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Abstract It is widely accepted that mortality risk varies across individuals within age-

sex bands of a population. This heterogeneity exposes insurers to adverse selection if only

the healthiest lives purchase annuities, so standard annuities are priced with a mortality

table that assumes above-average longevity. This makes standard annuities expensive for

many individuals. To address this issue there has been a shift to underwriting annuities in

order to offer lower prices to individuals with below-average longevity. While underwriting

reduces heterogeneity, mortality risk still varies within each risk class due to unobservable

individual-specific factors, referred to as frailty. This paper quantifies the financial impact

of frailty on underwritten annuities. The heterogeneity implied by underwriting factors and

frailty is quantified by fitting Generalized Linear Mixed Models to longitudinal data for a

large sample of US males. The results show that heterogeneity remains after underwriting,

creating significant variation in the fair value of underwritten annuities. We develop a method

to adjust annuity prices to allow for frailty.

Keywords: mortality heterogeneity, frailty modeling, annuity pricing, longitudinal data,

generalized linear mixed models.
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1 Introduction

Mortality risk varies across individuals due to many factors including age, sex, education

and marital status (Brown and McDaid, 2003). This heterogeneity poses interesting and

important problems for pricing annuities. The main problem is well known. If insurers offer

the same price to both low-risk and high-risk individuals, then in a competitive insurance

market either the insurer makes a loss (if the price is too low to cover payments to high-risk

buyers) or low-risk lives will not buy insurance (if the price is too high by their assessment)

(Rothschild and Stiglitz, 1976). Consistent with the Rothschild and Stiglitz (1976) theory,

low-risk (below-average longevity) individuals buy fewer annuities than high-risk (above-

average longevity) individuals when a single price is offered. Thus purchasers of standard

annuities1 have lower mortality than the general population (Mitchell and McCarthy, 2002).

Insurers, therefore, price annuities with a mortality table that assumes above-average

longevity and the resulting high prices limit the viability of private annuity markets (Su

and Sherris, 2012). To address this issue, researchers and practitioners have extended risk

classification of annuitants (Kwon and Jones, 2006) and there has been significant growth

in the market for underwritten annuities, in order to offer lower prices to individuals with

below-average expected longevity (Steinorth, 2012).

Underwriting factors are observable characteristics, such as smoking status, that ex-

plain mortality heterogeneity. In addition to observable factors, heterogeneity may be

caused by unobservable individual-specific factors, referred to as frailty. A large body of

research shows that frailty has a significant impact on estimates of life expectancy (Manton,

Stallard, and Vaupel, 1986; Congdon, 1994; Su and Sherris, 2012). To price underwrit-

ten annuities, therefore, it is important to allow for both observable and unobservable factors.

1Standard annuities are offered at one price to all individuals of the same age and gender, with no
underwriting; whereas underwritten or impaired annuities are offered at a range of prices to individuals of
the same age and gender depending on underwriting information.
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Most modelling approaches, however, exclusively allow for either observable individ-

ual characteristics or for frailty. For instance, empirical research mainly uses time-invariant

observable individual characteristics, such as sex or race, to explain mortality risk (Brown

and McDaid, 2003; Ding, Tian, Yu, and Guo, 2012). This is because it is complex to

incorporate time-varying covariates within the Cox proportional hazards (PH) model

(Fisher and Lin, 1999). Alternative survival models allowing for time-varying covariates

observed at discrete time intervals have only recently been developed (Ding, Tian, Yu, and

Guo, 2012). Furthermore the incorporation of unobservable factors (such as frailty) into

Cox PH models poses considerable theoretical difficulties in the development of estimation

and inference procedures (Therneau and Grambsch, 2000).

On the other hand, frailty models include unobservable factors but not observable

factors. Frailty models allow for heterogeneity via an individual-level unobservable risk

factor. Vaupel, Manton, and Stallard (1979) introduce the concept of frailty as an

unobservable risk factor representing an individuals susceptibility to death that is fixed

throughout his or her lifetime. Traditional frailty models jointly estimate the parameters

for the standard force of mortality distribution and the frailty distribution from population

data (Su and Sherris, 2012). The way in which frailty is modelled has a significant impact

on estimates of life expectancy. Manton, Stallard, and Vaupel (1986) adopt Gamma and

inverse Gaussian distributions for frailty and Gompertz, Makeham, Weibull and extended

Weibull distributions for standard force of mortality. They find that estimates of life

expectancy are more sensitive to the distribution of the standard force of mortality than to

the distribution of frailty. There is no universal tendency for a reduction in life expectancy

when frailty is included. The impact depends on the analytic form of the survivor function,

the way that unobserved frailty is modelled, the amount of heterogeneity present and the

extent and direction of the change in forecast mortality rates (Congdon, 1994). Ignoring

frailty may therefore lead to underestimation of life expectancy and to underpricing of
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annuities.

Markov aging models (MAMs) and generalized linear mixed models (GLMMs) can

also be used to model frailty. Like frailty models, however, MAMs cannot include

individual-level observable factors because they are fit to population-level data. MAMs

are continuous-time multi-state models with states defined by physiological age (which is

a measure of the degree of ageing, or the level of functionality, of the human body.) and

death. The probability distribution of physiological age at calendar age t may be used

to describe the heterogeneity in health status among the cohort of individuals at age t

(Lin and Liu, 2007). Su and Sherris (2012) show that frailty models imply a reduction in

heterogeneity at older ages, while MAMs imply higher heterogeneity at older ages. These

differences influence standard annuity prices, with MAMs implying higher annuity prices

than frailty models (Su and Sherris, 2012).

GLMMs are fit to individual-level data and can jointly model the effect of observable

individual-level characteristics and frailty on mortality risk. GLMMs extend generalized

linear models (GLMs) to incorporate random effects characterizing heterogeneity among

subjects. Antonio and Beirlant (2007) show the importance of GLMMs as a tool in

non-life actuarial applications. GLMMs have not previously been applied to life insurance

problems, however they have been used for survival modelling in other contexts. For

example, McGilchrist and Aisbett (1991) and Yau and McGilchrist (1998) apply a method

of estimation of GLMMs to estimate parameters in a Cox (1972) PH model including frailty.

The work by McGilchrist, however, focuses on estimation methods, model fitting and

inference on the fixed effects regression coefficients. Second McGilchrist applies GLMMs to

repeated events studies within a medical setting (e.g. number of kidney infections following

a particular treatment) rather than to mortality risk studies.
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Very few mortality studies allow for observable individual-level characteristics along-

side frailty. It is not clear from existing research, therefore, whether heterogeneity is

significant after allowing for commonly used underwriting factors, or how frailty affects the

value of annuities after allowing for underwriting factors. These questions are central to

fairly pricing and adequately reserving for underwritten annuities. The original contribution

of this paper is to quantify the heterogeneity in mortality risk due to individual-level

observable characteristics and frailty and its impact on annuity values.

First, the heterogeneity implied by underwriting factors and frailty is quantified by

fitting GLMMs. Second we assess the financial implications of frailty for underwritten

annuity prices. The results confirm that while underwriting explains a significant degree

of heterogeneity, frailty is still significant even after allowing for a large set of common

underwriting factors. Frailty has a significant impact on underwritten annuity prices,

particularly for lives with below-average health.

The remainder of the paper is organized as follows. Section 2 introduces GLMMs for

mortality modelling allowing for frailty. In Section 3 we formulate an annuity pricing

framework based on longitudinal or interval censored survival data and underwriting

factors, and describe the data from the United States (US) Health and Retirement Study

(HRS), a longitudinal study that surveys a representative sample of the US population

over the age of 50 every two years. Section 4 presents the model estimation results and

the valuation of annuity contracts, with and without underwriting and/or frailty. Section 5

concludes the paper.
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2 GLMMs for mortality data

This section reviews the basic concepts of GLMs and their extension to GLMMs. Full

details on GLMs and GLMMs are presented in McCullagh and Nelder (1989) and McCulloch

and Searle (2001) respectively.

2.1 Model assumptions

Assume the data set consists of N subjects, each observed over multiple time periods.

Let ni denote the number of observations for the i’th subject for whom we observe Yi =

[Yi1, · · · , Yini
]′. In a GLM, µi = E[Yi|Xi] is modelled as

g(µi) = Xiβ
′, (1)

where Xi is a (ni x p) matrix of covariate values and β′ is a (p x 1) vector of parameters.

Standard GLMs require that Yi is a sample of independent random variables. In many

settings this assumption is not fulfilled. In particular when the data is repeated measure-

ments on a group of individuals over time (i.e. longitudinal data), it is necessary to allow

for dependence between repeated measurements on the same individual over time.

GLMMs extend the mean function in the GLM by adding a random effect. Includ-

ing random effects is useful for modelling dependence between repeated measurements over

time and for modelling individual response profiles rather than the population-averaged

response. In a GLMM the mean function becomes

g(µi) = Xiβ
′ + Zibi, (2)

where Zi (ni x k) is the design matrix for the k random effects and bi (k x 1) is a vector of

random effects specific to individual i.
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2.2 Mortality modelling using GLMMs

We model and project the probability of death for individual i at time t, qit, throughout.

The GLMM framework is chosen as it is straightforward to include time varying individual-

level factors and frailty, in contrast to other modelling frameworks (such as the Cox PH

model) where it is difficult to include time varying individual-level factors and frailty (Fisher

and Lin, 1999). A common basis for comparison across all models is established by using

the complementary log log function to link qxt to the linear predictor (Xiβ
′).

Longitudinal data (i.e. repeated measurements over time) arises often in life and

health insurance analysis (Antonio and Beirlant, 2007). The longitudinal response for

individual i (Yi) is a set of binary indicators of death in each period. Define the discrete

time hazard rate, which is equivalent to the conditional probability individual i dies in

period t given the individual is alive at the start of the period with characteristics Xit, as:

qit = Pr[Ti = t|Ti ≥ t,Xit], (3)

where Ti is the discrete random variable giving the uncensored time of death of individual

i and Xit is a vector of covariate observations (or underwriting factors) for individual i at

time t. Allison (1982) shows that if Yi = [Yi1, · · · , Yini
] are assumed to be drawn from

a proportional hazards model, the hazard rate depends on time and the covariates Xit as

follows2.

qit = 1− exp[−exp(Xitβ
′)]. (4)

2Alternatively the complementary log log model can be derived by assuming PH and defining a survival
model for repeated measures of interval-censored data. Collett (1994) shows that for repeated measures of
interval-censored data

log[−log(1− qit)] = ηit + γt.

where qit is the probability of death in interval t (i.e. qit = 1− Si(tj)
Si(tj−1)

), ηit is the linear predictor for subject

i and may contain time-varying covariates, and γt, t = 1, · · · , T , are constants associated with the T time
intervals.
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Therefore if we assume PH, the discrete time hazard function is given by the complementary

log-log function of the linear predictor.

The specification of the GLMM is completed by assuming that the random effects,

b = [bi, · · · ,bN] (k by N), are mutually independent and identically distributed (i.i.d.)

with density function f(bi|α), where α is the set of unknown frailty parameters and that

qit = E(Yit|Xit) = 1− exp[−exp(Xitβ
′ + Zibi)]. (5)

As the response data is binary it is assumed that the variance function is given by

V ar[Yit|bi] = µi(1− µi). Traditionally frailty is represented by a random intercept which is

fixed throughout an individual’s lifetime for each individual (Vaupel, Manton, and Stallard,

1979), corresponding to

qit = E(Yit|Xit) = 1− exp[−exp(Xitβ
′ + bi)]. (6)

where the frailty factors b = [b1, · · · ,bN] are assumed to be i.i.d. with bi ∼ N(0, σ2
b ). Using

a single random effect to model frailty means the model is more parsimonious, easier to

interpret and less prone to overfitting (because models with multiple random effects are prone

to overfitting) (Dion, 2011). Alternative frailty specifications are investigated in Appendix

A, however the main results were robust to alternative specifications of frailty.

2.3 Model estimation

Let fit(yit|bi) denote the density function of Yit given bi. The marginal distribution of Yi

is then given by

f(yi) =

∫ ni∏
j=1

fij(yij|bi)f(bi)dbi, (7)
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and the joint likelihood function for models with frailty and the unknown parameters β and

α is

L(β, α; y) =
N∏
i=1

f(yi|β, α)

=
N∏
i=1

∫ ni∏
j=1

fij(yij|bi, β, α)f(bi|α)dbi (8)

where the integral is with respect to the vector bi. For linear mixed models, closed-form

expressions exist for the maximum likelihood estimator of the model parameters. For

GLMMs, however, approximations to the likelihood or numerical integration techniques

are required to maximize the likelihood function with respect to the unknown parameters.

Statistical software (like SAS) contains in-built functions that estimate GLMMs via

maximum likelihood techniques.

Alternatively, GLMMs can be estimated using Bayesian methods such as Markov

Chain Monte Carlo (MCMC) simulations. Bayesian implementation of GLMMs enables the

specification of more complicated structures for the linear predictor (for example, multiple,

crossed and/or nested random effects) and for non-normal distributions to be used for

the random effects. A draw-back of the Bayesian approach is that it treats all unknown

parameters in the GLMM as random variables for which priors must be specified. This

means that Bayesian approaches require more assumptions and are more computationally

intensive than maximum likelihood estimation (Sargent, 1998). In applications without

complex structures of random effects, or non-normal random effect distributions, maximum

likelihood techniques require fewer assumptions and are easier to implement. Therefore as

there is only one random effect in (6) we use maximum likelihood estimation. (See Antonio

and Beirlant (2007) for more details on estimation techniques for GLMMs.)
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2.4 Choice of explanatory variables

In order to test whether frailty has a significant impact on mortality rates and annuity

values after underwriting, it is necessary to define a baseline model which has no under-

writing and to establish the impact of frailty on mortality rates and annuity values in the

baseline model.

Baseline model (no underwriting) The baseline model mimics the type of rating

performed for a policy that is priced solely on age and gender. The model includes only

year and age as covariates, and is fit to data for males only (i.e. gender specific mortality

rates).

Survival model with underwriting Brown and McDaid (2003) identify 10 potential risk

factors influencing mortality including education, marital status, income, occupation, race,

health behaviour and religion. First, risk factors should only be used for underwriting if

they are objective and readily measurable. Of the aforementioned factors, health behaviour

is difficult to monitor and measure, however weight (or Body Mass Index (BMI)), smoking

status and past medical history are typically used for underwriting as these factors can

be reliably measured. Second, race and religion cannot be used as underwriting factors

in the US (Brown and McDaid, 2003). Finally, education, occupation and income are

highly collinear, since current income and wealth are linked to occupation which is strongly

affected by education and health (Fong, 2011). Therefore income, occupation, race and

religion are excluded from the set of predictors available, leaving education, marital status,

BMI , smoking status and medical history to mimic a realistic underwriting setting.
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3 Data

Longitudinal mortality data was obtained from the HRS. The HRS contains individual-

level data collected every two years, in biennial survey ‘waves’ starting from 1992. Each

subject contributes one set of observations over the measured variables per wave, provided

they have not left the study (due to death or other exit reason). All models are fit to

data for subjects born from 1931 to 1941, who entered the study in 1992, since this cohort

represents the retired population with the greatest potential demand for annuity contracts

and also has the longest time-series of data available. As death data may be delayed,

the last year of deaths are not reliable as there may be incurred but not reported deaths.

Therefore only data up to 2006 was used in order to ensure that all deaths within the study

period were captured. The final dataset was an unbalanced panel of 4, 592 males, each with

up to 8 biennial observations.

Statistics summarizing the dataset are shown in Table 1. Readily-measurable mortal-

ity risk factors available in HRS data include race, education, smoking status, marital

status, prior health history, BMI and income. The average age within the panel was 62

years, and the average birth year of the individuals was 1936. Most individuals within

the representative sample of the population of US males had some high school or college

education, were married, overweight and had smoked in the past but not over the sample

period (1992 to 2006). The most prevalent medical conditions among the sample were high

blood pressure and arthritis.

4 Results

In order to quantify the impact of frailty before and after underwriting, models fit based

only on gender, age and time are compared to models fit allowing for gender, age, time and

underwriting factors. All models are fit with and without allowing for unobservable frailty.
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Table 1: Summary statistics for the cohort of HRS Males
N 4,592 Mean Std. Dev.
Age 61.8 5.4
Education Less than high school 24%

GED, HS or some college 54%
College and above 21%

Marital status Married 79%
Married, spouse away 1%
Partnered 3%
Separated 2%
Divorced 7%
Separated or divorced 1%
Widowed 4%
Never married 3%

BMI Underweight 1%
Normal weight 27%
Overweight 47%
Obese 19%
Morbidly obese 6%

Smoked ever 73%
Smoked now 22%
Health history High blood pressure 45%

Diabetes 15%
Cancer 7%
Lung disease 7%
Heart problems 20%
Stroke 5%
Arthritis 42%
Psychiatric problems 8%
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Finally, we calculate annuity rates based on the estimates from each set of models, for a

whole of life annuity and a deferred annuity paid from age 65.

4.1 Model diagnostics

To check that the functional form of the predictors in the baseline model was approxi-

mately linear, a generalized additive model (GAM) was fit to the (complementary log log)

transformed data for HRS Males

log[−log(1− Yit)] = c+ f1(ait) + f2(t)

where ait is the age of individual i at time t. The GAM fits a non-parametric smoothing

function to the relationship between the covariates and the response. Figure 1 shows that

age and time effects are well described by a linear function when the response is transformed

by the complementary log log link, so models (4) and (6) are reasonable.

4.2 Model estimation

The estimated parameters for the standard model and the underwritten model, (4)

and (6), with and without frailty are shown in Table 2. The frailty model is a GLMM

including a random intercept as in (6). The main result is that frailty remains significant (σb

remains greater than zero) even after controlling for a large number of underwriting factors.

The parameter estimates from the GLM (without frailty) and the GLMM (with frailty)

are different for both the baseline and underwritten models. This is because GLM param-

eters capture the population-averaged effect of covariates on the response, while GLMM

parameters capture the subject-specific effect of covariates. The population-averaged

probability will differ from the subject-specific profiles more as the variation across subjects

increases (Verbeke and Molenberghs, 2000). In general, parameter estimates obtained
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Table 2: GLM and GLMM (Frailty) models of mortality rates: Baseline and Underwritten
Baseline Underwritten

β̂ GLM GLMM (Frailty) GLM GLMM (Frailty)
I(Wave=1) -8.45 *** -11.88 *** -6.37 *** -8.83 ***
I(Wave=2) -8.36 *** -11.64 *** -6.29 *** -8.63 ***
I(Wave=3) -8.52 *** -11.70 *** -6.46 *** -8.69 ***
I(Wave=4) -8.35 *** -11.44 *** -6.29 *** -8.46 ***
I(Wave=5) -8.34 *** -11.32 *** -6.27 *** -8.34 ***
I(Wave=6) -8.57 *** -11.47 *** -6.54 *** -8.55 ***
I(Wave=7) -8.51 *** -11.33 *** -6.53 *** -8.54 ***
I(Wave=8) -8.67 *** -11.42 *** -6.76 *** -8.74 ***
Age 0.08 *** 0.12 *** 0.06 *** 0.08 ***
Education:
HS or some college -0.12 . -0.17
College and above -0.38 *** -0.51 ***
Partnered -0.35 *** -0.50 ***
BMI:
Normal weight -1.08 *** -1.29 ***
Overweight -1.51 *** -1.84 ***
Obese -1.72 *** -2.14 ***
Morbidly obese -1.53 *** -1.97 ***
Smoked ever 0.39 *** 0.53 ***
Smoked now 0.39 *** 0.50 ***
Health history:
High blood pressure 0.32 *** 0.42 ***
Diabetes 0.73 *** 0.91 ***
Cancer 0.89 *** 1.41 ***
Lung disease 0.65 *** 0.97 ***
Heart problems 0.51 *** 0.71 ***
Stroke 0.55 *** 0.90 ***
Psychiatric problems 0.42 *** 0.78 ***
Std. Dev. Frailty (σb) 1.83 1.56
AIC 9967 9809 8864 8737
LL -4894 -4342
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Figure 1: Plot of functional form of the predictors in the GAM log[−log(1 − µit)] = c +
f1(ait) + f2(t).
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from a GLMM will be larger in absolute value than their GLM counterparts (Neuhaus,

Kalbfleisch, and Hauck, 1991). If there is very little variation in subject-specific random

effects, then the coefficients of the GLM will be closer to the GLMM3. In Table 2 the

estimated coefficients of the baseline GLM are significantly different to those of the

baseline GLMM, which implies that there is a significant degree of variation across the

subject-specific random effects (frailty variables). The smaller difference between the GLM

and GLMM coefficients when underwriting factors are included shows that the under-

writing factors capture a significant degree of heterogeneity across individuals’ mortality

risk. Consistently, Table 2 shows that the underwriting factors are all statistically significant.

3A similar relationship exists when covariates are omitted from binary regression models. That is, the
population averaged effect of covariate X will be closer to zero (no association) than the cluster specific effect
of X, which is the true underlying effect of X when the ”unobserved covariate” is included.
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The results also show that frailty remains significant after allowing for a large num-

ber of underwriting factors. In particular, comparing the baseline and underwritten

models shows that allowing for a large number of underwriting factors only reduces the

variance of frailty 27% from 1.832 to 1.562. That is, heterogeneity in mortality risk due

to frailty is still significant after underwriting. The financial impact of this change in

unobservable heterogeneity on life expectancy and annuity values is discussed in Section

4.3.2. Finally the AIC of the Underwritten GLMM was lower than any of the other

models4. This indicates that while underwriting factors capture a significant degree of varia-

tion in mortality risk, frailty creates additional variation in mortality risk after underwriting.

Figure 2 shows the fitted mortality rates from the baseline GLMM (allowing for frailty

but not underwriting). Variation in the curves of individual mortality rates by age arises

because of both time effects and frailty. To isolate variation due to frailty we produce the

equivalent plot for the individual years corresponding to waves 2, 4 and 6 in Figure 3.

Figure 3 illustrates the significant heterogeneity in individual-level hazard rates,

captured by the variation of individual mortality risk about the average mortality risk

(dashed line). Different individuals of the same age have different hazard rates in the same

year. A small number of individuals have hazard rates far above the average, while a large

number of individuals have hazard rates a small amount less than the average.

4.3 Implications for annuity pricing

In this section we check whether frailty significantly impacts the actuarial present value

of standard and underwritten annuities. The GLMs and GLMMs fit in the previous section

are used to calculate expected values of annuities and the x% frailty value of annuities for a

4The likelihood numbers in the GLM and GLMMs are not comparable because different methods are
used to approximate the likelihood functions in GLMMs (quasilikelihood rather than a true likelihood).
Many statisticians warn that likelihood-based methods should not be used for inference with quasilikelihoods
(Pinheiro and Chao, 2006; Bolker, Brooks, Clark, Geange, Poulsen, Stevens, and White, 2009).
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Figure 2: Fitted mortality rates from the Baseline GLMM (frailty model). The dashed line
shows the mean predicted probability at age.

Figure 3: Fitted mortality rates from the Baseline GLMM (frailty model) in Waves 2, 4 and
6. The dashed line shows the mean predicted probability at age.
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whole of life annuity and a 20 year deferred annuity paid from age 65. The x% frailty value

is defined as the expected present value of an annuity sold to individuals with frailty in the

bottom (1-x) percentile of the frailty distribution (that is, the x% least frail individuals).

For example, say an insurer believed that the lives buying annuities were the least frail 15%

of the general population, then they would charge the 85% frailty value of annuities.

4.3.1 Method

The HRS survey waves are every two years. Therefore the predictions from models

(4) and (6) are predictions of the probability of death within the preceding two year

interval. For a life aged x the model prediction µ̂x(t) = 1 − exp[−exp(Xitβ̂
′)] =2 qx−2(t).

These biennial mortality rates can be decomposed into annual mortality rates as shown

in Appendix B. For each model, we calculate the projected survival rates for a life

aged 65 in 2006 (the final year of the data) using the cohort-based approach explained in

Pitacco (2004). In future years, we assume that the average mortality improvement rate over

the period 1992 to 2006 continues such that β̂t = βWave=8+(t−2006)
∑8

n=2
βWave=n−βWave=n−1

2
.

Annuity values are calculated from the projected survival rates using discount rates

of 4%p.a. (the UK government bond rate in March 2002) and 3%p.a. corresponding annuity

values reported in Cannon and Tonks (2009) and Su and Sherris (2012) respectively. The

annuity values are calculated to demonstrate the financial impact of including frailty and

underwriting factors in mortality models and do not include any allowance for expenses,

profit loading or frictional costs.

Frailty models do not provide a specific valuation of the mortality of an individual

(Olivieri, 2006); however, these models provide an estimate of the expected subject-specific

mortality rate and the distribution of frailty in the population. Estimates of the mortality

of an individual are equal to the sum of the model predicted expected values and an
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adjustment for frailty of zασb, that is

q̂xt(α) = 1− exp[−exp(Xitβ̂
′ + zασ̂b)], (9)

where zα is the α percentile of the standard normal distribution and σ̂b is the estimated

variance of the frailty variable bi. For example, in the model with no underwriting the pre-

dicted death rates for the 95’th frailty value are calculated by adding z0.05σ̂b = (1.645)(1.83)

onto the linear predictor Xitβ̂ and evaluating (6).

Profiles were developed for low, average, and high risk individuals based on the char-

acteristics of the sample of the US population over 50 shown in Table 1. For example,

low risk males had high levels of education, were married, had normal BMI and had never

smoked or had any serious medical conditions. The profiles are summarized in Table 3.

Estimates were obtained for each profile by evaluating (9) using the different covariates

values corresponding to these profiles.

Table 3: Risk profiles for underwritten annuity purchases
Low risk Avg risk High risk

Education College or above HS or some college Not completed HS
Partnered Yes Yes No
BMI Normal Overweight Underweight
Smoker Never Before, not currently Before and currently
Medical conditions None High BP High BP and Diabetes

4.3.2 Results

First, the expected value of $1 per annum for life paid to a male aged 65 at 2006 was

calculated using the projected mortality rates implied from each model, discounted at 4%

(in order to obtain comparable values to those listed in Cannon and Tonks (2009)).

The predicted mortality rates from the GLM yield an annuity value (12.33) that is just

4% higher than the average market price of an annuity for a male aged 65 listed in Cannon
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Table 4: Expected value of $1 for life for a male aged 65, at 4%
Baseline Underwritten
Standard Low Average High

GLM 12.33 18.57 17.29 4.20
Frailty - 50% 12.28 18.66 17.03 3.57
Frailty - 75% 15.95 19.92 19.15 6.75
Frailty - 85% 17.54 20.25 19.78 8.85
Frailty - 95% 19.36 20.54 20.34 12.55
Frailty - 99.5% 20.44 20.68 20.63 17.33
UK Avg. March 2002 11.89 - - -

Table 5: Expected value of 20 year deferred annuity for a male aged 65, at 4%
Baseline Underwritten
Standard Low Average High

GLM 1.77 6.04 5.16 0.03
Frailty - 50% 1.27 5.86 4.57 0.00
Frailty - 75% 3.52 6.90 6.26 0.09
Frailty - 85% 4.78 7.19 6.78 0.39
Frailty - 95% 6.36 7.43 7.26 1.70

Frailty - 99.5% 7.33 7.55 7.51 4.80

and Tonks (2009) of 11.89. The 50% frailty value from the frailty model (12.28) is also

comparable to the market price of annuities. For underwritten annuities, annuities sold

to low risk or average risk individuals (as per Table 3) had much larger expected values

than annuities sold to high risk individuals, reflecting the shorter expected lifetime for high

risk lives. The 95% frailty value of an underwritten annuity for high risk lives (12.55) was

comparable to the average market price of standard UK annuities reported in Cannon and

Tonks (2009) (11.89).

The variation in the frailty values of underwritten annuities for low risk and average

risk lives (18.66-20.68 and 17.03-20.63 respectively) was lower than the variation in

the frailty values of standard annuities (12.28-20.44). The largest degree of variation

in annuity values due to frailty was for high risk lives (3.57-17.33). This is because

any differences in projected survival rates are more noticeable due to the shorter dis-

counting period. Therefore it is important to allow for frailty when pricing underwritten
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Table 6: UK annuity price of $1 for life for men of aged x on March 2002 from Cannon and
Tonks (2009)

Company 60 65 70 75
AMP NPI 14.88 12.67 10.42 8.26
AXA Sun Life 14.33 12.50 10.52 8.62
B & CE Insurance 13.30 11.44 9.49 7.61
BRS Smoker 12.72 10.95 9.07 7.27
BRS Plus 12.52 10.66 8.73 6.93
BRS Special 12.17 10.21 8.23 6.44
Canada Life 14.10 12.36 10.50 8.65
Friends Provident 13.97 12.24 10.52 8.86
GE LIFE 15.34 13.76 11.96 10.02
GE LIFE (special) 12.71 10.80 8.85 7.00
Legal and General 13.85 12.24 10.56 8.92
MGM (Select) 12.77 11.12 9.40 7.59
Norwich Union 14.64 13.09 11.09 9.29
Pension Annuity FS 11.70 9.97 8.54 6.71
Prudential 13.81 11.96 10.01 8.10
Royal Liver 14.66 12.77 10.74 8.72
Scottish Equitable 14.37 12.50 10.65 8.83
Scottish Widows 13.83 12.05 10.16 8.31
Standard Life 14.49 12.69 10.81 8.93
Average 13.69 11.89 10.01 8.16
Max 15.34 13.76 11.96 10.02
Min 11.70 9.97 8.23 6.44
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annuities for high risk lives because frailty can make a significant difference to annuity values.

We also compare the annuity prices implied by the GLM and GLMMs to the corre-

sponding results in Su and Sherris (2012). Su and Sherris (2012) quantify heterogeneity and

its financial implications for annuity prices using frailty models and a Markov ageing model

(originally proposed by Lin and Liu (2007)) calibrated to Australian population mortality

data. They use a valuation interest rate of 3%. The results from Su and Sherris (2012) and

the results from the GLM and GLMMs with and without frailty and underwriting factors

are compared for a whole of life annuity and a 20 year deferred annuity in Table 7 and

Table 8 respectively.

The baseline GLMM (frailty model with no underwriting) produces reasonable annu-

ity values compared to the frailty models fit to Australian population data in Su and Sherris

(2012). The MAMs, however, imply higher annuity values than those from either the GLM

or GLMMs fit in this paper or the frailty models in Su and Sherris (2012). This is because

they imply greater heterogeneity at older ages Su2012.

Table 7: Expected value of $1 for life for a male aged 65, at 3%
3% Standard Su Sherris (2012) Underwritten

Markov Frailty Low Average High
GLM 13.68 21.71 20.06 4.40

Frailty - 80.6% 19.20 19.44 18.12 23.69 22.87 8.37
Frailty - 61.7% 15.60 18.31 16.36 22.65 21.02 5.06
Frailty - 43.1% 12.24 16.83 14.38 21.03 18.55 3.06
Frailty - 23.5% 8.36 15.63 11.49 18.11 14.87 1.65
Frailty - 13.3% 5.87 14.44 9.18 15.48 12.05 1.16
Frailty - 0.41% 1.07 11.15 2.59 5.25 3.17 0.94
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Table 8: Expected value of 20 year deferred annuity for a male aged 65, at 3%
3% Standard Su Sherris (2012) Underwritten

Markov Frailty Low Average High
GLM 2.26 8.07 6.87 0.03

Frailty - 80.6% 5.45 5.34 4.32 9.47 8.75 0.26
Frailty - 61.7% 2.79 4.55 2.94 8.57 7.19 0.01
Frailty - 43.1% 1.05 3.63 1.66 7.20 5.22 0.00
Frailty - 23.5% 0.14 2.99 0.47 4.89 2.72 0.00
Frailty - 13.3% 0.01 2.46 0.08 3.09 1.29 0.00
Frailty - 0.41% 0.00 1.50 0.00 0.02 0.00 0.00

5 Conclusion

We modelled the heterogeneity implied by underwriting factors and frailty and quantified

the financial impact of frailty on underwritten annuities. The relative importance of frailty

declines when underwriting factors are included in the model, however frailty creates

significant heterogeneity in mortality rates even after allowing for a large set of underwriting

factors. It is therefore important to allow for frailty in applications that call for estimates of

individual specific (rather than population averaged) estimates of mortality risk, even after

underwriting.

In terms of the financial impact of frailty, two key results hold. First, underwriting

reduces the level of heterogeneity and its impact on the fair value of annuities. Second,

however, significant variation in the fair value of annuities remains after underwriting

due to frailty. Finally, the impact of frailty on annuity values is greatest for lives with

below-average longevity because of the shorter discounting period.

These results have important implications for the pricing and risk management of

annuities and other life-contingent insurance products. Namely, frailty needs to be taken

into account when pricing annuities, even if they are underwritten. Incorporating frailty in

the pricing of underwritten annuities means that an insurer can offer lower annuity prices
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to lives with life expectancy below the population average, whilst also protecting itself

against adverse selection by lives whose life expectancy is above the average for a given

risk class. Neglecting to adjust annuity prices for frailty may result in under-pricing and

under-reserving which could threaten the sustainable growth of the much needed annuity

market.
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A Alternative frailty models

In the original model of frailty proposed by Vaupel, Manton, and Stallard (1979) it

is assumed that frailty is constant throughout an individual’s lifetime. Frailty may vary

over time, however, for example when the study period is long or when the study period is

short but the disease or conditions under consideration means that individuals are likely to

become rapidly more frail (Yau and McGilchrist, 1998). Time variation in frailty may occur

at a different rate for each individual, and is distinct from systematic time effects (mortality

improvements) that are the same across all individuals.

Within the GLMM framework it is straightforward to allow for time-varying frailty.

We fit three GLMMs (M1, M2 and M3) in order to illustrate the significance of the following

alternative specifications of frailty before and after underwriting:

• M1: fixed time effect5 and a random intercept

• M2: fixed time effect, a random slope on time and a random intercept

• M3: fixed time effect, a random slope on time, a random slope on age and a random

intercept.

We fit models M1, M2 and M3 and test assumptions regarding the correlation between

random effects and the models residuals, and the robustness of the predictions from different

model specifications via MCMC sampling. The second column of Table 2 contains the

results for the baseline GLM (with no allowance for frailty). The GLMMs correspond to

the GLM (4) with a random intercept (M1), with a random intercept and a random slope

for time (M2), or with a random intercept and a random slope on time and age (M3).

The coefficient estimates for all models showed mortality risk decreasing over time

5In order to fit mortality models to longitudinal data, it is necessary to allow for a factor variable
representing time (γt in (4)).
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Table 9: GLM and GLMM models of mortality risk as a function of time and age
GLM M1 M2 M3

Random effects (Std. Dev.):
ID intercept 1.83 1.64 0.63
Time slope 1.15 1.70
Age slope 0.04
Fixed effects:
I(Wave=1) -8.45 *** -11.88 *** -9.04 *** -9.60 ***
I(Wave=2) -8.36 *** -11.64 *** -8.30 *** -8.44 ***
I(Wave=3) -8.52 *** -11.70 *** -7.55 *** -8.14 ***
I(Wave=4) -8.35 *** -11.44 *** -7.87 *** -7.76 ***
I(Wave=5) -8.34 *** -11.32 *** -7.98 *** -7.86 ***
I(Wave=6) -8.57 *** -11.47 *** -8.43 *** -8.47 ***
I(Wave=7) -8.51 *** -11.33 *** -8.85 *** -8.74 ***
I(Wave=8) -8.67 *** -11.42 *** -9.01 *** -8.88 ***
Age 0.08 *** 0.12 *** 0.05 ** 0.03
AIC 9967 9809 9371 9004
LL -4894 -4673 -4487

(corresponding to the coefficients on Wave become more negative over time) and increasing

at older ages. Frailty (the random intercept for each individual) and the response of

mortality risk to time effects both varied significantly across individuals, as indicated by

the non-zero variability of the random ID intercept and random time slope. However, the

response of mortality risk to age effects did not vary significantly across individuals, as

indicated by the near-zero variability of the random age slope (0.042). Compared to the

GLM, when a random intercept is included (M1) the fixed coefficient estimates become

more pronounced; that is, the coefficients on the wave indicators and age have greater

absolute value in M1, M2 and M3 than in the GLM. Neuhaus, Kalbfleisch, and Hauck (1991)

show that the coefficient estimates under a GLM approach are closer to zero than those of

the GLMM approach (allowing for individual frailty) when there is significant correlation

between repeated observations of the same individual. These results suggest that individual

frailty creates a significant degree of heterogeneity in mortality risk in age-gender risk classes.

Given the difficulties with likelihood-based methods of model selection noted above,
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we use the criteria proposed by Cairns, Blake, and Dowd (2008) to select between the

different mortality models:

• The model should be relatively parsimonious.

• Long-term dynamics under the model should be biologically reasonable.

• Parameter estimates and model forecasts should be robust relative to the period of

data and range of ages employed.

• Forecast levels of uncertainty and central trajectories should be plausible and consistent

with historical trends and variability in mortality data.

• The model should be straightforward to implement using analytical methods or fast

numerical algorithms.

We follow the traditional assumption that random effects have a multivariate normal

distribution with mean zero and a parameterized variance-covariance matrix (of the

unconditional distribution) that is block diagonal. When there is more than one random

effect per individual, however, the random effects can be correlated (Bates, Maechler, and

Bolker, 2012) and it is important to check that the correlation between random effects

in the models with multiple random effects (M2 and M3) is not too high. In M2 the

correlation between the random intercept and random time slope was 0.63. Values under

0.8 are generally considered to be reasonable. The positive correlation in M2 implies that

individuals who have high frailty are also highly sensitive to changes in mortality risk over

time; and vice versa, individuals with low frailty are less sensitive to changes in mortality

risk over time. In M3, however, the correlation between the random intercept and random

Table 10: The variance and correlation of random effects in M3
Variance Std.Dev. Corr

ID (int) 0.39 0.63
Age (slope) 0.00 0.04 1.00
Wave (slope) 2.90 1.70 0.22 0.22

27



age slope was 1, suggesting that the results of M3 should be interpreted with caution as high

correlation may cause problems in estimation. Furthermore the variance explained by the

age slope was close to zero (0.00) suggesting that random age effects are not significant over

and above random time effects. The results of M2 and M3, however, support the finding

that there is a significant degree of variation in individuals’ rate of mortality improvement

(as measured by the response of mortality risk to stochastic time effects). This effect is

positively correlated with frailty; such that the individuals with low frailty have higher rates

of mortality improvement over time, while individuals with high frailty have lower rates of

mortality improvement over time. In order to further understand this effect however, longer

time series would be required in order to fit individual-level time-series models to the rate

of mortality improvement, similar to the approach of Lee and Carter (1992).

Checks on the normality of the model residuals indicated that M1 had a slightly bet-

ter fit than M26. In addition, there were some issues with convergence in the random

Figure 4: Qqplot of the residuals from M1 and M2

intercept and slope specification in M2. Specification tests generally use simulation to check

robustness of results. We use cross-validation via Markov Chain Monte Carlo (MCMC)

6Due to the discrete nature of the data there were strong patterns in the plots of residuals versus fitted
values that made these plots hard to interpret. Instead qqplots and histograms of the residuals were used
for model fit analysis
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sampling, graphical analysis and practical considerations to compare M1 and M2. Chains

were run with a burn-in of 20,000 simulations was followed by another 50,000 simulations.

As reported by many authors (e.g. Antonio and Beirlant (2007); Zhao, Staudenmayer,

Coull, and Wand (2006)) centering of covariates greatly improves mixing of the chains and

speed of simulation, therefore stochastic time effects were centered.

The fixed and random effects estimates and the predictions from M1 and M2 were

estimated via MCMC sampling. The M1 estimates were more robust to estimation

methodology, as the estimates via MCMC sampling were closer to the likelihood-based

results (see Table 11) for M1 than for than the M2. The model predictions are similar in

Table 11: Parameters estimates for M2* and M3* via REML likelihood-based estimation vs.
MCMC sampling

M1 MCMC Diff M2 MCMC Diff
ID intercept 1.83 1.64 0.93
Time slope 1.15 0.02
I(Wave=1) -11.88 -9.59 -19% -9.04 -10.52 16%
I(Wave=2) -11.64 -9.47 -19% -8.30 -10.26 24%
I(Wave=3) -11.70 -9.64 -18% -7.55 -10.33 37%
I(Wave=4) -11.44 -9.47 -17% -7.87 -10.06 28%
I(Wave=5) -11.32 -9.44 -17% -7.98 -9.96 25%
I(Wave=6) -11.47 -9.69 -16% -8.43 -10.17 21%
I(Wave=7) -11.33 -9.62 -15% -8.85 -10.07 14%
I(Wave=8) -11.42 -9.77 -14% -9.01 -10.23 13%
Age 0.12 0.09 -21% 0.05 0.10 93%

both models (as shown in Figure 5 and 6). Finally, models with multiple random effects

are harder to interpret and to use for forecasting7. However, the model results showed that

there is significant frailty in the mortality risk of the sample. Therefore, M1 was chosen over

the other models for parsimony, ease of interpretation and implementation, and because it

produced the most robust estimates under different estimation procedures.

7For example, in a model with two independent random effects, forecasting requires simulating draws
from a bivariate normal distribution in order to project the random effects. The forecast levels of uncertainty
are larger in models with multiple random effects than only a single random effect.
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Figure 5: Model predicted probabilities from a MCMC fit of M1

Figure 6: Model predicted probabilities from a MCMC fit of M2
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B Projecting annual survival rates from a GLM fit to

biennial data

The HRS survey waves are every two years. Therefore the predictions from the models

fit to this data are predictions of the probability of death within the preceding two year

interval; that is, for a life aged x at time t the model prediction ŷx =2 qx−2. These biennial

mortality rates can be split into annual mortality rates as follows

2qx−2 = qx−2 + (1− qx−2)qx−1 ≈ qx−2 + qx−1 (10)

Therefore if we know the starting rate of mortality qx−2, then all subsequent annual mortality

rates can be calculated as

qx+n =2 qx+n−1 − qx+n−1. (11)

The starting rate of mortality is q65. We estimate this value using the estimated biennial

probability of death for a 65 year old in the last year of the survey data used (2006). Assuming

that q66 = cq65 and q67 = cq66 then

2q65 ≈ (1 + c)q65 (12)

and

2q66 ≈ c(1 + c)q65 (13)

it follows that

q65 ≈ 2q65
1 + 2q66

2q65

. (14)
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