− c23c6

4δ33

(
e−2δ3(T−t) − 1

)
+

c3 + c23c6
δ1δ3(δ1 + δ3)

(
e−δ1(T−t)−δ3(t−T ) − 1

)
where we have

c1 = σLσLS c4 = σ2S + σ2LS

c2 = σLσLC c5 = σSσSC + σLCσLS

c3 =
δ2

δ1 − δ3
c6 = σ2C + σ2LC + σ2SC .

C. R code example of data processing

First we select the age-range and the calendar year data to analyse:

AgeRange <- c(50:99)

PeriodRange <- seq (1933, 2015)

Hence, we extract the matrix of Death counts (D xt) and of exposure-at-risk years
(E xt) for the male population

D_xt <- matrix(NA, length(AgeRange),length(PeriodRange ))

E_xt <- matrix(NA, length(AgeRange),length(PeriodRange ))

col <- 1

for(t in PeriodRange ){

row <- 1

for(x in AgeRange ){

D_xt[row ,col] <- deaths [(( deaths$Age==x) & (deaths$Year==t)),"Male"]
E_xt[row ,col] <- exposures [(( exposures$Age==x) & (exposures$Year==t)),"Male"]
row <- row + 1
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}

col <- col + 1

}

The matrix of µx,t rates is obtained as the ration between D xt and E xt:

mu_xt_matrix <- D_xt / E_xt
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