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Insurance and annuity products issued on multiple lives require the use of
statistical models which account for lifetime dependence. This work presents
a Dirichlet Process Mixture-based approach which allows to model dependent
lifetimes within a group, such as married couples, accounting for individual
as well as group-specific covariates. The approach allows to account for right
censoring and left truncation as typical of survival analysis. The model is
analysed in a fully Bayesian setting and illustrated to jointly model the life-
time of male-female couples in a portfolio of joint and last survivor annuities
of a Canadian life insurer. The model shows an improved in-sample and
out-of-sample performance compared to traditional approaches assuming in-
dependent lifetimes, and offers additional insights on determinants of the
dependence between lifetimes and on their impact on joint and last survivor
annuity prices.
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1. Introduction

The pricing of insurance products issued on multiple lives, such as couple members,
requires the use of statistical models which can best predict their future lifetimes. The
independence assumption can sensibly reduce the model complexity and ease the im-
plementation of computational routines for pricing. However, this assumption is not
tenable in practice. For example, partners are likely to share the same socio-economic
characteristics, such that they share the same living standards, and to be exposed to
similar risks (Denuit & Cornet (1999), Denuit et al. (2001)).

Furthermore, the use of the simplistic independence assumption can have a material
impact on actuarial valuations. Denuit & Cornet (1999) use a Markov model with
force of mortality dependent on marital status, and show how the premium of a widow
pension annuity is 10 per cent lower compared to the independence case. Using a copula
model, Frees et al. (1996) first demonstrate the presence of a positive dependence between
husband and wife lifetimes, and show that the annuity value is 5 per cent lower compared
to the case of independent lifetimes.

A wealth of approaches have been proposed for the analysis of dependent lifetimes,
especially in the biostatistical and in the actuarial field. Copula models are among the
most employed approaches for this analysis: Frees et al. (1996) focus on a one-parameter
Frank copula with Gompertz marginals for the analysis of the male and female lifetimes
within a couple, Carriere (2000) extends this analysis by considering other marginals
as well as other types of copulas, while Deresa et al. (2022) focus on the statistical
properties of copula models in presence of left-truncation and dependent censoring. Youn
& Shemyakin (1999) were the first to account for covariates when modelling dependence.
Using a Gumbel copula with Weibull marginals , they account for the age-difference
between the spouses, which is found influence the lifetime dependence. In addition,
using Gompertz marginals for the time to event for males and females couple members,
Dufresne et al. (2018) observe how the gender of the eldest partner has also an influence
on the lifetime dependence.

An alternative approach is given by models using random effects (or frailty com-
ponents, see Vaupel et al. (1979)) to capture the dependence beteween lifetimes. This
means that conditional on a latent variable, then lifetimes are independently distributed.
For example, Yashin & Iachine (1995) develop a correlated gamma frailty model for the
analysis of the joint lifetime of Danish twins. In the field of biostatistics, a closely related
problem is given by modelling dependent time to event and time to censoring. Huang
& Wolfe (2002) address this problem by assuming that the two random variables have
a distribution characterized by the Cox proportional hazard model, whose linear term
includes a normally distributed log-frailty component. Gorfine & Hsu (2011) consider
other parametric functions for the distribution of the individual frailty.

The common limitation of the aforementioned copula and random effect models is the
need of assuming a specific parametric form for the copula, or of the distribution of the
random effects. With reference to the latter approach, Ungolo & van den Heuvel (2022)
and Ungolo & van den Heuvel (2023) overcome the potential misspecification issue by
using a multivariate random effect with a discrete distribution and unknown number of
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levels.None of these approaches account for covariates in the distribution of the random
effects used to explain the dependence among time to events.

This paper contributes to the literature by proposing the Augmented Variable Dirichlet
Process Mixture (AVDPM) model, which briefly consists of a joint probability distribu-
tion of the time to events and of the group-specific covariates, where all these variables
are independently distributed, conditional on a multivariate random effect, whose dis-
tribution is drawn from a Dirichlet Process. In this way, we can flexibly account for the
lifetime dependence among units within a group, and at the same time we can account for
those common covariates which capture the dependence between lifetimes. In addition,
we show how this approach can easily account for right censoring and left truncation.
We analyse the resulting model by means of a fully Bayesian analysis, which may include
the information available to the researcher.

This paper is organized as follows: Section 2 briefly introduces the Dirichlet Pro-
cess and the Dirichlet Process Mixture model, and Section 3 presents the Augmented
Variable Dirichlet Process Mixture (AVDPM) model for the analysis of dependent life-
times. Section 4 describes the empirical dataset used for illustrating the model and the
additional parametric features for the joint lifetime of male-female couples and for the
couple-specific covariates. Section 6 presents the results of the empirical analysis, and
Section 7 shows how the model can be used when pricing joint life and last survivor
annuities. Section 8 extends the AVDPM to the analysis of more general groups of
dependent lifetimes, and Section 9 concludes.

2. Dirichlet Processes and Dirichlet Process Mixtures

The Dirichlet Process (DP) was first introduced by Ferguson (1973) to specify a prior
distribution over probability distributions. A random draw G ∼ DP (G0, φ) yields a
discrete probability distribution over a countably infinite number of points drawn inde-
pendently from a base distribution denoted as G0, which indexes the DP together with
the concentration parameter φ. This latter captures the degree of shrinkage of G to-
wards G0, or in other words, the strength of the prior assumption G0 over G, analogous
to the prior assumption about the parameters of a probability distribution in Bayesian
statistics.

Suppose we need G to draw samples for a random variable γ ∼ G (·). Sethuraman
(1994) outlines the following construction by means of a mixture distribution with an
infinite number of components, indexed by k:

G (γ) =
∞∑
k=1

πkδγk (γ) , (2.1)

where γk
iid∼ G0 for k = 1, 2, . . ., and δγk (·) is the Dirac measure which assigns unitary

mass if γ = γk and zero otherwise. The mixture weights πk are randomly generated
using the so called stick breaking procedure (SBP), which rescales a set of i.i.d. random
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variables ψk ∼ Beta (1, φ) as follows:

πk := πk (ψ1:k−1) = ψk

k−1∏
j=1

(1− ψj) . (2.2)

where ψ1:k = (ψ1, . . . , ψk). The SBP definition follows from the decreasing size of the
mixture weights as the index k increases. From this characterization we can observe how
a random draw from a Dirichlet Process yields a discrete distribution over a countably
infinite number of atoms from G0.

In this paper, we are interested in the probability distribution of a random variable
Ti, eventually multivariate, for the ith unit, whose density f (·;β, γi) is indexed by a
global parameter vector β, common to all units, and by a unit-specific parameter vector
γi. Unit-specific parameters, or random effects in biostatistics, are introduced in a
probability model in order to characterize the heterogeneity among the units, hence to
capture the dependence relationship among these.

By convoluting the probability distribution of Ti with the probability distribution of
the latent parameter γi, we obtain a Dirichlet Process Mixture (DPM) model (Lo 1984):

f (t;β,G) =

∫
Ωγ
f (t;β, γ) dG (γ) =

∞∑
k=1

πkf (t;β, γk) . (2.3)

where Ωγ denotes the sample space of γ.
We model G as a random draw from a DP to allow for a more flexible distribution of

Ti, which can capture complex features in the data, such as fat tails and multimodality,
as opposed to any parametric assumptions, such as the Normal distribution. On the
other hand, despite the infinitely many parameters of this construction enhancing the
flexibility of a parametric model, a DP allows for a degree of regularization of G towards
a simple parametric form G0 through the concentration parameter φ.

From another perspective, a discrete distribution for γi ∼ G is akin to the creation of
ties among the units, which can configure clusters of observations with the same values
of γ. Let si = k to indicate that the ith unit belongs to the kth cluster characterized by
the parameter γ∗k . We use the superscript ∗ to distinguish the values of γ represented in a
sample of n units from the infinitely many samples from G0. The clustering procedure,
tuned by the parameter φ, allows to sequentially group the observations through a
sampling process known in the literature as the Chinese restaurant process (see Heinz
(2014) for an illustration). In words, as we keep observing the units in sequence, these
are more likely to be in a certain class with probability which depend on the number
of units already therein, or to belong to a newly created class with probability which
depends on φ (see Blackwell & MacQueen (1973) for a characterization in terms of the
Polya urn distribution).

The use of Dirichlet Processes can also be seen as a way to infer the number of
components of a mixture distribution, as opposed to strategies based on appropriate
model selection criteria (see Ungolo & van den Heuvel (2022) for a discussion). The
advantage of the DP specification is to avoid the specification and the inference of several
models, which may be time consuming.
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Summing up, the DPM model assumes the following data generating process for a
sample t1, . . . , tn:

πk | φ ∼ SBP (φ) , k = 1, 2, . . . ; (2.4)

γ∗k | G0 ∼ G0, k = 1, 2, . . . ;

si | π1, π2, . . . ∼ Discrete (π1, π2, . . .) , i = 1, . . . , n;

ti | β, γ∗si ∼ f
(
ti;β, γ

∗
si

)
i = 1, . . . , n.

3. The Augmented Variable DPM model

This section introduces the Augmented Variable Dirichlet Process Mixture (AVDPM)
model for the analysis of non-exchangeable joint lifetimes of dependent individuals1

within a group, where individual as well as group-specific covariates are available. For
example, husband and wife lifetimes are likely to be positively associated (Denuit et al.
2001), since they share the same living conditions (e.g. diet, socio-economic factors), are
exposed to similar risks (e.g. during a catastrophic event they are likely to be in the same
place), or eventually subject to the broken-heart syndrome (Parkes et al. 1969). Other
examples include the joint lifetime of the primary and secondary head of an insurance
policy, families with husband, wife and one child, and so on. That is, groups of the same
size. Without loss of generality, we describe the framework in the context of a model
for the joint lifetime of male-female couples. In Section 8 we discuss how to extend the
framework to more general cases of different size groups of exchangeable lifetimes.

Let T1 and T2 denote the random future lifetime of husband and wife respectively, with
individual-specific vector of characteristics X1 and X2 (e.g. age, medical status), and
couple-specific covariates vector Z, which may include for example household income
and geo-demographic profile (an indicator of the socio-economic status, see Ungolo et al.
(2019)). Therefore, Z may include any characteristics which may explain the dependence
in the couples’ lifetime. For example, the household income can explain the heterogeneity
in the longevity profile of each couple, since a wealthy couple can access better healthcare
services all else being equal, compared to a deprived one. Similarly the geo-demographic
profile, capturing the effect of the area where the couple lives (e.g. urban or rural), can
also be a proxy for the socio-economic characteristics of a couple.

For the ith couple we assume that conditional on a couple-specific bivariate random
effect (γ1,i, γ2,i), then T1,i and T2,i are independently distributed. This is for example
the approach followed in Ungolo & van den Heuvel (2022) when analysing a joint model
for informative censoring and by Ungolo & van den Heuvel (2023) where the authors
develop a joint model for the time to competing risk events.

The AVDPM model “augments” the joint probability distribution of (T1, T2) by spec-

1A multivariate J-dimensional random variable X = (X1, X2, . . . , XJ) is exchangeable if its joint dis-
tribution does not change when altering the subscript of each element of X, or in other words, we
swap their order.
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ifying a joint probability model for (T1, T2, Z):

f (t1,i, t2,i, zi | x1,i, x2,i;β1, β2, G) (3.1)

=

∫
Ωγ,ζ

 J∏
j=1

f (tj,i | xj,i;βj , γj,i)

 f (zi; ζi) dG (γ1,i, γ2,i, ζi)

where βj is the parameter specific to the future lifetime density of the husband (j = 1) or
of the wife (j = 2), ζi is the couple-specific parameter vector indexing the distribution of
Z (which can also include global parameters, i.e. not couple-specific) and Ωγ,ζ denotes
the sample space of (γ1, γ2, ζ). We generically denote by f the probability density
function of continuous variables, and the mass function of the discrete ones. Hence, we
model the multivariate distribution G as a random draw from a Dirichlet Process, which
we write G ∼ DP (G;G0, φ). For simplicity, we assume G0 = G0,γ × G0,ζ . A further
simplification can be to specify G0,γ = G0,γ1×G0,γ2 , leaving the distribution of (γ1, γ2, ζ)
fully tuned by the concentration parameter φ. However, the former approach allows for
a prior specification of a dependence relationship among γ1 and γ2 as more reasonable
in actuarial practice.

The joint density of equation (3.1) allows to capture the dependence between T1 and
T2 and between (T1, T2) and Z through the joint distribution of (γ1, γ2, ζ). In this way,
we distinguish between the variables which directly affect the individual lifetimes X from
those which are couple-specific. For example, in the analysis of couples’ lifetimes, Deresa
et al. (2022) include the couple specific covariates, such as the age difference, within the
set of individual covariates.

As in equation (2.3), we can rewrite the density in (3.1) as a mixture distribution with
an infinite number of components, obtaining a DPM:

f (t1,i, t2,i, zi | x1,i, x2,i;β1, β2, G) (3.2)

=
∞∑
k=1

πk

 2∏
j=1

f
(
tj | xj,i;βj , γ∗j,k

) f (zi; ζ
∗
k)

where πk (k = 1, 2, . . .) is the mixture weight characterized by the stick-breaking proce-
dure described in Section 2, and the superscript ∗ denotes the unique values of γj and
ζ.

The data generating process of the data can be summarized as follows:

G | φ,G0,γ , G0,ζ ∼ DP (G;φ,G0) (3.3)

(γ1,i, γ2,i, ζi) | G ∼ G i = 1, . . . , n

zi | ζi ∼ f (zi; ζi) i = 1, . . . , n

tj,i | xj,i, βj , γj,i ∼ f (tj,i | xj,i;βj , γj,i) ; j = 1, 2; i = 1, . . . , n

The flexibility of this factorization allows to understand the impact of Z on the dis-
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tribution of Tj (or of (T1, T2)) by using standard probability calculus:

f (tj,i | xj,i, zi;βj , γj,·, ζ·) =

∞∑
k=1

πkf
(
tj,i | xj,i;βj , γ∗j,k

)
f (zi; ζ

∗
k)

∞∑
k=1

πkf (zi; ζ
∗
k)

(3.4)

In a similar fashion, we can derive the probability distribution of the time to death of
the last survivor T1,2 = max (T1, T2). The corresponding survivor function, simplistically
denoted as Sx1,x2 (t | z) is useful especially for actuarial calculations, as we illustrate in
Section 7:

Sx1,x2 (t | z) := P
(
T1,2 > t | x1, x2, z

)
= 1− P (T1 < t ∪ T2 < t | x1, x2, z) , (3.5)

where

P (T1 < t ∪ T2 < t | x1, x2, z) =

∞∑
k=1

πkf (z; ζ∗k)

∫ t

0
f
(
u | x1;β1, γ

∗
1,k

)
f
(
u | x2;β2, γ

∗
2,k

)
du

∞∑
k=1

πkf (z; ζ∗k)

Analogous formula can be used for the joint life survival probability, denoted as Sx1,x2 (t | z),
characterizing the random variable min (T1, T2).

We can also calculate the probability of belonging to a certain class W conditional on
the value of Z:

P (W = k | Z = z) =
πkf (z; ζ∗k)
∞∑
h=1

πhf (z; ζ∗h)

(3.6)

In this way, we can understand how couples with similar values of W can share the
same mortality profile and husband-wife mortality dependence relationships as charac-
terized by the kth class.

Compared to earlier literature in the topic, the AVDPM model extends the mixture
model analysed by Ungolo & van den Heuvel (2022), since the authors consider a discrete
random component (independent of Z) with unknown number of levels, chosen by means
of a model selection procedure. The limitation of this approach is the need of estimating
several models, which can be particularly time consuming for larger datasets as men-
tioned in Section 2. On the other hand, while Ungolo & van den Heuvel (2023) overcome
this issue by assuming that the random component is drawn from a (truncated) Dirichlet
Process, their model does not account for the statistical association among competing
risks due to common factors.

As mentioned in Section 1, to the best of our knowledge, Youn & Shemyakin (1999)
and Dufresne et al. (2018) are the sole references accounting for the common variable Z
(the age difference between the spouses) within the copula dependence parameter.
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Other than the analysis of dependent lifetimes, the AVDPM model can easily find
application for the analysis of the time to competing causes of death, where Z may
represent for example those genetic factors which impact the dependence between the
causes. Alternatively, the AVDPM factorization in equation (3.1) can be used to jointly
model dependent frequency and/or severity of claims in non-life and health insurance
by type of event, without necessarily specify a strong parametric assumption on the
dependence, as can be the case of copula models.

4. Data and parametric model

We showcase the approach outlined in Section 3 to the analysis of the Canadian life
insurance dataset initially studied by Frees et al. (1996), and then also by Deresa et al.
(2022) and Dufresne et al. (2018) among others. After some data processing operations,
briefly described in the Supplementary Material, we have information about 12,139 joint
and last-survivor annuity contracts in force between 29/12/1988 and 31/12/1993 (the
observation period).

Specifically, we focus on a joint model for the lifetime distribution of individual mem-
bers of male-female couples, for which we observe the starting date of the contract,
the date of birth (thus their age at the start of the contract) and the date of death if
any couple member dies within the observation period. To make the inferential process
more challenging, hence to prove its robustness, we assume that the death of the first
spouse causes a loss of information about the living one, whose lifetime is thus censored.
Hence, this dataset contains a large number of censored units: indeed, we observe 1,164
deaths among males, 357 deaths among females, while the remaining units are all right
censored. In addition, most units are also subject to left truncation. This means that
we are able to observe the annuity contract only if both couple members are alive at
the start of the observational period. Right censoring and left truncation must then be
taken into account when deriving the likelihood function of the observations, as we show
in Section 5.

In this dataset, the age at the start of the contract is the only individual-specific
covariate (average of 65.6 for males and 62.6 for females). As in Dufresne et al. (2018)
and Youn & Shemyakin (1999), we consider also the age-difference (AD, in absolute
value, mean of 4.1 years) and the indicator variable MO, equal to 1 if the male is
older than the woman and 0 otherwise (the male is the oldest policyholder in 77.3% of
the couples in the dataset). According to their analysis, a model including these two
variables captures some additional features of the association between the lifetime of the
husband and of the wife. More precisely, they claim that the larger the age difference, the
lower the lifetime dependence. In addition, Dufresne et al. (2018) observe how the MO
covariate has an influence in the relationship between husband and wife, consequently
affecting their lifetime dependence. Therefore, we will consider AD and MO as the two
elements of the couple-specific covariates, Z =(AD, MO).

We randomly split the dataset into a training set, corresponding to the 75% of the
policyholders within the dataset (9,104 units), and use the remaining 25% to test the
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predictive ability of the model (3,035 units).
Following Frees et al. (1996) and Carriere (2000) we model the joint future lifetime

distribution of the male (j = 1) and the female (j = 2) within the ith policy in terms of
the following hazard function specification:

µ (t | xj,i;αj , βj , γj,i) = exp (αj + βj (xj,i + t) + γj,i) , (4.1)

where αj denotes the intercept or log-baseline, βj is the regression coefficient for the
age effect, and γj,i is the individual random effect capturing the heterogeneity and the
dependence in the couple lifetimes. Given this specification, then the probability density
function of Tj,i can be written as:

f (t | xj,i;αj , βj , γj,i) = exp

[
−
∫ t

0
µ (s | xj,i;αj , βj , γj,i) ds

]
µ (t | xj,i;αj , βj , γj,i) (4.2)

For the couple-specific covariates, we assume that ln (ADi) ∼ N
(
·; ζAD,i, σ

2
AD

)
and

MOi ∼ Bernoulli (·; ζMO,i). The density of Tj,i as function of xj,i and zi follows from
equation (3.4). In this way, we can easily observe how the resulting joint model for
(T1, T2, Z) has an additional layer of flexibility, since the effect of Z on the hazard
function (through γj,i) is non-necessarily proportional, nor monotone.

The ith couple-specific parameters are drawn from a random distributionG, (γ1,i, γ2,i, ζAD,i, ζMO,i) ∼
G as from the generating process described in equation (3.3). We assume that G is a
draw from a Dirichlet Process with concentration parameter φ and base measure G0:

G0 = MVN

([
γ1,i

γ2,i

]
; 0,Σγ

)
×N

(
ζAD,i;mζAD

, s2
ζAD

)
× Beta (ζMO,i; 3, 1)

The model for the base distribution is motivated by the need to carry out a com-
putationally efficient Bayesian inference by exploiting the conditional conjugacy of the
parameters whereas possible, whilst keeping the model flexible enough to capture the
complex features of the data. The parameters of the Beta distribution for ζMO,i are
chosen in a way to provide some weak prior information: indeed, this assumption corre-
sponds to a mean of 0.75 and a variance of 0.0375.

5. Inference

First of all, we approximate the DPM model of equation (3.2) by setting an upper
bound K = 25 to the number of mixture components as in Ungolo & van den Heuvel
(2023), which results in the truncated SBP described in Ishwaran & James (2001). This
simplifies the implementation of the MCMC sampler compared to the use of the bound-
free slice samplers of Walker (2007) and Kalli et al. (2011), or the retrospective sampler
of Papaspiliopoulos & Roberts (2008), which avoid.
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5.1. Prior distributions

We specify weakly informative and pairwise independent prior distributions for the model
parameters as listed below, in order to facilitate the computation of the posterior distri-
bution:

• exp (αj) ∼ Gamma (αj ; 1, 1) ; j = 1, 2;

• βj ∼ Uniform (βj ; 0, 5) ; j = 1, 2;

• Σγ ∼ Inv-Wishart

(
Σγ ; 7, 0.001

[
1 0.5

0.5 1

])
;

• mζAD
∼ N (mζAD ; 0, 1);

• s2
ζAD
∼ Inv-Gamma

(
s2
ζAD

; 2, 2
)

;

• σ2
AD ∼ Inv-Gamma

(
σ2

AD; 1, 1
)
;

• φ ∼ Gamma (φ; 1, 1)

The weak prior distribution allows to incorporate some information available to the
researcher, such as the positive statistical association between the couple member life-
times, as we do for the prior distribution of Σγ . The uniform distribution for βj is
motivated on the grounds of previous analyses, where the lower bound of zero is set in
order to obtain an increasing hazard function at older ages, which ensures the biologi-
cal reasonableness of the model, while the upper bound is set to a value large enough
to ensure the prior is almost non-informative. Previous mortality analyses of a similar
model show a value of β around 0.10 (see for example Ungolo et al. (2020) and Richards
(2008)).

With the exception of βj and γ∗ =
((
γ∗1,1, γ

∗
2,1

)
, . . . ,

(
γ∗1,K , γ

∗
2,K

))
, we can obtain

closed form updates for all parameters, as shown in Appendix A. The conditional con-
jugacy of φ is discussed in Escobar & West (1995).

5.2. Likelihood

Let dj,i denote an indicator variable which is equal to 1 if the male (j = 1) or the
female couple member (j = 2) is observed to die throughout the observational study
and 0 otherwise (hence, the lifetime variable is censored). We assume that the censoring
mechanism is ignorable, since the censoring event for a couple member is either caused
by the death of the other (whose conditionally independent lifetime is included in the
joint model) or from the end of the observation period (Type I censoring). In our dataset
we observe each couple until the first member dies. This means that we can only observe
ti = min (t1,i, t2,i). Furthermore, we assume that the distribution of the times to event
for each couple are independently distributed, conditional on the covariates and the
multivariate random effect.
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As discussed in Section 4, data are subject to left truncation, since each contract is
observable upon survival of both members at the start of the study. The left-truncation
level for each couple is denoted by the variable ai, denoting the time (in years) from the
start of the contract to the start of the observational study. This means that we need
to work with the lifetime density function conditional on both couple members being
alive at the beginning of the observation period. ai is equal to zero if the contract starts
during the observation period.

Let t = (t1, . . . , tn), x = (x1,i, x2,i, . . . , x1,1, x2,1), d = (d1,1, d2,i, . . . , d1,n, d2,n), ad=
(ad1, . . . , adn), mo=(mo1, . . . ,mon), a = (a1, . . . , an), α = (α1, α2), β = (β1, β2),

ψ = (ψ1, . . . , ψK−1), γ∗ =
(
γ∗1,1, . . . , γ

∗
J,K

)
, ζ∗AD =

(
ζ∗AD,1, . . . , ζ

∗
AD,K

)
and ζ∗MO =(

ζ∗MO,1, . . . , ζ
∗
MO,K

)
. We introduce the latent indicator variable si,k, which is equal to 1

if the ith couple belongs to the kth class, and zero otherwise. This facilitates an efficient
computation of the posterior distribution (Müller et al. 1996).

The likelihood function of the parameters conditional on t, x, a, d, ad, mo and
s = (s1,1, . . . , sn,K) is given by:

L
(
α, β, γ∗, ζ∗AD, ζ

∗
MO, σ

2
AD, ψ | t,x,d,a,mo,ad, s

)
(5.1)

∝
n∏
i=1

π
si,k
k

{ 2∏
j=1

ḟ
(
ti | xj,i, dj,i, ai;αj , βj , γ∗j,k

)N
(
ln (adi) ; ζ∗AD,k, σ

2
AD

)
Bernoulli

(
moi; ζ

∗
MO,k

)}si,k

where s = (s1,1, . . . , sn,K).
In order to account for right censoring and left truncation, then by simple algebra we

have:

ḟ
(
ti | xj,i, dj,i, ai;αj , βj , γ∗j,k

)
=

exp
[
−
∫ ti+ai

0 µ
(
s | xj,i;αj , βj , γ∗j,k

)
ds
]
µ
(
ti + ai | xj,i;αj , βj , γ∗j,k

)dj,i
exp

[
−
∫ ai

0 µ
(
q | xj,i;αj , βj , γ∗j,k

)
dq
] (5.2)

whose logarithm is given by:

lnḟ
(
ti | xj,i, dj,i, ai;αj , βj , γ∗j,k

)
= −exp [βj (ti + ai)]− exp (βjai)

βj
exp

(
αj + βjxj,i + γ∗j,k

)
+ dj,i

(
αj + βj (xj,i + ti + ai) + γ∗j,k

)
(5.3)
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5.3. Posterior distribution

The posterior distribution follows as the product of the likelihood and the prior distri-
bution:

p
(
α, β, γ∗, ζ∗AD, ζ

∗
MO, σ

2
AD,Σγ ,mζAD

, s2
ζAD

, φ, ψ
∣∣t,x,d,mo,ad, s

)
(5.4)

∝ L
(
α, β, γ∗, ζ∗AD, ζ

∗
MO, σ

2
AD, ψ | t,x,d,mo,ad, s

) 2∏
j=1

Gamma (exp (αj) ; 1, 1) Uniform (βj ; 0, 5)


×

[
K∏
k=1

MVN
(
γ∗·,k; 0,Σγ

)
N
(
ζ∗AD,k;mζAD

, s2
ζAD

)
Beta

(
ζ∗MO,k; 3, 1

)]
N (mζAD

; 0, 1)

× Inv-Wishart

(
Σγ ; 7, 0.001

[
1 0.5

0.5 1

])
Inv-Gamma

(
σ2

AD; 1, 1
)

Inv-Gamma
(
s2
ζAD

; 2, 2
)

×

[
K−1∏
k=1

Beta (ψk; 1, φ)

]
Gamma (φ; 1, 1)

In order to efficiently learn the posterior distribution of equation (5.4), we propose to
first Data-Augment the dataset of the missing value of the latent class si,k, and then use
a blocked Gibbs sampler scheme (Ishwaran & James (2001)), consisting of a sequential
draws of the parameters (exploiting their conditional conjugacy). The steps of this Data
Augmentation-Blocked Markov Chain Monte Carlo (MCMC) sampler are detailed in
Appendix A. We implement this sampler in R (R Core Team 2013) in order to have a
full control over the MCMC sampling process. The code implementing the sampler is
available at the GitHub repository https://github.com/ungolof/AVDPM.

6. Results

6.1. Convergence

The steps of the MCMC sampler devised for the analysis of the posterior distribution
outlined in Section 5.3 are iterated 50,000 times. We discard the first 40,000 iterations
(burn-in) and we thin the chain every 20 draws to reduce the degree of autocorrelation
between iterations, resulting in a final posterior sample of 500 draws. We run the sampler
four times, based on sparse starting values, in order to assess its convergence towards a
stationary distribution.

From the analysis of the trace plots we observe how the chains converge towards a
stationary distribution for all parameters, and these mix very well, except for γ∗, ζ∗MO,
ζ∗AD and π (ψ)2. We expect this result, which is due to the label switching problem
typical of Bayesian mixtures, especially when no label constraint has been placed (see
Betancourt (2017), Marin et al. (2005) and Ungolo et al. (2020) for a detailed account
about this problem). This issue only affects the interpretation of the groups from the

2Plots available upon request.
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results of one chain compared to another. Indeed, when looking at the occupancy of the
classes across iterations, we note a tendency of the sampler to have a similar number of
units.

Nevertheless, this does not represent an issue when making predictions, or when the
purpose is to learn the global parameters, such as α and β.

Figure 6.1 shows the posterior mean of the number of units included in each cluster.
We observe how the first three classes turn out to be the most populated throughout
the iterations, and four classes cover more than 2.5% of the observations. This is also a
further evidence of the appropriateness of the upper bound choice K = 25.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Mixture component (k)

P
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t. 
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Figure 6.1: Barplot of the posterior average of the mixture component occupancy (n
(`)
k ,

k = 1, . . . ,K) based on the retained posterior sample. The horizontal black
line indicates the level of 228 units.

6.2. Model analysis

Model results
Table 6.1 shows the summary statistics of the posterior distribution of the most rele-

vant parameters for the AVDPM approach of this paper. The log-baseline mortality (α)
for females is lower than for males, as we can see also from the value of the 95% credible
interval extremes which do not overlap. On the other hand, the female members of the
couple are characterized by a larger sensitivity of the hazard function with respect to
the age as measured by the parameter β compared to males. This is shown in Figure
6.4, where we plot the empirical death rates and compare the resulting hazard function
of the AVDPM against those of two other competing models, as we discuss later.

From the analysis of the posterior distribution of the parameters, we observe that
four classes cover 94% of the observations, and are characterized by different values of
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the class-specific parameters
(
γ∗1,k, γ

∗
2,k, ζ

∗
AD,k, ζ

∗
MO,k

)
for k = 1, 2, 3, 4. We note how

the additional heterogeneity layer as captured by the random component γ implies a
decrease in the hazard function for the males and an increase for the corresponding
hazard function for the females, due to the sign of their coefficient, and to the value of
the 95% credible interval bands. We add more on this point when analysing the classes.

Table 6.1: Posterior summaries of α, β, γ∗k , ζ∗AD,k, ζ
∗
MO,k, πk for k = 1, 2, 3, 4

Parameter Mean 95% Cred. Int. Parameter Mean 95% Cred. Int.

α1 −9.3795 (−10.4781; −8.3154) α2 −15.6532 (−17.3233; −14.4152)
β1 0.0901 (0.0758; 0.1036) β2 0.1296 (0.1123; 0.1497)
γ∗1,1 −0.9139 (−1.3553; −0.5222) γ∗2,1 1.8088 (1.3064; 2.3155)

γ∗1,2 −0.7064 (−1.0829; −0.3504) γ∗2,2 1.6669 (1.1783; 2.1585)

γ∗1,3 −0.9194 (−1.2799; −0.3824) γ∗2,3 1.2060 (0.78495; 1.65906)

γ∗1,4 −3.5996 (−3.9752; −2.8663) γ∗2,4 1.7884 (1.5285; 2.0137)

ζ∗AD,1 1.6784 (1.59056; 1.78427) ζ∗MO,1 0.9755 (0.93908; 0.9982)

ζ∗AD,2 0.1326 (−0.0626; 0.32496) ζ∗MO,2 0.6260 (0.57256; 0.68335)

ζ∗AD,3 1.1933 (0.99488; 1.32565) ζ∗MO,3 0.6406 (0.49215; 0.74976)

ζ∗AD,4 −1.2193 (−1.5354; −0.9107) ζ∗MO,4 0.5054 (0.39599; 0.59236)

π1 0.4204 (0.3120; 0.5154) π2 0.2167 (0.1594; 0.2599)
π3 0.2549 (0.1630; 0.3570) π4 0.0512 (0.03688; 0.0665)

Analysis of the effect of couple-specific covariates
We plot the value of the log-hazard function of the males and females for different

values of AD and of the MO covariate (Figure 6.2). Using the posterior mean of the
parameters, this conditional hazard function is calculated as:

µ
(
t | xj,·, ad,mo;αj , βj , γ

∗
j,·, π, ζ

∗
AD, ζ

∗
MO

)

=

K∑
k=1

πkf
(
t | xj,·;αj , βj , γ∗j,k

)
N
(
ln (ad) ; ζ∗AD,k, σ

2
AD

)
Bernoulli

(
mo; ζ∗MO,k

)
K∑
k=1

πk
(
1− F

(
t | xj,·;αj , βj , γ∗j,k

))
N
(
ln (ad) ; ζ∗AD,k, σ

2
AD

)
Bernoulli

(
mo; ζ∗MO,k

)
(6.1)

where F denotes the cumulative distribution function of the random time to event T ,
hence 1− F denotes the survival function.

As outlined in Section 4, this model allows for a non monotone effect of the covariates
on the hazard function compared to a typical proportional hazard model approach as
used in Deresa et al. (2022), and later analysed to compare the models.
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Figure 6.2: Hazard function for males (black) and females (gray) aged 60-100 for different
values of the covariates male older and age difference (not in log scale).

First of all, we observe how in case the male is the older couple member (MO=1),
there is a slight shift upwards of the hazard function for both males and females, with a
more visible effect on the latter.

Furthermore, when MO=1, an age difference of 5 or 10 years has a similar hazard
function for the males, while the hazard function increases with the age difference for
the females. Conversely, when the female is older, we see that the hazard function
values have a non-monotonic relationship with respect to the age difference between the
couple members. This can be observed especially for the females hazard function, where
the hazard function corresponding to an age difference of 5 years lies below the hazard
functions obtainable when the age difference is equal to 2 and 10. In this way, the model
captures the interaction between age difference and the MO covariate, since the effect
of the age difference is not the same based on different values of the MO covariate.

Dependent lifetime events

The AVDPM of this work is proposed to analyse dependent lifetimes. We generate a
sample of 10,000 joint lifetimes for males and females with different ages (sampled from
a Uniform(60, 100) distribution, respecting AD and MO3), and analyse their statistical
association based on different values of the of the couple-specific covariates. Again, we
sample the time to event using the posterior mean of the parameters. The statistical
association of the time to event is assessed by using the Spearman ρ and the Kendall τ

3For example, if we sample for a male an age equal to 65, with AD=2 and MO=1, then the female has
an age of 63.

15



rank correlation coefficient, which are calculated for each value of AD between 0.5 and
20 and MO and plotted in Figure 6.3.

First of all, we note how both statistics agree on the pattern of positive dependence for
each value of AD (0.5, 1, 1.5, . . . , 20) and MO. The spikes in the plots are the consequence
of the random lifetime sampling process at each value of (AD, MO). In more detail, the
dependence is relatively smaller for an age difference smaller than one year, being slightly
larger when the male is the oldest couple member. For an age difference between 1 and 7
years the two statistics have a stable value, regardless on whether the male is the oldest
couple member. For an age difference larger than 7 years, the lifetime dependence shows
a decreasing trend in case the female is older than males, while in the opposite case, the
value of both coefficients remains stable.

These results show how the AVDPM approach of this work can account for the Z-
lifetime dependence as by-product.
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Figure 6.3: Value of the Spearman ρ (left panel) and of the Kendall τ (right panel) for
different values of AD and MO.

Class analysis

The mixture modelling nature of AVDPM allows to classify the observations a posteriori,
which can be helpful to learn further information about the resulting groups. A similar
analysis was carried out in Ungolo & van den Heuvel (2023).

At this purpose we use the Bayes’ rule: for the ith couple, we calculate the probability
to be in the kth class, denoted as qi,k, conditional on the observable data and the model
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parameters (the posterior mean in this case) as follows:

qi,k = P (Wi = k | ti, x1,i, x2,i, ai, di, ln (adi) ,moi) (6.2)

=

πk

[
2∏
j=1

f
(
ti | xj,i, dj,i, ai;αj , βj , γ∗j,k

) ]
N
(
ln (adi) ; ζ∗AD,k, σ

2
AD

)
Bernoulli

(
moi; ζ

∗
MO,k

)
K∑
h=1

πq

 2∏
j=1

f
(
ti | xj,i, dj,i, ai;αj , βj , γ∗j,h

)N
(
ln (adi) ; ζ∗AD,k, σ

2
AD

)
Bernoulli

(
moi; ζ

∗
MO,k

)
The ith couple is then hard-assigned to the kth class, wi = k if qi,k > qi,h for h 6=

k. The first four classes total 97% of the observations. Table 6.2 illustrates the key
features of Group 1-4, alongside the posterior mean of their class-specific parameters(
γ1,·, γ2,·, ζ

∗
AD,·, ζ

∗
MO,·

)
. The difference between % Composition in Table 6.2 and π is due

to the specific classification rule we use.

Table 6.2: Features of the four largest classes resulting from the application of the Bayes’
rule.

Group 1 Group 2 Group 3 Group 4 Train. sample

% Composition 53.7 24.8 13.7 4.9 −
Age male (mean) 66.28 65.0 64.35 64.67 65.57
Age female (mean) 60.27 64.64 67.12 64.66 62.64
Age Diff. (mean) 6.01 0.36 −2.77 0.01 2.93
Male older (in %) 99.8 64.9 24.6 52.0 77.25

γ∗1,· −0.91 −0.71 0.92 −3.60 −
γ∗2,· 1.81 1.67 1.21 1.79 −
ζ∗AD,· 1.68 0.13 1.19 −1.21 −
ζ∗MO,· 0.98 0.63 0.64 0.51 −

A first striking evidence is that these four classes have different features compared to
the whole training sample. This means that we can be able to identify groups of couples
which have distinctive features.

More than 50% of the couples compose Group 1, which is characterized by the largest
age difference among the four groups and the male is the oldest member of the couple
for almost all observations.

Group 2 and Group 4 appear to be more similar in terms of characteristics, while
characterized by a different value of their corresponding parameters, especially γ∗1,· and
ζ∗AD,·. Indeed, for Group 4, the men have a lower hazard function, since γ∗1,4 is con-
siderably lower than γ∗1,2. This may be indicative of the presence of further sources
of heterogeneity which increase males’ life expectancy, and which we were not able to
observe in this dataset.
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Group 3 instead, can be characterized as a subgroup of the training sample where the
females are predominantly older than men, and the latter are characterized by a higher
hazard function (as we can note from γ∗1,3) compared to the other three groups.

Comparison with other models

The results of the AVDPM approach are compared with those obtainable by assuming
a basic Gompertz (BG) hazard function, and with a proportional hazard model which
includes all covariates (PH), similarly to Deresa et al. (2022)4 which assume that:

µBG (t | xj,i;αj , βj) = exp (αj + βj (xj,i + t))

µPH (t | xj,i, adi,moi;αj , βj , δj,1, δj,2) = exp (αj + βj (xj,i + t) + δj,1 ln (adi) + δj,2moi)

with parameters estimated by using maximum likelihood. Therefore, under BG and PH
we assume that conditional on the individual age, and the two common covariates, then
the males and females lifetimes are independently distributed.

Figure 6.4 shows the log-hazard rates for individuals aged 60 onwards under the three
analysed models for both males and females. The log-hazard function for the PH model
is plotted at the value of AD=1 and MO=0. For the AVDPM the hazard function is
calculated at the value of the posterior mean of the parameters.

For the males, until age 90 all models show a similar fit in terms of slope and baseline.
This is because the effect of common covariates on the males is not statistically signif-
icant, as shown from the parameter estimates and the standard errors of δ1,1 and δ1,2

(see Table B.1 in Appendix B). The change in the slope of the log-hazard function of
the AVDPM approach after age 90 is a consequence of the use of random effects, widely
studied in the literature (see Lancaster (1979), Vaupel & Yashin (1985) and Wienke
(2014)). For the females, where we have a considerably lower number of deaths (thus a
higher degree of censoring), we note as expected a lower empirical log-death rates, which
are also more erratic. Despite the similar slope, there is some difference in the fitted
log-hazard rates owing the effect of the heterogeneity due to the common covariates.

We quantitatively compare the three models by using the Akaike Information Criteria
(Akaike (1974)) for the BG and PH model, and its generalization to a Bayesian frame-
work with latent variables, known as Widely Applicable Information Criteria (WAIC,
Watanabe (2009)). Their computation is detailed in Appendix C. AIC and WAIC are
computed for both the training sample and the held out part of the dataset (Table 6.3).
We chose the model which minimizes the value of these criteria.

4Compared to this paper, we consider the fact age increases over time, instead of being a fixed covariate,
and take the logarithm of the absolute value of the age difference. In our analysis this shows an
improvement in the value of the Akaike Information Criteria. The results are available upon request
to the author.
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Figure 6.4: Log-hazard functions at age 60-100 for males and females under the BG, PH
and AVDPM models.

Table 6.3: AIC and WAIC of the models (the lowest value is shown in bold).

(W)AIC BG PH AVDPM

In sample 10,872.10 10,866.14 10,857.68
Out of sample 3,788.19 3,788.11 3,762.97

The inclusion of the covariates within a proportional hazard model has the effect to
slightly improve the performance of the model compared to the base Gompertz hazard
function, as earlier discussed. The benefit of including covariates is very negligible when
looking at the out-of-sample performance of the PH model. Conversely, the AVDPM
approach shows a smaller value of the WAIC for both the training and test dataset.
Therefore, we conclude that the enhanced flexibility of AVDPM yields a better in sample
and out of sample fit for these data.

7. Actuarial illustration of AVDPM

Let Yx1,x2 (z) denote the present value of a cash flow of 1$ paid continuously to a couple
with characteristics z, where the male is aged x1 and the female x2, as long as both are
alive (joint status). Conversely, let Yx1,x2 (z) denote the present value of a 1$ cash flow
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paid continuously until the death of the last survivor of a similar couple.
Assuming a force of interest ι, we can obtain the annuity factor of these cash flows as

the expected value of Yx1,x2 (z) and Yx1,x2 (z) (Dickson et al. 2013):

ax1,x2 (z) = E [Yx1,x2 (z)] =

∫ ∞
0

exp (−ιt)Sx1,x2 (t | z) dt

ax1,x2 (z) = E [Yx1,x2 (z)] =

∫ ∞
0

exp (−ιt)Sx1,x2 (t | z) dt

Figure 7.1 shows the percentage difference between the value of the last survivor (LS)
annuity factor obtainable under the AVDPM model which accounts for dependence and
the PH model described in Section 6. The annuity factors are evaluated at different male
ages (60 and 70), different values of Z =(AD, MO) and two different forces of interest
ι = (0.01, 0.05). The same plots for the joint life annuity are shown in Appendix ??
(Figure ??).
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Figure 7.1: Percentage difference between the LS annuity factor under AVDPM and PH
for different values of age difference (x-axis) and MO when the oldest member
is aged 60 (top panel) and 70 (bottom panel), for ι = 1% (left panel) and
ι = 5% (right panel).

For an age difference of 0.5 we note how the last survivor annuity factor under the
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independence PH model is lower compared to the value obtainable under AVDPM. This
difference is largest for ι = 1%. This evidence is in contrast with earlier findings in the
literature which use copula models to account for lifetime dependence. Using a Frank
copula, Frees et al. (1996, Figure 3) shows how the price of a LS annuity is higher under
a model which assumes independent lifetimes, especially for couples where males and
females have a similar age. Similarly, Dufresne et al. (2018, Figure 5.2) observe that
the difference between independent and dependent lifetime (using a Clayton and a Joe
copula) in the last-survivor life expectancy is highest for an age difference around 0,
regardless the value of MO.

Then, we observe how the difference between the annuity factor under the PH and
AVDPM increases with the age difference. In particular, in case the female is older,
the independence assumption underlying the PH model tends to underprice the annuity,
while the opposite holds in case MO=1. These evidences are consistent with the findings
in Frees et al. (1996, Figure 4), and Deresa et al. (2022), where the latter analyse only
the case of a couple where a male and a female are aged 65 and 63 respectively.

The plots show that the lower the value of ι, the larger the percentage difference
between the annuity factors obtainable under the PH and the AVDPM models. A
similar evidence is observed for annuities starting at older ages.

For the joint life annuity we observe that when the male is aged 60 at contract in-
ception, and is the oldest member of the couple, then the annuity factor under the PH
model is lower compared to its AVDPM counterpart. This evidence is also observed by
Deresa et al. (2022), although they focus on the sole case of a 65 years old male with
MO=1 and AD=2.

Conversely, when the female is the oldest member, the JL annuity factor under the
AVDPM model is lower compared to the case we use the PH model. This is observed
under the two forces of interest hereby analysed and ages at contract start.

The effect of the force of interest on the percentage difference between annuity factors
is the same as for the last survivor annuity, while the older age at contract inception
increases the relative value of the annuity factor under independence compared to the
case where we use the AVDPM.

8. Extension of AVDPM to the analysis of the joint lifetimes of
non-exchangeable units

So far we have illustrated the method for the case of males-females couples. If we want
to allow for groups with a different number of exchangeable members, as can be the
case of collective insurance policies, we can extend the framework through a hierarchical
model with additional layers.

Suppose the ith group includes Ji members, with common set of variables zi, and
individual (within group) characteristics xj,i. A possible solution is to model the group-
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specific joint distribution of the lifetimes and Z as:

f (t1,i, . . . , tJi,i, zi;β,G) =

∫
Ωγ,η

Ji∏
j−1

f (tj,i | xj,i;β, γj,i) f (zi; ζi) dQ (γj,i; ηi) dG (ηi, ζi)

(8.1)

where Q denotes a suitable distribution function for γj,i, indexed by the group specific
parameter ηi. Again, Q can also be a random draw from a Dirichlet Process, although
we would opt for a simpler known parametric form for computational reasons and also
because we are indexing Q with a group-specific parameter ηi whose distribution is drawn
from a DP.

9. Conclusion

This paper contributes to the analysis of grouped dependent lifetime events by proposing
a joint model for the lifetimes which is augmented of the distribution of the group-
specific covariates. The inclusion of multivariate random effects captures the dependence
among the lifetimes, and between the lifetimes and group-specific covariates. The use
of Dirichlet Process Mixture models enhance the flexibility of the random effects and
of the standard parametric assumptions for the covariates. The resulting Augmented
Variable DPM (AVDPM) model has been implemented for the empirical analysis of
the mortality rates of the male and females members of a couple, which resulted in an
enhanced in-sample and out-of-sample fitting performance. We showed how the model
output can be used to infer additional information on the nature of the male-female
mortality dependence, and how this can affect the price of joint life and last survivor
annuities.

The only drawback of the AVDPM presented in this paper is the need of a full Bayesian
analysis, which may be computationally expensive. A simpler approach would be to
assume a fixed, known number of mixture components, and fit the model parameters
using maximum likelihood. The results of similar analysis in the field may be used at
this purpose.
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A. Data Augmentation MCMC sampler

Below, we outline the steps of the Data Augmentation MCMC scheme to sample the
parameters from the posterior distribution:

Step 0: Set an initial value for the parameters
(
α(0), β(0), γ∗(0), ζ

∗(0)
AD , ζ

∗(0)
MO , σ

2(0)
AD ,Σ

(0)
γ ,m

(0)
ζAD

, s
2(0)
ζAD

, φ(0), ψ(0)
)

;
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For ` = 1, . . . ,M :

Step 1: For each unit sample the mixture component w
(`)
i (W

(`)
i ∈ {1, . . . ,K}) from a

discrete distribution with probability:

P
(
W

(`)
i = k | ti, x1,i, x2,i, ai, di, ln (adi) ,moi

)
(A.1)

=

π
(`−1)
k

[
2∏
j=1

ḟ
(
ti | xj,i, dj,i, ai;α(`−1)

j , β
(`−1)
j , γ

∗(`−1)
j,k

)]
f
(
zi; ζ

∗(`−1)
k

)
K∑
q=1

π(`−1)
q

[
2∏
j=1

ḟ
(
ti | xj,i, dj,i, ai;α(`−1)

j , β
(`−1)
j , γ

∗(`−1)
j,q

)]
f
(
zi; ζ

∗(`−1)
k

) ,

where

f
(
zi; ζ

∗(`)
k

)
= N

(
ln (adi) ; ζ

∗(`)
AD,k, σ

2(`)
AD

)
Bernoulli

(
moi; ζ

∗(`)
MO,k

)
. (A.2)

Hence, s
(`)
i,k = 1 if w

(`)
i = k and 0 otherwise;

Step 2: Sample the stick-breaking weights ψ and update π:

Step 2.1: Sample ψ
(`)
k (k = 1, . . . ,K − 1, with ψK = 1):

ψ
(`)
k ∼ Beta

(
ψ

(`)
k ; 1 +

n∑
i=1

1[
W

(`)
i =k

], φ(`−1) +
n∑
i=1

1[
W

(`)
i >k

]
)

(A.3)

Step 2.2: Update πk:

π
(`)
k = ψ

(`)
k

∏
j<k

(
1− ψ(`)

j

)
(A.4)

Step 3: Sample exp
(
α

(`)
j

)
(j = 1, 2) from a conjugate Gamma posterior distribution

with shape

1 +
n∑
i=1

dj,i

and rate

1 +
n∑
i=1

exp

(
β

(`−1)
j xj,i + γ

∗(`−1)

j,w
(`)
i

) exp
(
β

(`−1)
j (ti + ai)

)
− exp

(
β

(`−1)
j ai

)
β

(`−1)
j

Step 4: Sample β
(`)
j (j = 1, 2) using the acceptance-rejection sampling method:
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Step 4.1: Sample β∗j from a Truncated Normal proposal distribution q with mean

β
(`−1)
j and variance σ

2(`−1)
p,j . The proposal distribution is truncated below

at the value of 10−5, since a negative value of βj would make the model
biologically implausible, and above at the value of 5, as its uniform prior.
The variance of the proposal distribution is iteratively updated using the
Robust Adaptive Metropolis (RAM) algorithm of Vihola (2012), described in
Step 4.4;

Step 4.2: Compute the ratio5

r′ =

n∏
i=1

ḟ

(
ti | xj,i, dj,i, ai;α(`)

j , β∗j , γ
∗(`−1)

j,w
(`)
i

)
n∏
i=1

ḟ

(
ti | xj,i, dj,i, ai;α(`)

j , β
(`−1)
j , γ

∗(`−1)

j,w
(`)
i

) · q10−5,5

(
β

(`−1)
j ; β∗j , σ

2(`−1)
p,j

)
q10−5,5

(
β∗j ; β

(`−1)
j , σ

2(`−1)
p,j

)
(A.5)

where q10−5,5 (a; b, c) denotes the density of the proposal distribution at the
value of a, with mean b and variance equal to c;

Step 4.3: Set:

β
(`)
j =

{
β∗j w.p. min (r′, 1)

β
(`−1)
j w.p. 1−min (r′, 1)

(A.6)

Step 4.4: Update the standard deviation of the proposal distribution σp,j :

σ
(`)
p,j = σ

(`−1)
p,j

√
1 + `−0.6 (min (r′, 1)− 0.234) (A.7)

The parameter 0.6 is chosen in accordance to the recommendation in Vihola (2012),
who suggests a value between 0.5 and 1, while 0.234 is the desired acceptance
probability, chosen following Roberts et al. (1997);

Step 5: Sample γ∗ using the acceptance-rejection sampling method6:

Step 5.1: For k = 1, . . . ,K sample γ′k =
(
γ′1,k, γ

′
2,k

)T
from a bivariate Normal proposal

distribution q with mean γ
∗(`−1)
k =

(
γ
∗(`−1)
1,k , γ

∗(`−1)
2,k

)T
and variance-covariance

matrix Σ
(`−1)
p,k (the superscript T denotes the transpose):

Step 5.1.1 Sample h(`) ∼ MVN
(
h(`); 02, I2

)
, where 02 is a column vector of zeros,

and I2 denotes the 2× 2 identity matrix;

5To ease computations we first use logarithms and then we take the exponential of the result. We do
the same in Step 5.2.

6Individually, the elements of γ∗ can be sampled in closed form using a conjugate Gamma distribution
for exp

(
γ∗j,k

)
. However, in order to induce a dependence between γ∗1,k and γ∗2,k, we opted for a

bivariate Normal prior, as from the specification in Section 5.1.
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Step 5.1.2 Set γ′k = γ
∗(`−1)
k + L

(`−1)
k h(`),

where L(`−1)
k is the lower triangular matrix denoting the Cholesky decomposition

of Σp,k = LkLT
k . The variance-covariance matrix of the proposal distribution is

again updated using the RAM algorithm described in Step 5.4 for its multivariate
version;

Step 5.2: Compute the ratio:

r′′ =

∏
{i:w(`)

i =k}

2∏
j=1

ḟ
(
ti | xj,i, dj,i, ai;α(`)

j , β
(`)
j , γ′j,k

)
∏

{i:w(`)
i =k}

2∏
j=1

ḟ
(
ti | xj,i, dj,i, ai;α(`)

j , β
(`)
j , γ

∗(`−1)
j,k

) · q
(
γ
′
k; γ

∗(`−1)
k ,Σ

(`−1)
p,k

)
q
(
γ
∗(`−1)
k ; γ

′
k,Σ

(`−1)
p,k

)
(A.8)

Step 5.3: Set:

(
γ
∗(`)
1,k , γ

∗(`)
2,k

)
=


(
γ′1,k, γ

′
2,k

)
w.p. min (r′′, 1)(

γ
∗(`−1)
1,k , γ

∗(`−1)
2,k

)
w.p. 1−min (r′′, 1)

(A.9)

Step 5.4: Update the lower triangular Cholesky factor of Σp,k:

Step 5.4.1: Compute Σ
(`)
p,k:

Σ
(`)
p,k = L

(`−1)
k

(
I2 + `−0.6

(
min

(
r′′, 1

)
− 0.234

) h(`)h(`)T

||h(`)||2

)
L

(`−1)T
k (A.10)

where ||h|| denotes the Euclidean norm of h;

Step 5.4.2: Compute L
(`)
k as the Cholesky factor of Σ

(`)
p,k;

Step 6: Sample Σγ from the conjugate posterior which is the Inv-Wishart distribution
with degrees of freedom Λ1 and scale matrix Λ2:

Σ(`)
γ ∼ Inv-Wishart

(
Σ(`)
γ ; Λ

(`)
1 ,Λ

(`)
2

)
(A.11)

where

Λ
(`)
1 = 7 +

K∑
k=1

1[
n
(`)
k >0

] (A.12)

Λ
(`)
2 = 7× 0.001

[
1 0.5

0.5 1

]
+

K∑
k=1

1[
n
(`)
k >0

]γ∗(`)k γ
∗(`)T
k

where n
(`)
k =

n∑
i=1

s
(`)
i,k =

n∑
i=1

1[
w

(`)
i =k

];
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Step 7: Sample ζ
∗(`)
AD,k (k = 1, . . . ,K) from a conjugate N

(
ζ
∗(`)
AD,k; Λ

(`)
3,k,Λ

(`)
4,k

)
distribution,

where:

Λ
(`)
3,k = Λ

(`)
4


∑

{i:w(`)
i =k}

ln (adi)

σ
2(`−1)
AD

+
m

(`−1)
ζAD

s
2(`−1)
ζAD


Λ

(`)
4,k =

 n
(`)
k

σ
2(`−1)
AD

+
1

s
2(`−1)
ζAD

−1

Step 8: Sample ζ
∗(`)
MO,k (k = 1, . . . ,K) from a conjugate Beta

(
ζ
∗(`)
MO,k; Λ

(`)
5,k,Λ

(`)
6,k

)
distri-

bution, where:

Λ
(`)
5,k = 3 +

∑
{i:w(`)

i =k}

moi

Λ
(`)
6,k = 1 +

∑
{i:w(`)

i =k}

(1−moi)

Step 9: Sample m
(`)
ζAD

from a conjugate N
(
m
∗(`)
ζAD

; Λ
(`)
7 ,Λ

(`)
8

)
distribution, where:

Λ
(`)
7 = Λ

(`)
8

∑
{k:n

(`)
k >0}

ζ
∗(`)
AD,k

s
2(`−1)
ζAD

Λ
(`)
8 =

1 +

K∑
k=1

1[
n
(`)
k >0

]
s

2(`−1)
ζAD


−1

Step 10: Sample σ
2(`)
AD from a conjugate Inv-Gamma

(
σ

2(`)
AD ; Λ

(`)
9 ,Λ

(`)
10

)
distribution where

Λ
(`)
9 = 1 + 0.5n

Λ
(`)
10 = 1 +

n∑
i=1

(
ln (adi)− ζ∗(`)

AD,w
(`)
i

)2
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Step 11: Sample s
2(`)
ζAD from a conjugate Inv-Gamma

(
s

2(`)
ζAD; Λ

(`)
11 ,Λ

(`)
12

)
distribution where

Λ
(`)
11 = 2 + 0.5

K∑
k=1

1[
n
(`)
k >0

]
Λ

(`)
12 = 2 +

∑
{k:n

(`)
k >0}

(
ζ
∗(`)
AD,k −m

(`)
ζAD

)2

Step 12: Sample φ by following the steps outlined in Escobar & West (1995):

Step 12.1: Sample ε ∼ Beta
(
ε;φ(`−1) + 1, n

)
;

Step 12.2: Sample B ∼ Bernoulli (B;πε), where

πε =

K∑
k=1

1[
n
(`)
k >0

]

n (1− ln ε) +
K∑
k=1

1[
n
(`)
k >0

]
(A.13)

Step 12.3: Sample φ:

φ(`) ∼1[B=1]Gamma

(
φ(`); 1 +

K∑
k=1

1[
n
(`)
k >0

], 1− ln ε

)
(A.14)

+ 1[B=0]Gamma

(
φ(`);

K∑
k=1

1[
n
(`)
k >0

], 1− ln ε

)

B. Results of the competing models

Table B.1: Parameter estimates and corresponding standard errors of the Base Gompertz
and Proportional hazard models.

Base Gompertz Proportional hazard

Parameter Estimate St. err. Estimate St. err.

α1 −9.85 0.40 −9.88 0.40
β1 0.0848 0.0054 0.0845 0.0054
δ1,1 − − −0.0101 0.0303
δ1,2 − − 0.0771 0.0912
α2 −13.53 0.64 −14.09 0.40
β2 0.1226 0.0086 0.1279 0.0054
δ2,1 − − −0.0570 0.0501
δ2,2 − − 0.2915 0.1411
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C. Computation of AIC and WAIC

Let θ̂ denote the set of the parameter estimates using maximum likelihood for BG and
PH, and θ(`) the retained `th draw from the posterior distribution of the parameters of
the AVDPM approach7. AIC and WAIC are calculated as follows:

AIC = −2 lnL
(
θ̂ | t,x,a,d,ad,mo

)
+ 2r

WAIC = −2
n∑
i=1

ln

(
1

H

H∑
`=1

f
(
ti | x1,i, x2,i, adi,moi, ai, di; θ

(`)
))

+ 2pWAIC

pWAIC = 2

n∑
i=1

[
ln

(
1

H

H∑
`=1

f
(
ti | x1,i, x2,i, adi,moi, ai, di; θ

(`)
))

− 1

H

H∑
`=1

ln f
(
ti | x1,i, x2,i, adi,moi, ai, di; θ

(`)
)]

where L
(
θ̂ | t,x,a,d,ad,mo

)
is the likelihood function of the parameters given the

data, r denotes the number of parameters of the model under analysis, H the number
of draws from the posterior distribution, and

f
(
ti | x1,i, x2,i, adi,moi, ai, di; θ

(`)
)

(C.1)

=

K∑
k=1

π
(`)
k

[
2∏
j=1

ḟ
(
ti | xj,i, dj,i, ai;α(`)

j , β
(`)
j , γ

∗(`)
j,k

)]
f
(
zi; ζ

∗(`)
k

)
K∑
k=1

π
(`)
k f

(
zi; ζ

∗(`)
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)
In this equation we marginalized the joint distribution of the time to event with respect
to the common covariates AD and MO, in order to make the three models comparable
among them.
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1 Data cleaning operations

The data preparation steps are listed below:

1. Eliminate same-gender couples, as in Frees et al. (1996) and Deresa et al. (2022);

2. Eliminate records of people unlikely to be couples, such as those including a mem-
ber with an age lower than 10. This may be an error in the data;

3. Check of records of people alive at the beginning of the observation period;

4. Elimination of duplicated records.
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2 Joint life annuity factor
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Figure 2.1: Percentage difference between the JL annuity factor under AVDPM and PH
for different values of age difference (x-axis) and MO when the oldest member
is aged 60 (top panel) and 70 (bottom panel), for ι = 1% (left panel) and
ι = 5% (right panel).
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