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Abstract

Mortality risk sharing pools such as pooled annuity funds and tontines provide an attractive
and effective solution for managing longevity risk. They have been widely studied in the liter-
ature. However, such arrangements are not optimal for individuals in need of long-term care
(LTC) insurance. Enhancing the design of pooled annuities and tontines factoring in LTC can
aid in reducing the cost of LTC insurance. This paper presents a matrix-based approach for
pooling mortality risk across heterogeneous individuals classified by functional disability states
and chronic illness statuses. Based on multi-state models of functional disability and health
statuses, we demonstrate how individuals with different health risks can share mortality risk
in a pooled annuity design. A multi-state pool is formed by pooling annuitants vulnerable to
longevity and LTC risks, determining the associated actuarially fair benefits based on individu-
als’ health states. We provide a general structure for setting up a pooled annuity product that
can be applied even for complex multi-state models. An extensive analysis is also carried out to
illustrate our approach with numerical examples using US Health and Retirement Study (HRS)
data. From the numerical illustrations, there is an increasing trend in the expected annuity
benefits with higher upsides for individuals in poor health than those in good health, especially
when systematic trends and uncertainty are considered in pricing. Smaller pool sizes and higher
mortality credits among ill and disabled individuals due to higher death probabilities are the
two main factors for the increased benefits in dependency.

Keywords: long-term care insurance, pooled annuity, multi-state models, functional disability, health
status.

1 Introduction

Long-term care (LTC) risks and costs, along with longevity risk and its financing, have become an increasing
concern in many countries in recent years. Longer life expectancies and low fertility rates have resulted in an
ageing society with older adults who live longer, unhealthy lives and have a higher prevalence of disabilities
as they age. Many OECD countries allocate a substantial share of the economy to LTC services and support.
LTC expenditures in the United States account for 8.5% of total health expenditures ($135 billion in 2004)
and about 1.2% of GDP, which has increased to 1.5% in 2018. The corresponding values in Australia and
the Netherlands are 1.2% and 3.5% of GDP, respectively, as of 2018 (see Congressional Budget Office (2004),
OECD (2020) and The Royal Commission Report (2020)).

Despite the substantial public costs, most of these expenditures are uninsured in many countries, mainly
due to declining levels of informal care provided by families, insufficient public financing programs and a
small private market (Brown and Finkelstein, 2007; Colombo et al., 2011). In the United States, only 4% of
long-term care expenditure is covered by private insurance, with the remaining one-third paid out of pocket
(Brown and Finkelstein, 2007). As societies age, there is increasing pressure to ensure the availability and
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affordability of long-term care (LTC) services for all those in need. This increases the demand for affordable,
innovative private LTC insurance products required to meet the rising demand.

Several products have been proposed in literature to help develop the private LTC insurance market. LTC
insurance policies are classified into four types according to Haberman and Pitacco (1999), Leung (2006) and
Shao et al. (2017): fixed benefit policies sold to healthy individuals, fixed benefit policies sold to the elderly
entering or already staying in LTC facilities, indemnity-based benefit policies, and policies that allow the
insured to choose between fixed benefit and LTC service. The fixed benefit policy is the most common and
widely used type of private LTC insurance. Fixed benefit LTC insurance can be purchased as a stand-alone
policy or as a rider benefit in whole life insurance or life care annuities (Haberman and Pitacco, 1999).

A stand-alone policy pays out the predetermined benefit when the insured becomes functionally disabled.
Some LTC insurance can also be combined with annuities, usually referred to as life care annuities (Murtaugh
et al., 2001; Warshawsky, 2007; Brown and Warshawsky, 2013). A life care annuity reduces the adverse
selection problem by pooling annuitants vulnerable to both longevity and LTC risks (Murtaugh et al.,
2001). The risk pooling of the life care annuity provides a natural hedge and reduces insurance premiums
(Murtaugh et al., 2001; Brown and Warshawsky, 2013). Specifically, for products with risk pooling, recent
contributions in Hieber and Lucas (2022) and Chen et al. (2022) focusing on life-care or care-dependent
tontines explain how pooling heterogeneous risks can be effective. Their analyses have shown that annuity
payments improve due to additional mortality credits, especially for those in poorer health states.

In this paper, we consider risk pooling products, particularly a pooled annuity design or group self–
annuitization structure proposed in Piggott et al. (2005). Mutual insurance plans such as pooled annuities
have the potential to improve the annuity benefits through mortality and morbidity credits and have been
shown to reduce the risk of adverse selection (Piggott et al., 2005; Valdez et al., 2006; Donnelly et al., 2013,
2014; Stamos, 2008; Qiao and Sherris, 2013; Hieber and Lucas, 2022; Chen et al., 2022). Our framework
expands on the group self-annuitization structure introduced in Piggott et al. (2005) for sharing mortality
risk to integrate sharing of functional disability and other health risks, such as chronic illnesses, in providing
the LTC insurance.

Despite the extensive literature on pooling heterogeneous annuitants and evidence that it reduces adverse
selection costs, the practical implications of mortality risk pooling have not been fully explored. Several
studies including Sherris and Wei (2021) and Brown and Warshawsky (2013) demonstrate that mortality
rates differ within functional disability states and according to chronic illness statuses, necessitating the
need to pool different risks. However, most studies do not consider mortality risk sharing allowing for
heterogeneous individuals, specifically individuals classified according to their functional disability states
and chronic illness statuses to share mortality and morbidity risks. Also, the existing mortality sharing
arrangements do not incorporate systematic trends and uncertainty in these risks. For instance, recent
studies Hieber and Lucas (2022) and (Chen et al., 2022) assume no systematic risks affect pool members.
Furthermore, their disability models tend to ignore recovery probability which is not negligible. The findings
of Sherris and Wei (2021) motivate us to investigate the impact of pooling mortality, disability and health
risks in a pooled annuity design.

Against this background, we present a framework for setting multi-state pools for heterogeneous individuals.
A multi-state pool is formed by pooling individuals with different health risks and hence mortality risks
and calculating annuity benefits for individuals in different states. We use a multi-state model to classify
individuals according to their functional disability states and health statuses. We consider a three-state
functional disability model and a five-state functional disability and health status model to classify individu-
als according to functional disability status only and functional disability and health status, respectively and
examine the impact of this classification on pooled annuity payments. These models have been studied in
Fu et al. (2021) and Sherris and Wei (2021), respectively, to simulate transition rates for calculating healthy
(life) expectancy for the elderly.

This paper devises a framework on how heterogeneous individuals would share mortality risk in an actuarial
fairly manner and how this impacts the annuity benefits depending on the individual’s health status. The
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transition rates between different states are assumed to follow a multi-state latent factor intensity model
proposed in Li et al. (2017), which includes systematic trends and uncertainties. This approach has been
proposed, estimated, and applied in multi-state modelling in Fu et al. (2021) and Sherris and Wei (2021).
As most sharing arrangements ignore the time trends and systematic uncertainties in functional disability
and health dynamics, including the latent process with trend enables us to quantify the risk associated with
future disability, chronic illness, and mortality rates and their impact on the pooled annuity benefits.

In estimating the transition rates, we consider a static or no-frailty model, a trend or no-frailty with a linear
time trend model, and a frailty model to emphasize the importance of pooling different risks in the presence
of systematic trends and uncertainties. For computing fund values and (discounted) pooled annuity payouts,
we use a matrix-oriented technique recently proposed in Bladt et al. (2020) to derive Thiele-type theorems
for calculating premiums and reserves in Markov chain models of life insurance.

We make two contributions to the literature. First, we present a theoretical framework for sharing mortality
risk across multiple states, an arrangement we refer to as multi-state pooling. We use a matrix approach that
provides a general structure for setting up a pooled annuity product, even for complex multi-state models.
In previous studies such as Piggott et al. (2005) and Qiao and Sherris (2013), mortality risk pooling is based
on the two-state (alive-dead) framework. We therefore extend the existing sharing arrangements to multiple
states. Second, as a practical contribution, we propose a pooled health care annuity; a product which
combines pooled life annuity and LTC insurance. Depending on an individual’s health status or functional
disability condition, the pooled health care annuity product adds to the need for long-term care coverage for
an ageing population. It is more appealing to people with poor health and disabilities than a standard pooled
annuity product, reducing adverse selection problems (Valdez et al., 2006). In addition, our design extends
to the five-state framework rather than just a three-state model (as proposed in recent studies Hieber and
Lucas (2022) and Chen et al. (2022), and includes time trends and systematic uncertainty. Pooling is made
more effective when we allow for uncertainties with systematic improvements in mortality and morbidity
rates (see discussions in Qiao and Sherris (2013) and Chen et al. (2020) for systematic mortality risk models
applied to tontines and pooled annuities).

Results show an increasing trend in the expected annuity benefits with higher upsides for individuals in poor
health (disabled and/or ill participants), especially when systematic trends and uncertainty are factored
in pricing. Participants with functional disabilities and in ill states receive increased benefits due to the
group’s smaller pool size over long periods and higher mortality credit as a result of higher death probabilities.
Ignoring systematic trends and uncertainty in pricing reduces both groups’ annuity benefits at older, and the
impact is much more significant for participants in good health due to the systematic nature of mortality risk
among healthy participants. In addition, healthy participants always receive slightly below initial specified
benefits even when considering the trends and uncertainty in the annuity factors, as they receive lower
mortality and morbidity credits compared to other groups. Changes in pool size are another main factor
affecting the pooled annuity benefits, where the variation in the benefit payments at future ages is very wide
for smaller pool sizes.

The rest of this paper is organized as follows. Section 2 presents the modelling framework for multi-state
pools, describing analytics of mortality risk pooling across multiple health states, the derivations of the
annuity payouts based on the individual health status and the multi-state models’ estimation procedures.
Section 3 presents and discusses the main results using two multi-state models, a three-state functional
disability model and a five-state functional disability and health status model, compared with the standard
life care annuity. Concluding remarks are presented in Section 4. Appendix A presents the proof of the
general framework.

2 Multi-state Pooling Framework
This section demonstrates how different risks can be shared in a pooled annuity design. We start with
the two-state model, a simple multi-state framework where individuals share only mortality risk. We then
derive a generalized framework that may be used for any multi-state model. The analysis shows how the
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proposed framework works for three and five-state models. The three-state model represents the functional
disability model, illustrating how mortality and functional disability risks can be shared in a pooled annuity
design. The five-state model, on the other hand, represents the functional disability and health status model
to describe how individuals can share mortality, functional disability and chronic illness risks in a similar
context. We focus on presenting the structure of actuarially fair pooled annuity benefits and deriving the
annuity payouts from a multi-state process.

2.1 A two-state model pooling structure

A pooling arrangement in the two-state framework, such as the alive-dead model, is similar to the standard
pooled annuity plan, where individuals share both systematic and idiosyncratic mortality risks. This struc-
ture is also considered in Piggott et al. (2005), but not in a multi-state context. We focus on deriving the
pooled annuity payouts from a multi-state process.

Figure 1 illustrates the two-state alive-dead model. An individual is in one of two states at given time t:
alive (A) or dead (D), and can only make one transition from State A to D. We adopt a discrete-time setting
with each interval being of one-year length. Annuity benefits are paid while the individual is alive and
cease when the individual dies. The payouts are adjusted annually based on the pool’s realized mortality
experience and investment performance.

A D

Figure 1: A two-state alive-dead model.

We first define two types of one year transition probabilities related to an active pool participant aged x:

• px: the probability that a person aged x will survive to age x+ 1;

• qx: the probability that a person aged x will die before reaching age x+ 1.

Following the pioneering design in Piggott et al. (2005), at initial time, a pool consisting of l∗x retirees aged
x decides on the amount they expect to receive periodically in the future, B0. This forms an initial total
fund value defined as

F0 = B0l
∗
xäx, (2.1)

where F0 is the pool fund value at time 0 and äx is the expected present value of a life annuity-due that
pays 1 at the start of each period for an individual aged x calculated as

äx =

ω−x∑
t=0

υt
tpx, (2.2)

with υ = 1
1+r

as the annual discount factor, r represents the expected interest rate assumed for pricing, ω
is the maximum possible age and tpx is the probability that a person aged x will reach age x+ t.

Assuming there are no new entrants in the next period, at time 1, the entire group’s fund value after interest
earnings becomes

F1 = l∗x+1

(
(p∗x)

−1 ((F0 −B0l
∗
x)/l

∗
x)× (1 +R1)

)
, (2.3)

where R1 is the deterministic financial return earned between the first interval, l∗x+1 is the actual number of

participants in time 1 and p∗x =
l∗x+1

l∗x
is the actual survival probability in time 1. During the first interval,

the individual’s account value accrues to an amount of ((F0 −B0l
∗
x)/l

∗
x)× (1 + R1)). This amount belongs

to the actual number of survivors in time 1, l∗x+1, and is distributed using the actual survivor probability.
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If, for example, l∗x+1 = l∗x, then (p∗x)
−1 = 1. The fund value for all participants in time 0 will be equal to

that of all participants in time 1. In case of death of a participant, (p∗x)
−1 > 1, implying that the deceased

participant’s account value is lost and distributed to survivors in time 1 who will receive increased annuity
payouts due to mortality credits.

The mortality credits on the individual’s fund value can be represented as follows, first denote Fk,1 as the
individual’s fund value in time 1 defined from Equation (2.3) as,

Fk,1 =
F1

l∗x+1

= (p∗x)
−1 ((F0 −B0l

∗
x)/l

∗
x)× (1 +R1), (2.4)

Equation (2.4) can also be written as

Fk,1 = (p∗x)
−1Fk,0 × (1 +R1), (2.5)

where Fk,0 is the individual’s fund value in time 0.

In terms of survival probabilities, we define (p∗x)
−1 =

l∗x
l∗x+1

, then θ1 =
l∗x−l∗x+1

l∗x+1
as mortality credits in time 1,

so that
l∗x

l∗x+1
= 1 + θ1. Therefore, Equation (2.5) can be written as

Fk,1 = Fk,0 × (1 +R1)(1 + θ1), (2.6)

where θ1 is the mortality credits in time 1 and R1 represents financial credits in time 1.

The pooled annuity payout at time 1 becomes

B1 =
F1

l∗x+1äx+1
, (2.7)

where äx+1 is the annuity factor at time 1.

Also by replacing F1 in Equation (2.7) with Equation (2.3) and äx+1 = (äx − 1)(1 + r)/px, Equation (2.7)
can be written as follows

B1 = B0 ×
(
1 +R1

1 + r

)
×

(
px
p∗x

)
. (2.8)

A recursive relationship between time t and t+1 for the dynamics of the fund value and the pooled annuity
payouts is presented as follows

Ft+1 = l∗x+t+1

(
(p∗x+t)

−1 ((Ft −Btl
∗
x+t)/l

∗
x+t)× (1 +Rt)

)
, (2.9)

and

Bt+1 = Bt ×
(
1 +Rt

1 + r

)
×

(
px+t

p∗x+t

)
, (2.10)

where 1+Rt
1+r

is an interest rate adjustment factor and
px+t

p∗x+t
is a mortality experience adjustment factor from

period t to t+1. Equation (2.10) is similar to the one derived in Piggott et al. (2005) for group self-annuity
payouts. The critical aspect in the calculations shown above is that members who survive to time t + 1
benefit from those who died at time t, leaving them with significantly larger benefit payments (mortality
credits). The mortality credits arise as members of the group die, and their fund value is divided among
the survivors. The actual survival probability at time t, p∗x+t in Equation (2.9) is used to distribute the
mortality credits to the remaining pool participants. The next section presents a general framework for
pooling mortality and health risks.
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2.2 The general pooling framework

Assume that at any given time t, an individual is in any of the health states denoted by i. The individual’s
states are described by a multi-state model with i = 1, 2, 3, . . . , n, n+1 states where n+1 is death (absorbing)
state. There are li

∗
x individuals aged x in State i at the start of the period; annuity payments in that state

Bi
t begin at the start of the period and continue until the maximum age ω or death, with transitions at the

end of the period. We assume that there are no death benefit payments.

In the two-state model, annuitants receive the benefits in one state. Accordingly, for n + 1-state model,
the annuitants receive benefits in n states. The annuity factors are calculated using an n × n matrix of
the expected one period transition probabilities. Let Px+t be an n× n matrix of the estimated one period
transition probabilities pijx+t for a person aged x+t at time t, where pijx+t is the expected one period transition
probability from State i to State j for an individual aged x+ t at time t. The matrix Px+t is defined as

Px+t =


p11x+t p12x+t . . . p1nx+t

p21x+t p22x+t . . . p2nx+t

...
...

...
pn1
x+t pn2

x+t . . . pnn
x+t

 , (2.11)

where x+ t represents individual’s age at time t, for t = 0, 1, 2, . . . T − 1, with T being the maximum period
to receive the annuity benefits.

Also, let Ax+t be an n× n matrix of the annuity values represented as follows,

Ax+t =


a11x+t a12x+t . . . a1nx+t

a21x+t ä22x+t . . . a2nx+t

...
...

...
an1
x+t an2

x+t . . . ann
x+t

 . (2.12)

We denote Ax+t as a matrix whose elements aijx+t =
∑ω−(x+t)

y=0 υy
yp

ij
x+t represent the expected present value

of an annuity-due that pays a periodic payment of 1 at the beginning of the period for an individual aged
x+ t in State ij alive at time t. Here, υ = ( 1

1+r
) is the discount factor and yp

ij
x+t is the expected transition

probability from State i at age x + t to State j at age x + t + y. The annuity value aijx+t is obtained from
one year transition probabilities matrices determined by a backward recursion formula as follows

Ax+t = I+ υPx+tAx+t+1, (2.13)

where I is an identity matrix of size n.

Similar to the GSA structure introduced in Piggott et al. (2005), the pool fund value at time t is defined by
a matrix Ft which can be determined as

Ft = Lx+t ⊗ (Ax+tBt), (2.14)

where Ft =


F 1
t

F 2
t

...
Fn
t

 is an n × 1 matrix of the pool fund value F i
t for individuals in State i, Lx+t =


l1

∗
x+t

l2
∗

x+t

...

ln
∗

x+t
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is an n × 1 column vector of the actual number of participants in State i li
∗
x+t and Bt =


B1

t

B2
t

...
Bn

t

 is an n × 1

column vector of the annuity benefits Bi
t for individuals in State i, for i = 1, 2, . . . , n at any time t. In

Equation (2.14), ⊗ is the Hadamard product for multiplying each row of the column matrix Lx+t to each
row of the matrix Ax+tBt, to compute the corresponding fund values for participants in State i.

We develop a general recursive formula between time t and t+1 for the dynamics of the fund value and the
pooled annuity payouts presented for an n + 1-state model. The following recursive relationship describes
the dynamics of the pool fund value for the next period

Ft+1 = Lx+t+1 ⊗
(
(P∗

x+t)
−1

(
Ft − Lx+t ⊗Bt

Lx+t

)
(1 +Rt)

)
, (2.15)

where

Lx+t+1 =


l1

∗
x+t+1

l2
∗

x+t+1

...

ln
∗

x+t+1

 (2.16)

is an n × 1 matrix of the observed number of participants in State i over a one period li
∗
x+t+1, and P∗

x+t is

an n× n matrix of the observed one period transition probabilities pij
∗

x+t.

The pooled annuity benefits in the next period are determined by

Ft+1 = Lx+t+1 ⊗ (Ax+t+1Bt+1). (2.17)

Based on Equation (2.15), the matrix (P∗
x+t)

−1 is multiplied to the individual’s fund value after the interest
earnings to determine the fund value required to provide the annuity benefits as the individual moves to
different states. The pool fund value is then computed by element-wise multiplication of the individual’s
fund value in State i and the corresponding number of participants in that state. Hence, the first element-
wise product determines the different pool fund values for individuals in various states, and the second
element-wise product determines the benefits distributed for individuals in State i.

The actual number of participants in State i for the next period li
∗
x+t+1, is calculated using the following

relationship

li
∗
x+t+1 = li

∗
x+t −

n∑
j=1
j ̸=i

lij
∗

x+t+1 − lid
∗

x+t+1 +

n∑
j=1
j ̸=i

lji
∗

x+t+1, (2.18)

where li
∗
x+t is the realized number of participants in State i alive at time t, lij

∗

x+t+1 is the realized number

of participants alive transitioning out of State i to State j over one period, lid
∗

x+t+1 is the actual number of

deceased participants in one period, and lji
∗

x+t+1 is the number of participants alive transitioning into State
i from State j over the period. Individuals in a pool have both idiosyncratic and systematic risks (Piggott
et al., 2005). To incorporate idiosyncratic risk in numerical examples in Subsection 3.1, the actual number
of individuals transitioning to and from State i between time t and t+1 is generated as a random draw from
a Multinomial distribution as follows

lij
∗

x+t+1 ∼ Multi (li
∗
x+t, p

i
x+t), (2.19)
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where pix+t is the estimated one year transition probability for individuals in State i.

Based on Equation (2.18), we can then determine pij
∗

x+t =
l
ij∗
x+t+1

li
∗

x+t

as the realized one period transition

probability for an individuals aged x+ t at time t, hence P∗
x+t is an n× n matrix of the realized one period

transition probabilities pij
∗

x+t defined as

P∗
x+t =


p11

∗
x+t p12

∗
x+t . . . p1n

∗
x+t+1

p21
∗

x+t p22
∗

x+t . . . p2n
∗

x+t+1

...
...

...

pn1∗
x+t pn2∗

x+t . . . pnn∗
x+t

 . (2.20)

If it happens that the realized investment earning rate Rt is the same as the expected rate r and the realized
mortality as well as morbidity experience is the same as the expected experience that is P∗

x+t = Px+t, then
Bt+1 = Bt. This implies that if financial and biometric risks behave as expected, the benefits will remain
unchanged. A proof of this result is shown in Appendix A.

2.3 A three-state model pooling structure

Figure 2 illustrates the three-state health transition model commonly used to describe the state of an
individual insured under a disability income policy. There are three states namely: Healthy (H), Functionally
disabled (F), and Dead (D), with the following feasible transitions H → F , F → H, H → D and F → D.
Under this framework, it is possible to transfer from State F to H, that is, to recover from disability.

H F

D

Figure 2: A three-state functional disability model allowing for recovery.

We define the following one year transition probabilities for an individual aged x:

• phhx : the probability that a healthy person aged x will remain healthy at age x+ 1;

• phfx : the probability that a healthy person aged x will become functionally disabled at age x+ 1;

• phdx : the probability that a healthy person aged x will die before reaching age x+ 1;

• pffx : the probability that a functionally disabled person aged x will remain functionally disabled at
age x+ 1;

• pfhx : the probability that a functionally disabled person aged x will recover from disability at age x+1;

• pfdx : the probability that a functionally disabled person aged x will die before reaching age x+ 1.

We focus on LTC insurance which provides a pool participant with financial support, in particular, enhanced
annuity benefits while they need nursing and medical care due to chronic or ongoing conditions such as
functional disability. The annuity payouts for the LTC contracts are characterized by uplifts to basic life
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annuity benefits (Pitacco, 2014). The life care annuity versions in Murtaugh et al. (2001), Warshawsky
(2007), Brown and Warshawsky (2013), Pitacco (2013) and Pla-Porcel et al. (2017) are typical examples
for such products. The benefits are payable while the insured is healthy as a life annuity or functionally
disabled as an LTC claim. The insurer takes all mortality and morbidity risks.

We propose a life care annuity embedded in a pooled annuity fund where all participants bear the risks
by following a standard life care annuity design presented in Brown and Warshawsky (2013). As shown in
Figure 2, the individual is in one of the three states at any given time. The annuity benefits are payable in
two states: H and F .

Assume the standard life care annuity which pays Bh
0 at the beginning of each period as long as the individual

is healthy and Bf
0 = (1+c)×Bh

0 when the individual becomes functionally disabled. Here, c > 1 is defined as
a constant reflecting higher payoffs in dependency. The life care product comprises the life annuity benefits
Bh

0 supplemented with c × Bh
0 as an LTC cover specified at time 0 to provide a higher payoff in the event

of a participant becoming functionally disabled. Since it is possible to recover from functional disability, if
the individual becomes healthy after being functionally disabled, the annuity benefits are reduced from Bf

0

to Bh
0 . The predefined benefit amounts are constant over the insured lifetime.

However, in a pooled annuity design, the annuity benefits for both healthy and functionally disabled partic-
ipants are not fixed in the future. Instead, they are updated based on the realized mortality and morbidity
experience. We refer to a life care product in a pooled annuity design, a pooled health care annuity. The
proposed product aims to provide, on average, the same payout as the standard life care annuity described
above.

Assume at the start, there are lh
∗

x healthy and lf
∗

x functionally disabled pool participants aged x. This
assumption is critical for our modelling framework since we focus on pooling mortality risk across heteroge-
neous individuals; thus, each pool must have at least one participant in the beginning. Similar assumptions
were considered in Chen et al. (2022) for care-dependent tontines.

At time 0, two sets of annuity benefits can be expressed in a matrix form as follows:

B0 =

Bh
0

Bf
0

 =

 Bh
0

(1 + c)×Bh
0

 , (2.21)

where B0 is a vector of annuity benefits Bh
0 and Bf

0 , representing the payout to a healthy and functionally
disabled pool participant, respectively at time 0.

For the three-state health transition model, the expected one year transition probabilities of a healthy and
functionally disabled person at time 0 can be presented with the following matrix

Px =

phhx phfx

pfhx pffx

 . (2.22)

Also, the matrix of the corresponding actuarial values for individuals in different state is

Ax =

ahhx ahfx

afhx affx

 , (2.23)

where the actuarial values ahhx =
∑ω−x

0 υt
tp

hh
x , ahfx =

∑ω−x
0 υt

tp
hf
x , affx =

∑ω−x
0 υt

tp
ff
x and afhx =∑ω−x

0 υt
tp

hf
x are defined based on the transition probabilities in healthy and functional disability states.

The fund values at time 0 can be decomposed into two groups as

Fh
0 = lh

∗
x

(
ahhx Bh

0 + ahfx Bf
0

)
,

F f
0 = lf

∗
x

(
afhx Bh

0 + affx Bf
0

)
,

(2.24)
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where Fh
0 and F f

0 are the total starting fund values for healthy and functionally disabled pool participants.
From Equation (2.24), a group of healthy participants contribute Fh

0 initially to receive Bh
0 as long as

they remain healthy and Bf
0 if they become functionally disabled at some point in the future, whereas the

functionally disabled pool participants contribute F f
0 to receive Bf

0 as long as they remain functionally
disabled and Bh

0 if they recover from functional disability at future times.

In the subsequent periods, the evolution of the fund value for individuals in a given health state depends on
several factors, including the observed number of individuals transitioning in and out of the state, the fund
balance at the start, and the investment earnings.

The classical method for solving for the fund value or reserves dynamics involves the solution of a discrete-
time version of Thiele’s Differential Equation as discussed in Hoem (1969). For example, in the three-state
functional disability model with recovery, annuity payments for individuals in a given state are calculated
based on the corresponding fund value at the start of the year, with transitions occurring at the end of
the period. The fund balance for individuals in a specific state is calculated by adding the fund value after
subtracting benefits paid to individuals in that state at the beginning of the period, then adding the fund
value for individuals transitioning into the state over one period and subtracting the fund value required to
determine benefits for individuals transitioning out of the state after investment earnings. In our setting, we
model the fund dynamics using the matrix approach recently presented in Bladt et al. (2020). This approach
determines the fund value in a given state by a cross product of the matrices of fund values, the number
of participants and the actuarial values as shown in Equation (2.25) and it is consistent with Hoem (1969).
We start by representing Equation (2.24) in a matrix form as

Fh
0

F f
0

 =

lh∗
x

lf
∗

x

⊗

ahhx ahfx

afhx affx

Bh
0

Bf
0

 , (2.25)

F0 = Lx ⊗ (AxB0), (2.26)

where ⊗ denotes element-wise multiplication (also known as the Hadamard product) for multiplying each
row of the column matrix Lx to each row of the matrix AxB0; F0 is a 2× 1 vector of the pool fund values
for healthy and functionally disabled participants, denoted by Fh

0 and F f
0 respectively; Lx is a 2× 1 vector

of the actual number of healthy and disabled participants denoted by lh
∗

x and lf
∗

x respectively; and A0 is a
2× 2 matrix of the actuarial values ahhx , ahfx , afhx , affx in time 0.

The pool fund value at time 1 can be presented using the following equation

F1 = Lx+1 ⊗
(
(P∗

x)
−1

(
F0 − Lx ⊗B0

Lx

)
(1 +R1)

)
, (2.27)

where

P∗
x =

phh∗
x phf

∗
x

pfh
∗

x pff
∗

x

 (2.28)

and

Lx+1 =

lh∗
x+1

lf
∗

x+1

 (2.29)

are the matrices of the realized one year transition probabilities and the number of participants, respectively

at time 1. The realized transition probabilities are defined as phh
∗

x =
lhh∗
x+1

lh
∗

x
, phf

∗
x =

l
hf∗
x+1

lh
∗

x
, pfh

∗
x =

l
fh∗
x+1

l
f∗
x

and

pff
∗

x =
l
ff∗
x+1

l
f∗
x

. Here, A
B

is the element-wise division of matrices A and B.
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The actual number of healthy and functionally disabled participants at time 1 denoted by lh
∗

x+1 and lf
∗

x+1

respectively, is determined as follows

lh
∗

x+1 = lh
∗

x + lfh
∗

x+1 − lhf
∗

x+1 − lhd
∗

x+1,

lf
∗

x+1 = lf
∗

x + lhf
∗

x+1 − lfh
∗

x+1 − lfd
∗

x+1,
(2.30)

where lhf
∗

x+1 is the observed number of healthy participants who have become functionally disabled, lfh
∗

x+1 is

the observed number of functionally disabled participants who have recovered, lfd
∗

x+1 is the observed number

of functionally disabled participants who have died and lhd
∗

x+1 is the observed number of healthy participants
who have died over a one year period.

We also derive the mortality and disability credits for healthy and functionally disabled participants in
one-period setting. For the three-state functional disability model with recovery, that is when pfhx > 0, the
individual’s fund value at time 1 is:Fh

k,1

F f
k,1

 =

phh∗
x phf

∗
x

pfh
∗

x pff
∗

x

−1 Fh
k,0(1 +R1)

F f
k,0(1 +R1)

 , (2.31)

Fh
k,1

F f
k,1

 =
1(

phh∗
x pff

∗
x − pfh

∗
x phf

∗
x

)
 pff

∗
x −phf

∗
x

−pfh
∗

x phh
∗

x

Fh
k,0(1 +R1)

F f
k,0(1 +R1)

 , (2.32)

The mortality and disability credits are given as:

Fh
k,1 =

pff
∗

x

phh∗
x pff

∗
x − pfh

∗
x phf

∗
x︸ ︷︷ ︸

Mortality credits

Fh
k,0(1 +R1)−

phf
∗

x

phh∗
x pff

∗
x − pfh

∗
x phf

∗
x︸ ︷︷ ︸

Disability credits

F f
k,0(1 +R1),

F f
k,1 =

phh
∗

x

phh∗
x pff

∗
x − pfh

∗
x phf

∗
x︸ ︷︷ ︸

Mortality credits

F f
k,0(1 +R1)−

pfh
∗

x

phh∗
x pff

∗
x − pfh

∗
x phf

∗
x︸ ︷︷ ︸

Disability credits

Fh
k,0(1 +R1).

(2.33)

Individuals have mortality and disability credits calculated based on transitions to and from the functional
disability state as well as transitions to the death state.

To simplify the analysis and interpretation, we also consider the three-state functional disability model
without recovery, that is when pfhx = 0. The individual’s fund value in time 1 is:Fh

k,1

F f
k,1

 =

phh∗
x phf

∗
x

0 pff
∗

x

−1 Fh
k,0(1 +R1)

F f
k,0(1 +R1)

 , (2.34)

Fh
k,1

F f
k,1

 =
1

phh∗
x pff

∗
x

pff∗
x −phf

∗
x

0 phh
∗

x

Fh
k,0(1 +R1)

F f
k,0(1 +R1)

 . (2.35)

The two groups are distinguished as follows:

Fh
k,1 =

pff
∗

x

phh∗
x pff

∗
x

Fh
k,0(1 +R1)−

phf
∗

x

phh∗
x pff

∗
x

F f
k,0(1 +R1), (2.36)
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F f
k,1 =

phh
∗

x

phh∗
x pff

∗
x

F f
k,0(1 +R1). (2.37)

Equations (2.36) and (2.37) can be written as

Fh
k,1 =

1

phh∗
x︸ ︷︷ ︸

Mortality credits

Fh
k,0(1 +R1)−

phf
∗

x

phh∗
x pff

∗
x︸ ︷︷ ︸

Disability credits

F f
k,0(1 +R1),

F f
k,1 =

1

pff
∗

x︸ ︷︷ ︸
Mortality credits

F f
k,0(1 +R1).

(2.38)

This means that for the healthy group, the fund value is adjusted by considering transitions to functional
disability and death states, crediting the fund value for those who transit to the functional disability state and
adding any mortality credits within the group. However, for the functionally disabled group, there is no need
to adjust fund value for transitions to the healthy group since there is no recovery from functional disability.
Therefore, the fund value for the functionally disabled is adjusted by only considering the mortality credits
within the group. But, we know that in general, phh

∗
x > pff

∗
x hence we expect to have higher mortality

credits in the functional disabled group than in the healthy group. This result is similar to the discussions
in Hieber and Lucas (2022) and Chen et al. (2022) in a continuous time setting.

From our model setting in Equation (2.25), the pooled health care annuity payouts for individuals in all
states at time 1 can be determined as

F1 = Lx+1 ⊗ (Ax+1B1), (2.39)

where Ax+1 =

ahhx+1 ahfx+1

afhx+1 affx+1

 is a matrix of the actuarial values ahhx+1, a
hf
x+1, a

fh
x+1, a

ff
x+1 in time 1.

Recursively, the fund value can be determined using the following formula

Ft+1 = Lx+t+1 ⊗
(
(P∗

x+t)
−1

(
Ft − Lx+t ⊗Bt

Lx+t

)
(1 +Rt)

)
, (2.40)

where Ft =

Fh
t

F f
t

, Lx+t =

lh∗
x+t

lf
∗

x+t

, Bt =

Bh
t

Bf
t

, P∗
x+t =

phh∗
x+t phf

∗

x+t

pfh
∗

x+t pff
∗

x+t

, and Rt is the actual interest

earning at time t.

The pooled health care annuity benefits Bt+1 are derived by solving the system of simultaneous equations
from the following relationship,

Ft+1 = Lx+t+1 ⊗ (Ax+t+1Bt+1), (2.41)

given that Lx+t+1 =

lh∗
x+t+1

lf
∗

x+t+1

 and Ax+t+1 =

ahhx+t+1 ahfx+t+1

afhx+t+1 affx+t+1

.
The realized one year transition probabilities are defined as phh

∗
x+t =

lhh∗
x+t+1

lh
∗

x+t

, phf
∗

x+t =
l
hf∗
x+t+1

lh
∗

x+t

, pfh
∗

x+t =
l
fh∗
x+t+1

l
f∗
x+t

and pff
∗

x+t =
l
ff∗
x+t+1

l
f∗
x+t

where

lh
∗

x+t+1 = lh
∗

x+t + lfh
∗

x+t+1 − lhf
∗

x+t+1 − lhd
∗

x+t+1,

lf
∗

x+t+1 = lf
∗

x+t + lhf
∗

x+t+1 − lfh
∗

x+t+1 − lfd
∗

x+t+1.
(2.42)
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The matrix P∗
x+t is used to distribute morbidity and mortality credits. Morbidity credits are required to

adjust the benefits of individuals who have transitioned to the functional disability state. These can be
positive or negative depending on the actual number of participants transitioning to that state at a given
point in time.

2.4 A five-state model pooling structure

In the three-state functional disability model described in Subsection 2.3, individuals are not distinguished
based on their health status, particularly chronic illness. For example, individuals who are not functionally
disabled are classified as healthy and fall into the same risk category regardless of whether they are healthy
or sick. In practice, a non-disabled person can be unhealthy. Sherris and Wei (2021) considered a five-
state model where each individual is further classified along with another possible dimension: health (other
than disability) status. Their classification results in five different states: Good health and not functionally
disabled (H); Ill health and not functionally disabled (M); Good health and functionally disabled (F); Ill
health and functionally disabled (MF); and Dead (D). Recovery from a disability is permitted, whereas
recovery from ill health is not included since the medical history of chronic illnesses is incorporated.

H

F M MF

D

Figure 3: A five-state functional disability and health status model allowing for recovery in functional
disability.

Figure 3 illustrates the functional disability and health status model proposed in Sherris and Wei (2021).
There are twelve types of transitions: H → M , H → F , H → MF , H → D, M → MF , M → D, F → H,
F → M , F → MF , F → D, MF → M and MF → D. We define the following additional one year
transition probabilities for an individual aged x:

• phmx : the probability that a healthy person aged x becomes sick at age x+ 1;

• ph,mf
x : the probability that a healthy person aged x becomes sick and functionally disabled at age
x+ 1;

• pfmx : the probability that a functionally disabled person aged x at time t becomes sick but recovers
from disability at age x+ 1;

• pf,mf
x : the probability that a functionally disabled person aged x becomes sick and remains functionally

disabled at age x+ 1;
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• pmm
x : the probability that a sick person aged x+ t remains sick at age x+ 1;

• pm,mf
x : the probability that a sick person aged x + t remains sick and becomes functionally disabled

at age x+ 1;

• pmd
x : the probability that a sick person aged x+ t dies before age x+ 1;

• pmf,mf
x : the probability that a sick and functionally disabled person aged x remains sick and func-

tionally disabled at age x+ 1;

• pmf,m
x : the probability that a sick and functionally disabled person aged x remains sick but recovers

from disability at age x+ 1;

• pmf,d
x : the probability that a sick and functionally disabled person aged x+ t dies before reaching age
x+ 1.

We apply this model to further distinguish pool participants according to chronic illness status and demon-
strate how different individuals can share mortality, functional disability, and health risk in a pool. Next,
we extend the pooled health care annuity design in the three-state framework (described in Subsection 2.3)
to derive the annuity benefits in the five-state context.

For the five-state functional disability and health status model, the annuity benefits are paid in four states
namely: H, M, F and MF. We define four types of annuity benefits at time 0; Bh

0 , B
m
0 , Bf

0 and Bmf
0 ,

representing the benefits amount for a participants in good health without functional disability, ill health
without functional disability, good health with functional disability as well as ill health with functional
disability, respectively. In a similar manner, the benefits in worse health conditions are defined in terms of
an uplift with respect to the annuity benefits in healthy condition using constants c1, c2 and c3. According
to the degree of dependency, benefits in the ill health state are defined as Bm

0 = (1 + c1) × Bh
0 , while

in good health with functional disability Bf
0 = (1 + c2) × Bh

0 and in ill health with functional disability
Bmf

0 = (1 + c3)×Bh
0 , here c1 < c2 < c3. The individual’s benefits at time 0 are presented in a vector form

as follows

B0 =



Bh
0

Bm
0

Bf
0

Bmf
0


=



Bh
0

(1 + c1)×Bh
0

(1 + c2)×Bh
0

(1 + c3)×Bh
0


, (2.43)

where B0 is a vector of the annuity benefits in different health states.

Based on the four health states in the functional disability and health status model, the transition probability
matrix for a surviving person aged x is defined as

Px =



phhx phmx phfx ph,mf
x

0 pmm
x 0 pm,mf

x

pfhx pfmx pffx pf,mf
x

0 pmf,m
x 0 pmf,mf

x


, (2.44)

and the corresponding matrix of the actuarial present values defined based on the transition probabilities is

Ax =


ahhx ahmx ahfx ah,mf

x

0 amm
x 0 äm,mf

x

afhx afmx+t affx af,mf
x

0 amf,m
x 0 amf,mf

x

 , (2.45)
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where the actuarial values ahhx =
∑ω−x

0 υt
tp

hh
x , ahmx =

∑ω−x
0 υt

tp
hm
x , ahfx =

∑ω−x
0 υt

tp
hf
x , ah,mf

x =∑ω−x
0 υt

tp
h,mf
x , amm

x =
∑ω−x

0 υt
tp

mm
x , am,mf

x =
∑ω−x

0 υt
tp

m,mf
x , afhx =

∑ω−x
0 υt

tp
fh
x , afmx =

∑ω−x
0 υt

tp
fm
x ,

affx =
∑ω−x

0 υt
tp

ff
x , amf,m

x =
∑ω−x

0 υt
tp

mf,m
x , as well as amf,mf

x =
∑ω−x

0 υt
tp

mf,mf
x are defined based on

the transition probabilities in the states of health, illness, and functional disability.

The pool fund value at initial time is
Fh
0

Fm
0

F f
0

Fmf
0

 =


lh

∗
x

lm
∗

x

lf
∗

x

lmf∗
x

⊗



ahhx ahmx ahfx ah,mf

x

0 amm
x 0 äm,mf

x

afhx afmx+t affx af,mf
x

0 amf,m
x 0 amf,mf

x



Bh

0

Bm
0

Bf
0

Bmf
0


 , (2.46)

F0 = Lx ⊗ (AxB0), (2.47)

where F0 is a 4×1 matrix of the pool fund value for those in good and ill health with and without functional
disability and Lx is a 4 × 1 matrix of the initial number of participants aged x at time 0. Ax is a 4 × 4
matrix of actuarial values that are defined based on the transition probabilities in good and ill health.

As with the three-state model, the dynamics of the pool fund value in time t are presented as

Ft+1 = Lx+t+1 ⊗
(
(P∗

x+t)
−1

(
Ft − Lx+t ⊗Bt

Lx+t

)
(1 +Rt)

)
, (2.48)

where Ft+1 is a matrix of the pool fund values for participants in good and ill health with and without
functional disability, Lx+t+1 is a matrix of the actual number of participants in different states at time t+1,
P∗

x+t is a matrix of the realized transition probabilities, Lx+t is a matrix of the actual number of participants
in different states and Bt is matrix of the annuity benefits at time t.

The matrices are defined as follows Ft+1 =



Fh
t+1

Fm
t+1

F f
t+1

Fmf
t+1


, Lx+t+1 =



lh
∗

x+t+1

lm
∗

x+t+1

lf
∗

x+t+1

lmf∗

x+t+1


, and

Px+t =



phhx+t phmx+t phfx+t ph,mf
x+t

0 pmm
x+t 0 pm,mf

x+t

pfhx+t pfmx+t pffx+t pf,mf
x+t

0 pmf,m
x+t 0 pmf,mf

x+t


.

The matrix of the pooled health care annuity benefits Bt+1 can be derived by solving the system of simul-
taneously equations from the following

Ft+1 = Lx+t+1 ⊗ (Ax+t+1Bt+1), (2.49)

where

Ax+t+1 =


ahhx+t+1 ahmx+t+1 ahfx+t+1 ah,mf

x+t+1

0 amm
x+t+1 0 äm,mf

x+t+1

afhx+t+1 afmx+t affx+t+1 af,mf
x+t+1

0 amf,m
x+t+1 0 amf,mf

x+t+1

 . (2.50)
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2.5 Multi-state models estimation

To demonstrate the concept of mortality risk pooling using multi-state models, we must compute the es-
timated transition probabilities. Using maximum likelihood estimation techniques, we first estimate the
parameters of the multi-state models. The transition probabilities are then calculated by simulating health
transition rates using the fitted models. Finally, the actuarial values are calculated to determine the pooled
health care annuity benefits. According to Pitacco (2014), the process from raw data to actuarial present
values involves three steps:

1. Graduation of observed raw data to obtain transition intensities (rates).

2. Obtaining transition probabilities from transition intensities.

3. Application of transition probabilities in valuation formulas and computation of actuarial values to
obtain premiums and reserves.

We estimate the three-state functional disability model with recovery and the five-state functional disability
and health status model. These models have been estimated in Fu et al. (2021) and Sherris and Wei (2021),
respectively, based on individual-level data from the Health and Retirement Study covering the US elderly
population. We estimate the models based on female and male observations to utilize the data effectively.2

However, in numerical examples, we only use estimated model results for males to describe the proposed
mortality risk pooling framework. We apply the estimation procedures proposed in Fu et al. (2021) which
improve the numerical stability in the estimated parameters. Sherris and Wei (2021) and Fu et al. (2021)
both adopt a proportional hazard specification, similar to that used in Koopman et al. (2008) for credit-rating
transitions.

For an individual k at time t, the transition intensity for transition type s is considered to be of the form

λk,s(t) = exp
(
βs + γ

′
swk(t) + αsψ(t)

)
, (2.51)

where βs is the baseline log-intensity for transition type s, independent of time and common across all
individuals. The vector wk(t) contains the observed predictors for each individual k, and is restricted to
age, gender and time. ψ(t) is a stochastic latent process that drives systematic uncertainties, also known as
frailty. The parameter vector γs and scalar αs measure the sensitivities of logarithm of λk,s(t), with respect
to wk(t) and ψ(t). For tractability, the transition rates are assumed to be piece-wise constant at integer
ages.

The following notations are used to present the exact functional form of the piece wise constant transition
rates:

• s, sth transition type, s = 1, 2, ..., S;

• k, kth individual, k = 1, 2, ...,K;

• Gj , j
th individual’s gender, Gj = 1 if the jth individual is female and 0 otherwise;

• v, vth interview, v = 1, 2, ..., V ;

• t, time measured in years;

• xk(t), k
th individual’s age at time t;

• tk,v, the time of the vth interview for the kth individual;

• t̂k,v, the time of transition between the vth and v+1st interviews for the kth individual, should it occur;
t̂k,v is the exact death time if the kth individual died during this period; otherwise, (tk,v + tk,v+1)/2,
the mid-point of the time between the vth and (v + 1)st interviews for the kth individual.

2We have used the guidelines provided in Fu et al. (2021) for estimating functional disability models and codes
available at https://sites.google.com/view/mxu/code.
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For the three-state functional disability model, the state space of a transition type is s = {1, . . . , 4}. We set
s = 1 for H → F , s = 2 for F → H, s = 3 for H → D and s = 4 for F → D. For the five-state functional
disability and health status model, the state space is s = {1, . . . , 12} where we denote s = 1 for H → M ,
s = 2 for H → F , s = 3 for H → MF , s = 4 for H → D, s = 5 for M → MF , s = 6 for M → D, s = 7 for
F → H, s = 8 for F → M , s = 9 for F → MF , s = 10 for F → D, s = 11 for MF → M and s = 12 for
MF → D.

Three models are considered in estimating parameters of the multi-state models: a static or no-frailty model,
a trend or no-frailty model with a linear time trend, and a frailty model.

1. In the static model, the transition rate λk,s(t) is assumed to be dependent on age and gender only:

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Gk, (2.52)

where βs is the reference level of λk,s(t) that varies by transition type, xk(t) is the age of the kth

individual at time t, and Gk is an indicator variable that indicates whether the kth individual is
female or male. The sensitivity of ln λk,s(t) with respect to age and gender is measured by γage

s and
γfemale
s , respectively.

2. To model the systematic time trend in λk,s(t), the linear time index is included in the trend model:

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Gk + γtime
s t, tk,v ≤ t < tk,v+1, (2.53)

where γtime
s measures the the sensitivity of ln λk,s(t) with respect to the time trend (wave index) t.

3. Then, for the frailty model with time trend, the latent factor ψ(t) is added to ln λk,s(t), to account
for systematic uncertainty:

ln λk,s(t) = βs + γage
s xk(t) + γfemale

s Gk + γtime
s t+ αsψ(t), tk,v ≤ t < tk,v+1, (2.54)

where αs measures the the sensitivity of ln λk,s(t) with respect to the latent factor. The latent factor
ψ(t) is modeled as a simple random walk with drift term as follows:

ψ(t) = ρtv−tv−1ψv−1 + ϵv, ϵv ∼ NIID(0, 1), ψ0 = 0, (2.55)

where ρtv−tv−1 = 1 for a random walk process and tv measured in years denotes the time of the vth

interview. We denote ψv = ψ(tv) as the value of ψ(t) over the interval t ∈ (tv−1, tv].

Maximum likelihood estimation techniques are used to determine the parameters of the static and trend
(no-frailty) models, and the frailty process is recovered using a Kalman filter and smoother. After estimating
the parameters, we use the Kalman filtering and smoothing technique to recover the frailty process. Sherris
and Wei (2021) gives more details about the Kalman filtering and smoothing technique.

2.5.1 Data description

The Health and Retirement Study (2021) is a longitudinal household survey of people aged 50 in the US
that began in 1992. The survey includes questions on the respondent’s health history, physical and cognitive
status. In particular, the RAND HRS Longitudinal File 2018 (V1) (2021) has fourteen interviews for sixteen
survey years; 1992, 1993, 1994, 1995, and biennially 1996-2018. We use data from Wave 1998 onward as the
survey questions were inconsistent prior to Wave 1998; similar assumptions were made in Fu et al. (2021)
and Sherris and Wei (2021). The previous research (Fu et al. (2021) and Sherris and Wei (2021)) used data
from 1992 to 2014, we re-estimate the models using data from Waves 1998 to 2018.

To illustrate the mortality sharing arrangement based on the two multi-state models, we first need to
create transition datasets that comprise transitions between various health states. We create two transition
datasets. The first dataset contains three-state transitions for the functional disability model, and the second
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dataset includes five-state transitions for the functional disability and health status model. An individual
is classified as functionally disabled if they have two or more difficulties in any of six activities of daily
living (ADLs), namely dressing, walking, bathing, eating, transferring and toileting. Also, each individual
is categorized as in good health or ill health depending on whether they have ever had one of the following
diseases: heart problems, diabetes, lung disease, and stroke. In creating these datasets, we assume that
transitions (other than death) occur at the midpoint of the time between the two interview dates since the
exact time of transition was not stated during the survey. However, the exact time of death is available;
we use the date of death for the transitions including deaths. We also assume that the transitions between
states are interval-censored and updated on each birthday.

Before any data cleaning, there were 42,233 respondents from the fourteen interviews from 1992 to 2018. Af-
ter removing individuals with missing interview dates, missing or invalid death dates, or missing information
on ADLs, we are left with 36,129 people for the interview years 1998 to 2017. We excluded transitions that
occurred in 2018 and individuals who were not interviewed between two consecutive waves. Our selected
sample has more participants and more interview waves than the samples in Fu et al. (2021) and Sherris
and Wei (2021).

3 Main Results
We estimate the parameters of the multi-state models from the transition datasets and simulate health
transition rates using the fitted models. From the simulated transition rates, we estimate transition proba-
bilities, actuarial values, pooled fund values, and annuity payouts for individuals in different health states.
For simplicity, we only use estimated results for males.

Figure 4 shows the estimated transition probabilities of a 65-years old male associated with the three-
state functional disability static model. The occupancy probability in the healthy state tp

hh
65 starts at one,

decreases through time as the person approaches death at older ages and eventually reaches zero. The
occupancy probability in a functional disability state tp

ff
65 is convex. It declines rapidly from one and

approaches zero gradually when a disabled person is about to die. In contrast, the probability of a 65-year-
old male transitioning to a functional disability status tp

hf
65 increases with time at first and then decreases

over a long period.
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Figure 4: The estimated multi-year transition probabilities of a 65-year-old male from the static
model based on the three-state functional disability model.

Interestingly, the recovery probability of a 65-years old male tp
fh
65 is always higher than the transition
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(a) Transition probabilities for a 65-year-old male in
good health.
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ill health.

Figure 5: The estimated multi-year transition probabilities of a 65-year-old male in good ans ill
health from the static model based on the five-state functional disability and health status model.

probability tp
hf
65 , implying that it is more likely for a 65-year-old disabled male to recover from functional

disability than a 65-year-old healthy male to become functionally disabled. This also contributes to the
convex shape of tp

ff
65 , whereas in the early years, there is a higher possibility of exiting the functional

disability state through recovery than death. In addition, tp
fh
65 initially (from time 0 to approximately time

10) increases at a faster rate, then starts to decline rapidly. This implies that a disabled male aged 65 is
more likely to recover from disability at a younger age than at older ages, necessitating the need for LTC
insurance past age 75.

Figure 5 shows the transition probabilities of a 65-year-old male according to the five-state functional dis-
ability and health status static model. The left panel shows the transition probabilities for a 65-years old
male in good health, while the right panel panel is for a 65-years old male in ill health. There are fewer
transitions for an individual in poor health.

Similar to the three-state model, the occupancy probability in a health state tp
hh
65 starts at one, decreases

through time and eventually reaches zero. The occupancy probability in a functional disability state tp
ff
65

forms a convex curve, declines rapidly from one and approaches zero gradually when a disabled person is
about to die.

For an individual in ill health, tp
mm
65 starts at one decrease through time and eventually reaches zero.

The occupancy probability in functional disability state tp
mf,mf
65 declines rapidly from one and approaches

zero gradually. The recovery probability of a 65-years old male in good health tp
fh
65 is greater than the

transition probability to ill and functionally disability states (tp
fm
65 and tp

f,mf
65 ). For individuals in ill health,

the recovery probability from disability tp
mf,m
65 is also higher than the transition probability to functional

disability tp
m,mf
65 . These findings demonstrate that the recovery probability from functional disability is not

trivial regardless of a person’s chronic illness status.

3.1 Numerical examples

This section presents the results obtained from numerical examples. We consider two numerical examples.
The first represents a mortality risk pooling arrangement based on the three-state functional disability model,
in which mortality risk is shared across heterogeneous individuals classified according to their functional
disability states. The second example is based on the five-state functional disability and health status
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model, which further distinguishes participants based on their chronic illness status. We show the mean
and the 95% confidence intervals of the number of participants in different states, the pool fund values, the
individual’s fund values and the corresponding annuity benefits depending on the individual’s health state.

3.1.1 Numerical example 1

We examine the mortality risk pooling arrangement using the three-state functional disability model dis-
played in Figure 2. The base case initial pool size is set to 1,000 males aged 65 at time 0 (the calendar year
2018). We divide the initial pool into 920 healthy males and 80 disabled based on the percentages of the
HRS interview respondents in 2017. The maximum age to receive the annuity benefits is 110. We set c = 2
in Equation (2.21) to provide three times healthy annuity benefits to the functionally disabled at time 0.
This assumption has been considered in Sherris and Wei (2021) for the LTC policy. Also, in practice, the
LTC benefits are usually three times the standard life annuity payouts. The annuity payout to a healthy
participant is set to Bh

0 = $12, 000 per year, and for the functionally disabled participant, is Bf
0 = $36, 000

per year. The interest rate assumed in pricing is r = 3% per annum. The realized interest rate Rt for the
evolution of the fund value at time t is the same as the expected rate used in pricing r, so we focus on
mortality and disability risks.

We make several assumptions in determining the annuity payments. For the static model results, we use
the estimated transition probabilities from the static model for pricing and evolution of the fund value. For
the trend (frailty) model, we present two scenarios. In the first scenario, the annuity values of the trend
(frailty) models are computed using the expected transition probabilities matrix of the static model, while
the evolution of the fund value is determined using the trend (frailty) model. In this case, we use the static
model as the expected assumptions in pricing and the trend (frailty) model as the realized assumptions.
We illustrate what happens if we ignore time trends and systematic uncertainty in pricing or designing
the pooled health care annuity product. In the second scenario, the annuity values are computed using
the trend (frailty) model’s estimated transition probabilities to include expected mortality and morbidity
improvements in pricing, while the evolution of the fund value is also determined based on the trend (frailty)
model.

Figure 6 shows the number of participants in healthy and disabled states, pool fund values, individual fund
values, and pooled annuity payouts for the two groups using the static model. The top left panel of Figure 6
shows the realized number of healthy and disabled survivors using the static model, with an initial pool size
of 920 healthy and 80 disabled participants. On average, both numbers decrease with time as individuals
age. As previously stated, each pool must have at least one participant to keep operating the pooled health
care plan. From age 96, the pool size falls below this threshold, and the pool fund value is depleted thus
the plan stops since there are few participants to keep operating the pool. Participants therefore receive the
annuity benefits for 31 years during the retirement.

On average, the pool fund value for the healthy group is higher than that of the disabled as there are more
healthy participants than the disabled. In contrast, the corresponding individual’s value for the healthy
participant is lower than the disabled, as shown in the bottom left panel of Figure 6. A disabled participant
has a higher fund value than a healthy participant to fund the increased payments in dependency.

During the retirement phase, the functionally disabled group also receives increased benefits due to the
group’s smaller pool size over long periods and higher mortality credits. The functionally disabled partici-
pants have higher mortality credits due to higher death probabilities than the healthy participants. On the
other hand, there is a declining trend in the average benefit payments for the healthy group, which also
affects the 95% percentile outcomes as the healthy participants receive lower mortality credits and there is
large group size.

To better understand the difference between benefits for the healthy and functionally disabled participants,
Figure 7 shows the estimated mortality and disability credits for the two groups. We used the results from
the static model. We note that mortality credits increase over time for both groups due to the increased

20



0 5 10 15 20 25 30 35 40 45

Time (in years)

0

200

400

600

800

1000

S
u
rv

iv
o
rs

l
h

*

x+t
 mean

l
f
*

x+t
 mean

 l
h

*

x+t
 95% CI

l
f
*

x+t
 95% CI

0 5 10 15 20 25 30 35 40 45

Time (in years)

0

5

10

15

20

P
o
o
l 
fu

n
d
 v

a
lu

e

10
7

F
h

t
 mean

F
f

t
 mean

 F
h

t
 95% CI

F
f

t
 95% CI

0 5 10 15 20 25 30

Time (in years)

0

0.5

1

1.5

2

2.5

3

In
d
iv

id
u
a
l 
fu

n
d
 v

a
lu

e

10
5

F
h

k,t
 mean

F
f

k,t
 mean

 F
h

k,t
 95% CI

F
f

k,t
  95% CI

0 5 10 15 20 25 30

Time (in years)

0

5

10

15

A
n
n
u
it
y
 b

e
n
e
fi
ts

10
4

B
h

t
 mean

B
f

t
 mean

B
h

t
 95% CI

B
f

t
 95% CI

Static Model

Figure 6: The static model’s number of survivors in healthy and functional disability states, pool
fund values, individual fund values and annuity benefits for healthy and disabled participants. The
annuity values and the evolution in the fund values are computed using the static model which does
not include trends and systematic uncertainties.

number of deaths as pool participants age. In terms of magnitude, the disabled participants receive higher
mortality credits than the healthy participants since they have higher death probabilities due to disability.

On the other hand, we can see that they receive lower disability credits in most cases compared to the healthy
group, especially in the early years. The disabled fund value is highly credited with providing benefits for
those transitioning to the healthy group. In particular, at younger ages, many individuals recover from
disability which reduces surplus credits.

The surplus or deficit in mortality and disability credits depends on the actual number of transitions. For
example, if many individuals become functionally disabled, there is less surplus as it is more expensive to
fund the disability benefits. In addition, the volatility in mortality and disability credits within the group
depends on the group size: the smaller the group, the higher volatility.

From the trend model, Figure 8 shows the results when the time trend is not included in pricing. With no
allowance for future expected mortality and morbidity improvements, benefits drop for the older survivors
in the pool, as shown on the right bottom panel of Figure 8. The individual’s fund value also decreases
significantly with time for both groups since the static model used in pricing tends to overestimate mortality
and disability rates, ignoring any possibilities for mortality improvement and morbidity compression.

From the frailty model, Figure 9 shows the results when systematic trends and uncertainty are not included
in pricing. The benefits drop even more significantly for the older survivors in the pool than when only the
time trend is ignored. Disregarding both systematic trends and uncertainty has a more significant impact
on healthy participants than on disabled participants.
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Figure 7: Mortality and disability credits over time for healthy and functionally disabled pool
participants based on three-state pooling structure using the functional disability static model.
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Trend Model

Figure 8: The trend model’s number of survivors, pool fund value in healthy and functional dis-
ability states, individual fund value and annuity benefits for healthy and disabled participants. The
annuity values are computed using the static model which does not include trends and systematic
uncertainties, while the dynamics of the fund values are calculated using the trend model assump-
tions.
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Figure 9: The frailty model’s number of survivors in healthy and functional disability states, pool
fund value, individual fund value and annuity benefits for healthy and disabled participants. The
annuity values are computed using the static model assumptions, while the dynamics of the fund
values are calculated using the frailty model assumptions.

To show the likely range of annuity payouts at early and later retirement years, Table 1 shows the mean and
the 95% confidence intervals of the annuity payouts at ages 75 and 95 when the time trends and systematic
uncertainty are not considered in pricing. We note that the annuity benefits of the healthy participants
decline significantly at age 95, as shown by the 5% percentile annuity benefits for the trend and frailty
models.

Table 1 also presents annuity payouts when annuity factors are updated with trends and frailty factors,
respectively. When systematic trends and uncertainty are considered in pooled health care annuity pricing,
future benefit payments for both groups are less susceptible to reductions. However, compared to the initial
benefits, the healthy group still receives a slightly lower benefit since their average payments are lower due
to less mortality credits than disabled participants.

3.1.2 Numerical example 2

We numerically examine the set up of a multi-state pool using the five-state functional disability and health
status model displayed in Figure 3. As in Example 1, we set the initial pool size to 1,000 individuals. Also,
based on the HRS data for the interview year 2017, we divide the pool into 650 individuals in good health
not functionally disabled, 250 individuals in ill health not functionally disabled, 40 individuals in good health
and functionally disabled, and 60 individuals in ill health and functionally disabled.

The initial annuity payout to a healthy pool participant is set to Bh
0 = $12, 000 per year. For the LTC

benefits, we set c1 = 1 to provide Bm
0 = $24, 000 per year to a participant in ill health not functionally
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Table 1: Pooled annuity payments based on the three-state functional disability model with and
without systematic trends and uncertainty in pricing from the static, trend and frailty models.

Age 75 Age 95

5% Mean 95% 5% Mean 95%
The static model
Healthy 10,508 11,921 13,094 2,925 11,208 18,648
Disabled 28,258 36,710 47,172 18,400 42,563 88,704

The trend model, without trends in pricing
Healthy 10,155 11,802 13,066 3,094 7,870 11,945
Disabled 30,153 39,440 52,618 14,496 29,296 50,915

The trend model, with trends in pricing
Healthy 10,242 11,874 13,149 3,518 11,055 17,407
Disabled 28,533 37,108 49,549 20,013 42,672 75,003

The frailty model, without trends and uncertainty in pricing
Healthy 10,337 11,619 12,699 2,442 5,189 8,764
Disabled 24,502 31,463 40,253 7,203 12,219 19,475

Frailty model, with trends and uncertainty in pricing
Healthy 10,346 11,928 13,303 5,314 11,502 16,803
Disabled 28,304 36,539 45,986 23,265 39,174 61,403

disabled, c2 = 2 to provide Bf
0 = $36, 000 per year to a participant in good health and functionally disabled

and c3 = 4 to provide Bmf
0 = $48, 000 per year to a participant in ill health and functionally disabled (see

Equation (2.43)). Consistent with Sherris and Wei (2021), the LTC annuity prices are higher for those in ill
health since they spend more time disabled. The interest rate is set to r = 3%. The realized interest rate
Rt is the same as the expected rate r.

As with the three-state model, we make several assumptions in determining the annuity payments. From the
static model, we use the estimated transition probabilities of the static model for determining the annuity
values and changes in the realized experience. We present two scenarios for the trend (frailty) model. In the
first scenario, the annuity values are computed using the expected one-year transition probabilities matrix of
the static model, while the evolution of the fund value is determined using the results from the trend (frailty)
model. In the second scenario, the annuity values are computed using estimated transition probabilities from
the trend (frailty) model to also include expected improvement in mortality and morbidity in pricing.

Figure 10 shows the mean and the 95% confidence intervals of the number of participants in four different
health states from the static model. The expected number of survivors in four different health states is
displayed in the top left panel of Figure 10.

The number of participants in both groups decreases with time as many individuals die at older ages.
However, the healthy group declines more sharply over the years than the other groups since the number
of participants in good health decreases more rapidly as many individuals enter the ill and disability states.
The number of sick participants rises initially and gradually decreases since the chronic illness rates increase
with age. Also, at younger ages, more participants become sick, and as time progress, many participants in
the group die. The number of disabled participants in good and ill health is relatively small and declines
more slowly than in the other groups. This is also due to the smaller pool size at the entry time. The total
pool size decreases below the threshold from time 23; thus, the plan stops since there are few participants
to keep operating the pool and the pool fund value depletes to zero.

On average, the fund value for the healthy group is higher than that of participants in ill health as this group
has many participants at the entry time. In contrast, the corresponding individual’s value for the healthy
participant is relatively lower, followed by that of a sick member, as shown in the bottom left panel of Figure
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Static Model

Figure 10: The static model’s number of survivors, pool fund value, individual fund value and
annuity benefits for participants in four different health states. The annuity values are computed
using the static model which does not include trends and systematic uncertainties.

10. These differences are due to varying pool sizes and the annuity payouts throughout the retirement
period. For instance, there are increased future benefits for the functionally disabled participants in good
and ill health over retirement than the healthy participants. Thus, the functionally disabled individual’s
fund values are higher than those of the healthy participants.

In terms of the annuity benefits, there are increasing benefits for the functionally disabled participants in
good and poor health, as shown in the bottom right panel of Figure 10. Especially at more advanced ages,
the mean and the 95% quantiles of the functionally disabled in good health are higher than all other groups.
On the other hand, healthy and sick participants who are not functionally disabled receive lower but more
stable annuity payouts throughout their retirement. Again, the differences in the annuity payments among
the groups are due to the differences in mortality, disability and chronic illness credits and group sizes.

To demonstrate the likely difference between annuity benefits for individuals in good health and those in
poor health, the values of mortality, disability, and chronic illness credits are displayed in Figure 11. We
use the static model results and present values for two groups: healthy and sick participants with functional
disabilities. We note that mortality credits for both groups increase over time as the number of deaths
increases with age (see Subfigure 11(a)). However, participants in ill health and with functional disability
receive higher mortality credits than healthy participants due to higher mortality rates among the sick
members.

As shown in Subfigure 11(b), there are no disability credits for sick and disabled participants as there
are no fund adjustments; an assumption adopted in this paper of no recovery from chronic illness. Thus,
a participant who is ill and disabled cannot recover from chronic disease and becomes only functionally
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(b) Disability credits
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(c) Illness credits

Figure 11: Mortality, disability and chronic illness credits over time for the healthy, sick and func-
tionally disabled participants based on five-state pooling structure using the functional disability
and health status static model.

disabled. On the other hand, healthy participants have disability credits, decreasing over time as more
people become functionally disabled at older ages. Since the disability benefits are more expensive, the
healthy fund value is credited to fund the increased annuity benefits in dependency. In most cases, sick and
disabled participants receive less illness credits than healthy participants, which increases with time since
many become ill and disabled as they age. The healthy participants receive higher illness credits, but the
trend is downward (see Subfigure 11(c)).

The differences in benefits between participants due to differences in mortality, disability, and chronic illness
credits are shown in Table 2. At ages 75 and 80, particularly for the static model, the mean annuity benefits
for the healthy participants are lower, followed by those of the sick and disabled members in good health.
In contrast, the ill and disabled participants receive higher mean annuity payouts. The volatility in benefits
is observed most in the disabled group with good health, as shown by the widest 95% confidence interval.
Due to its smaller pool size, the benefits may decrease significantly, but there is also a chance of receiving
the highest annuity payout, for example, at age 80.

Figure 12 shows the results from the trend model when the time trend is not included in pricing. Disregard-
ing future expected mortality and morbidity improvement when pricing significantly decreases the annuity
benefits, especially for the healthy and sick survivors, as shown in Table 2. In contrast, the disabled partic-
ipants in good health receive increased annuity payouts at older ages since the static model used in pricing
overestimated the mortality and disability rates, ignoring any possibilities for mortality improvement and
morbidity compression. The static model is estimated using transition rates, which ignores the impact of
any differences between the expected and realized mortality and morbidity experience. If future mortality
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improvement and morbidity compression are ignored, the annuity prices are underestimated, which increases
the realized benefit amounts. The impact of neglecting future trends in mortality and morbidity risk is more
significant among healthy members and has a negative effect on annuity payouts. As shown in Table 2
for the trend model, the mean annuity payments at older ages are lower, and the 5% percentile of benefit
payments for healthy pool members is very low in comparison to other groups. On the other hand, disabled
participants receive higher benefits due to estimation errors. Intuitively, if future morbidity compression is
ignored, the insurer will overestimate the prices of the LTC policies.
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Figure 12: The trend model’s number of survivors, pool fund value, individual fund value and
annuity benefits for participants in four different health states. The annuity values are computed
using the static model which does not include trends and systematic uncertainties and the fund
values are computed using trend model.

From the frailty model, Figure 13 shows the results when both time trend and systematic uncertainty are
ignored in pricing. As shown in Table 2, the annuity benefits further decline for both groups and the healthy
members receive lower annuity benefits than other participants. We also notice that the pool fund value
depletes earlier than in the previous cases, and as a result, both groups receive decreased annuity benefits at
the reference ages. By contrast, disabled members receive slightly lower annuity benefits than in the previous
case, but these still increase with time. Similarly, the static model used in pricing overestimated mortality
and disability rates, ignoring any possibilities for mortality improvement and morbidity compression.

We also investigate the impact of including trend and frailty factors in pricing, and the results are shown
in Table 2. Incorporating trends in pricing reduces the significance of declining benefits, especially at old
ages; for example, with time trends and frailty factors, the mean annuity benefits for the healthy participant
increase by 30.3% at age 80, while for the ill participant increase by 19.5% and the disabled in poor health
increases by 39.7%. In contrast, annuity benefits for the disabled in good health decrease by 10.5% under
the frailty model.
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Figure 13: The frailty model’s number of survivors, pool fund value, individual fund value and
annuity benefits for participants in four different health states. The annuity values are computed
using the static model assumptions and the fund values are computed using frailty model results.

These findings show that incorporating both trend and frailty factors when calculating the annuity values
reduces the significance of declining benefits and corrects estimation errors in disabled annuity benefits.
When there is a trend, it needs to be incorporated into annuity pricing and pooling. If it is not included, it
will impact payments as the experience unfolds since it is not anticipated in the pricing. It is important, not
critical, that the pricing basis be consistent with the pooling model. The frailty model is the best estimate
model capturing expected future trends and systematic uncertainties.

3.2 Comparisons with standard life care

We assess our pooling framework by comparing the present value of the pooled annuity payments with the
standard life care product. We estimate the present values of the future annuity payouts from the two
designs: three-state functional disability model and five-state functional disability and health status model.
The present value (PV) takes the benefit amount at each time t, conditional on survival at time t including
all possible transitions, and discounts it to time 0 as given below.

The annuity benefits are the simulated values of the pooled health care annuity product for the static, trend
and frailty models. We use the same expressions to calculate the PVs of a standard life care product for
the three-state and five-state models. However, since the standard life care product offers a fixed amount
of benefits over the retirement period, we use the initial specified benefits at each age over future years
in determining the PVs. We also assume zero loadings since the prices are determined based on the best-
estimated transition probabilities. In both settings, the values are discounted at the fixed interest rate of
3%. The results from the three-state and five-state models are shown in Tables 3 and 4, respectively.
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Table 2: Pooled annuity payments based on the five-state functional disability model with and
without systematic trends and uncertainty in pricing from the static, trend and frailty models.

Age 75 Age 80

5% Mean 95% 5% Mean 95%
The static model
Healthy 10,104 11,870 13,780 8,649 11,815 14,617
Ill 20,636 23,818 26,866 19,344 23,677 27,479
Disabled 18,819 38,565 63,829 14,897 39,079 72,339
Ill and Disabled 35,054 49,032 66,469 33, 694 49,978 71,258

The trend model, without trends in pricing
Healthy 9,905 11,858 13,459 8,343 11,494 14,034
Ill 20,447 24,143 27,656 18,918 23,569 27,790
Disabled 19,198 37,894 63,559 13,222 40,197 85,265
Ill and Disabled 35,899 54,268 76,040 33,918 54,229 80,582

The trend model, with trends in pricing
Healthy 9,823 11,728 13,374 8,388 11,578 14,198
Ill 20,358 23,881 27,253 18, 809 23,685 27,823
Disabled 19,140 38,380 63,526 13,328 40,001 85,456
Ill and Disabled 32,917 50,190 70,841 31,496 51, 639 77,427

The frailty model, without trends and uncertainty in pricing
Healthy 8,135 10,500 12,654 4,405 9,010 12,405
Ill 19,569 22,134 24,409 17,363 19,893 22,197
Disabled 21,467 39,755 62,811 20,153 43,219 74,041
Ill and Disabled 28,827 41,438 57,977 22,855 35,567 54,190

The frailty model, with trends and uncertainty in pricing
Healthy 9,511 11,909 14,135 7,691 11,740 15,351
Ill 20,336 23,754 26,372 19,705 23,771 26,886
Disabled 17,026 37,412 60,535 10,744 38,676 72,294
Ill and Disabled 35,666 49,481 68,189 33,360 49,689 72,792

Table 3: Present values of the annuity payments using the three-state functional disability model
from the static, trend and frailty models.

Standard Life Care ($) Pooled Health Care ($)
5% Mean 95% 5% Mean 95%

Using the static model
Healthy 182,024 182,024 182,024 178,073 182,634 187,635
Disabled 251,527 251,527 251,527 236,131 253,100 273,433

Using the trend model
Healthy 183,404 183,404 183,404 179,029 183,911 188,716
Disabled 248,525 248,525 248,525 233,447 250,325 272,741

Using the frailty model
Healthy 197,297 203,263 209,110 195,537 203,581 210,913
Disabled 271,641 273,944 276,219 258,299 275,194 296,214

The static and trend models have deterministic values in transition probabilities and annuity benefits; thus,
the mean PVs and the corresponding 95% confidence interval of the standard life care product are constant.
On the other hand, the values from the frailty model vary, demonstrating the model’s variability as it includes
a stochastic component in pricing. The PVs of the pooled health care annuity benefits exhibit variability
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for both static, trend, and frailty models obtained from the simulated outcomes at each age.

Table 4: Present values of the annuity payments using the five-state functional disability and health
status model from the static, trend and frailty models.

Standard Life Care ($) Pooled Health Care ($)
5% Mean 95% 5% Mean 95%

Using the static model
Healthy 213,621 213,621 213,621 208,541 213,972 219,131
Ill 295,002 295,002 295,002 285,629 295,397 306,472
Disabled 276,611 276,611 276,611 254,643 279,517 310,529
Ill and disabled 331,753 331,753 331,753 307,331 333,267 366,296

Using the trend model
Healthy 213,048 213,048 213,048 207,650 213,206 218,707
Ill 291,886 291,886 291,886 281,364 292,757 304,297
Disabled 274,178 274,178 274,178 254,773 278,717 310,301
Ill and disabled 322,933 322,933 322,933 298,439 324,960 359,510

Using the frailty model
Healthy 242,358 252,353 262,680 241,482 252,649 264,531
Ill 327,791 332,372 337,260 321,629 332,985 345,643
Disabled 315,994 324,657 333,701 297,856 327,323 363,077
Ill and disabled 373,212 382,996 393,787 353,111 385,824 424,304

In both settings, the mean PVs of the pooled health care product are the same as that of the standard life
care, implying that the proposed plan is actuarial fair. The slight difference in mean PVs for individuals in
worse health conditions (disabled for the three-state model and sick and disabled participants for the five-
state model) is due to the smaller pool sizes. In the numerical analysis, for example, for the five-state model,
we assumed 40 sick and disabled participants at the start; this smaller group size causes slight deviations in
the mean PV of the pooled health care annuity benefits. However, for a sufficiently large pool, the results
of the mean PV are also the same for both products.

In addition, the PVs of the annuity benefits for the healthy group are much lower than other participants for
both products. Also, the static model has a much lower premium for the healthy, sick and disabled groups
than the trend and frailty models. It underestimates the premiums by not considering future mortality
improvement and morbidity compression. Another interesting observation is that the uncertainty in future
benefits is much reduced under the frailty model than in trend and static models. This is consistent with
the existing literature such as Sherris and Wei (2021).

3.3 Changes in the pool size

We increase the size of the initial pool to 10,000 people and use the same ratios to determine the number
of participants in different health states. For the three-state model, we assume 9,200 healthy participants
and 800 disabled. For the five-state model, there are 6,500 participants in good health without functional
disability, 2,500 participants in ill health without functional disability, 400 participants in good health with
functional disability and 600 participants in ill health with functional disability. Similarly, we implement
two scenarios for larger pool sizes. The first scenario shows no expected improvement and systematic
uncertainty in the annuity factors, while in the second one, the annuity factors are updated to consider
trends and systematic uncertainty. Table 5 shows the mean payments and the 95% confidence intervals for
the healthy and disabled participants at age 75 and 95. We note that as the pool size increases, the threshold
time to keep operating the pool increases. However, regardless of pool size, average future benefit payments
decrease for the healthy group and increase for the disabled, especially when systematic trends and pricing
uncertainty are excluded in pricing, as shown in Table 5.
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Table 5: Pooled annuity payments without systematic trends and uncertainty using the three-state
functional disability static, trend and frailty models for a larger pool size.

Age 75 Age 95

5% Mean 95% 5% Mean 95%
The static model
Healthy 11,540 11,998 12,429 9,546 11,852 13,871
Disabled 33,151 36,017 39,319 28,938 36,897 47,408

The trend model, without trends in pricing
Healthy 11,438 11,919 12,370 7,089 8,405 9,645
Disabled 35,141 38,389 41,930 20,454 25,154 30,815

The trend model, with trends in pricing
Healthy 11,528 11,992 12,429 9,914 11,861 13,630
Disabled 33,011 36,111 39,397 29,937 36,683 45,038

The frailty model, without trends and uncertainty in pricing
Healthy 11,065 11,653 12,226 2,997 5,278 8,186
Disabled 27,862 30,453 33,552 8,461 10,246 12,296

The frailty model, with trends and uncertainty in pricing
Healthy 11,525 11,984 12,423 10,426 11,961 13,522
Disabled 33,327 36,105 38,942 30,889 36,259 42,291

From the three-state trend model, the average benefits for the disabled first increase before significantly
declining at older ages when expected improvements are not included in pricing. In contrast, the mean
payments for healthy participants decrease throughout retirement (see Table 5). With allowance for future
expected improvements in mortality and morbidity risks, the annuity benefits do not decline significantly
at old age. However, increasing the pool size slightly decreases the mean and the 5% percentile of benefit
payments for the healthy and disabled participants at ages 75 and 95, compared to the small pool size. It
also decreases the absolute volatility in payments.

Furthermore, the three-state frailty model shows that even with a larger pool of 10,000 participants, annuity
benefits drop significantly when trends and systematic uncertainty are not factored into pricing. It is
therefore critical to include trends and systematic uncertainty to reduce benefit volatility regardless of pool
size. Similarly, for the five-state model, when trends and systematic uncertainty are not factored into pricing,
annuity benefits decline significantly, even for larger pool sizes (as shown in Table 6). On the other hand,
a larger fund with 10,000 initial participants has slightly narrower confidence intervals than a smaller fund
with 1,000 initial participants. When the pool size is increased, the idiosyncratic variability is significantly
reduced. Annuity benefits for all other groups, except the functionally disabled in good health, decrease
with age regardless of pool size.

3.4 Discussion

We have presented two examples of how individuals in different health states can share mortality and health
risks in a pooled annuity fund. The first example examines the three-state functional disability model from
the point of view of mortality and disability risks. In contrast, the second considers the five-state functional
disability and health status model from the perspective of mortality, disability, and chronic illness risks. The
impact of pooling various health risks on future benefits is determined by the size of the initial pool and
the inclusion of systematic trends and uncertainty in pricing. The plan operates longer as the initial pool
size increases and when systematic trends and uncertainty are included in pricing. The annuity benefits for
the healthy members slightly increase at the reference ages (ages 75 and 95 for the three-state model and
ages 75 and 80 for the five-state model). In contrast, with 10,000 initial participants, the disabled and sick
receive slightly reduced mean annuity benefits at the reference ages. On the other hand, the idiosyncratic
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Table 6: Pooled annuity payments without systematic trends and uncertainty using the five-state
functional disability and health status static, trend and frailty models for a larger pool size.

Age 75 Age 95

5% Mean 95% 5% Mean 95%
The static Model
Healthy 11,386 11,950 12,392 10,593 11,917 13,115
Ill 23,126 24,029 24,964 22,414 24,002 25,650
Disabled 31,395 36,387 42,394 27,061 36,677 47,744
Ill and disabled 43,402 47,971 52, 273 41,158 48,192 55,503

The trend model, without trends in pricing
Healthy 11,539 12,100 12,579 9,806 11,169 12,382
Ill 22,992 24,262 25,317 21,2 29 22,585 23,936
Disabled 30,304 35,860 43,185 28,683 39,257 50,898
Ill and disabled 46,028 51,895 58,598 38,597 44,945 53,301

The trend model, with trends in pricing
Healthy 11,365 11,961 12,505 10,355 11,916 13,340
Ill 22,841 24,033 25,060 22,130 23,952 25,662
Disabled 31,152 36,545 42,654 26,450 36,919 48,321
Ill and Disabled 42,934 47,847 54,452 40,675 48,108 56,685

The frailty model, without trends and uncertainty in pricing
Healthy 9,465 10,691 11,833 1,219 7,423 11,427
Ill 21,476 22,383 23,179 15,360 16,583 17,534
Disabled 32,047 37,753 44,498 31,004 41,340 56,112
Ill and disabled 34,742 39,533 45,696 18,709 25,738 36,862

The frailty model, with trends and uncertainty in pricing
Healthy 11,236 12,000 12,699 9,837 11,912 13,589
Ill 23,194 23,954 24,680 22,672 23,900 24,970
Disabled 30,643 36,525 43,234 26,101 37,444 49,786
Ill and Disabled 43,863 48,149 52,558 42,407 48,507 56,153

variability is significantly reduced. A larger fund with 10,000 initial participants has slightly narrower
confidence intervals in annuity benefits, even at old ages, than a smaller fund with 1,000 initial participants.
The wide range of benefit outcomes at the older ages remains, along with the reduction in average benefits.

Regardless of the number of people in the pool, the expected annuity benefits for the healthy group are always
less than the initially specified benefit amounts. This is due to lower mortality, disability, and chronic illness
credits within the group. Furthermore, as people age, the number of people in the health group decreases
significantly since many individuals transition to poorer health states, reducing mortality and disability
credits. Annuity payouts can be improved even further by considering significant equity investment at the
expense of volatility. The pooled health care annuity benefits for individuals in poor health states tend
to increase over time, especially when trends and systematic uncertainty are incorporated in pricing. The
smaller pool sizes and the higher mortality credits for these participants are the two main factors for the
increased benefits in dependency. With an increase in the pool size, we note a slight reduction in the benefits
for individuals in poor health states. Even with significant-sized pools, one factor that clearly undermines
the effectiveness of the pooled annuity benefits is the presence of systematic trends and uncertainty in
mortality. The annuity benefits decline at older ages, even for the disabled participants reflecting the impact
of systematic improvement in mortality rates (especially for the three-state model as shown in Table 5).
The downside is concerning as the 5% percentile at older ages represents a significant reduction in benefit
payments, particularly for healthy participants.

With frailty and trend factors, the range in the annuity benefits is narrower, reflecting the decreasing
volatility of future benefits in the pool, and the benefits do not drop significantly. We conclude that pooling
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different groups in the presence of systematic trends and uncertainty improves annuity benefits, particularly
for people in poor health. For example, in the three-state model, annuity benefits are relatively higher for
individuals with disabilities, whereas in the five-state model, annuity benefits are higher for participants in
ill health and with disability. Approaches to annuity factors estimation that does not include systematic
trends and uncertainty in mortality and morbidity risk result in higher reductions in annuity payments in
later years. This affects all other groups except the functionally disabled. The annuity benefits significantly
decline for the healthy group compared to the sick members since the expected improvement in mortality in
the healthy group is more significant, thus, reducing the benefits. The static model tends to overestimate
disability and mortality rates for the functionally disabled, while the estimated models with trends show
that the elderly have a lower probability of being disabled. This is why the annuity values with no expected
improvements in morbidity risk are lower, which tends to increase disability payments.

4 Conclusion and Future Research
The increasing demand for LTC annuities has motivated us to explore innovative designs in pooled annuity
products, including long-term care insurance. We propose a pooled annuity concept for heterogeneous
individuals classified according to functional disability states and chronic illness status. We use multi-state
models calibrated to US data to assess the impact of including systematic trends and uncertainty, along with
recovery possibilities, on pooled health care annuity payments. The results show that incorporating trends
and frailty factors in pooling differing risks improves the annuity payouts, especially for those in poor health,
reflecting actual experience trends results in a better annuity experience for pool members. When pricing
the pooled annuity products, we emphasize that individuals must be distinguished according to different
risks, which improves the pooled annuity products’ value in terms of higher mean annual payouts, lower
volatility, and lower downside risk.

We focus on mortality, morbidity and health risk factors and assume risk free interest rates. These assump-
tions enable us to illustrate how heterogeneous individuals can share mortality and health risks in a pooled
annuity fund and are consistent with traditional life annuities and life care annuities. More importantly, in
a pooled arrangement, it is common to share investment risk as well; the participants may wish to invest
in equity markets to improve the annuity benefits with volatility management strategies for minimizing the
impact of downward market risks. This has been done for pooled annuity products - see for example, Li
et al. (2022) and Olivieri et al. (2022); extending this analysis to the broader risk sharing is an interesting
topic of future research.
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A Proof of a General Pooling Framework

This is a proof to show that Bt = Bt+1 if P∗
x+t = Px+t and Rt = r.

From
Ft = Lx+t ⊗ (Ax+tBt) (A.1)

given that

Ax+t = I+ υPx+tAx+t+1, (A.2)

we can write Equation (A.1) as

Ft = Lx+t ⊗ (I+ υPx+tAx+t+1)Bt,

= Lx+t ⊗ (IBt + υPx+tAx+t+1Bt),

= Lx+t ⊗ IBt + Lx+t ⊗ (υPx+tAx+t+1Bt).

(A.3)

Then
Ft − Lx+t ⊗ IBt = Lx+t ⊗ (υPx+tAx+t+1Bt), (A.4)

but υ = 1
1+r

hence

Ft − Lx+t ⊗ IBt = Lx+t ⊗ (Px+tAx+t+1Bt)
1

1 + r
. (A.5)

Dividing element-wise by Lx+t on both sides of Equation (A.5), we obtain

Ft − Lx+t ⊗ IBt

Lx+t
= (Px+tAx+t+1Bt)

1

1 + r
. (A.6)

Multiplying by (1 +Rt) on both sides, Equation (A.6) becomes(
Ft − Lx+t ⊗ IBt

Lx+t

)
(1 +Rt) = (Px+tAx+t+1Bt)

1

1 + r
· (1 +Rt), (A.7)
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then multiplying by (P∗
x+t)

−1 on both sides, we obtain

(P∗
x+t)

−1

(
Ft − Lx+t ⊗ IBt

Lx+t

)
(1 +Rt) = (P∗

x+t)
−1(Px+tAx+t+1Bt)

1

1 + r
· (1 +Rt). (A.8)

If P∗
x+t = Px+t then (P∗

x+t)
−1Px+t = I and if Rt = r then 1+Rt

1+r
= 1.

Thus Equation (A.8) becomes

(P∗
x+t)

−1

(
Ft − Lx+t ⊗ IBt

Lx+t

)
(1 +Rt) = Ax+t+1Bt. (A.9)

By element-wise multiplying Lx+t+1 to Equation (A.9), we obtain

Lx+t+1 ⊗
(
(P∗

x+t)
−1

(
Ft − Lx+t ⊗ IBt

Lx+t

)
(1 +Rt)

)
= Lx+t+1 ⊗ (Ax+t+1Bt). (A.10)

Based on Equation (2.15), we can write Equation (A.10) as

Ft+1 = Lx+t+1 ⊗ (Ax+t+1Bt), (A.11)

and by determining Bt+1 from Equation (A.11) we can show that

Bt+1 = Bt. (A.12)
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