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Abstract

Changes in underlying mortality rates significantly impact insurance busi-
ness as well as private and public pension systems. Individual mortality
studies have data limitations; aggregate mortality studies omit many rele-
vant details. The study of causal mortality represents the middle ground,
where population data is used while cause-of-death information is retained.
We use internationally classified cause-of-death categories and data obtained
from the World Health Organization. We model causal mortality simulta-
neously in a multinomial logistic framework. Consequently, inherent depen-
dence amongst the competing causes is accounted for. This framework allows
us to investigate the effects of improvements in, or the elimination of, cause-
specific mortality in a sound probabilistic way. This is of particular interest
for scenario-based forecasting purposes. We show the multinomial model is
more conservative than a force-of-mortality approach. Finally, we quantify
the impact of cause-elimination on aggregate mortality using residual life
expectancy and apply our model to a French case study.
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1 Introduction

Changes in underlying mortality rates significantly impact insurance business as
well as private and public pension systems. Individual mortality studies have data
limitations; aggregate mortality studies omit many relevant details. The study of
causal mortality represents the middle ground, where population data is used while
cause-of-death information is retained. We add to the area of causal mortality
modelling by employing the multinomial logistic model. The aim of this analysis is
to facilitate a better understanding of the potential impact of the various causes-of-
death on aggregate mortality. The multinomial logistic model provides a framework
for cause-elimination that has not sufficiently been explored in the literature and
thus, gives a new perspective on the potential impacts of medical innovations. Our
modelling approach is of interest to life insurance companies that are developing
mortality scenarios. It also provides important insight into possible future mortality
evolutions that should be considered in current European pension reforms.

The multinomial logistic model (also known as multinomial logit model) is typi-
cally used to detect factors that significantly influence a polytomous response; that
is, a response with several competing outcomes. Several applications of the multi-
nomial logistic model have been undertaken with respect to cause-of-death analysis
over the past ten to twenty years. Examples include the work of Eberstein et al.
(1990), who used eight categorical and continuous independent variables, includ-
ing marital status, education, and birth weight, to model five infant cause-specific
mortality rates. Furthermore, Lawn et al. (2006) applied the multinomial logistic
framework to model the distribution of neonatal deaths in countries with poor data;
see Johnson et al. (2010) and Liu et al. (2012) for related work. Bradshaw et al.
(2003) and Shahraz et al. (2012) employed a multinomial model to redistribute the
unknown or ill-defined deaths; see Murray et al. (2006) for a related application to
ill-defined causes. Finally, Park et al. (2006) incorporated the multinomial logistic
framework in the modelling process in order to take into account the impact of the
tenth revision of the international classification of diseases.

However, none of these studies investigated cause-specific mortality over the en-
tire age-range; past focus has rather been solely on infant mortality. As mentioned
by Foreman et al. (2012), current techniques do not allow for us to take advantage
of such modelling advances within a multinomial framework. This is mainly due
to computational power issues. However, this is not an issue when relatively few
regressors are included in the model. Furthermore, it is not our primary interest to
find the variables that have the biggest impact on cause-specific mortality. We are
rather interested in utilizing a framework that accounts for the nature of competing
risks, which we believe has not adequately been addressed in the existing litera-
ture. Since cause-specific mortality data typically includes two variables of interest,
namely age and time, the multinomial logistic model is easy to employ. More im-
portantly, the multinomial logistic framework parsimoniously quantifies the impact
in the event that a cause is eliminated; e.g. in case a cure is found for some disease.
This significantly broadens the perspective of the analysis.

To put our work in perspective, we briefly review various other cause-specific
mortality models that have been investigated by experts in many fields over the past
few decades. The appropriateness of decomposing mortality by cause-of-death has
even been debated. Some experts have encouraged it, see e.g. Tuljapurkar (1998),
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Gutterman and Vanderhoof (1998) and Tabeau et al. (2001); whilst others have
highlighted its various limitations and risks, see e.g. Booth and Tickle (2008) and
Richards (2009).

Among the limitations is to forecast mortality for each cause in isolation and
to subsequently aggregate them to derive total mortality rates. For example, Mc-
Nown and Rogers (1992) used univariate ARIMA models to forecast the parameters
of the multi-exponential function fitted to the age pattern of mortality. Based on
data from 1960 to 1975, they forecasted four main causes-of-death (heart diseases,
cancer, vascular diseases, accident and violence) until 1985. Further examples in-
clude Caselli (1996) and Wilmoth (1996), who considered the impact on projections
of modelling mortality rates by cause; Rogers and Gard (1991), who illustrated sev-
eral applications of the Heligman-Pollard function, one of them used to forecast
cause-specific mortality; Wilmoth (1995), who demonstrated that for specific mod-
els, such as the Lee-Carter model, overall mortality forecasts were consistently lower
than the sum of mortality forecasts based on a cause-specific approach; and Caselli
et al. (2006) and Tabeau et al. (1999), who compared several forecasting approaches
applied to aggregate as well as cause-specific mortality rates.

Various models have been developed that attempt to account for the dependence
between causes. For example, a cause-specific mortality rate is correlated to another
cause through their joint dependence on some individual risk factors (covariates); see
e.g. Rosén (2006) and Manton (1986). Frailties have also been widely employed to
account for heterogeneous populations, where the dependence assumptions between
the various causes are determined by the joint distribution of the frailties; see e.g.
Manton et al. (1986), Vaupel and Yashin (1983) and Hougaard (1984). Multiple
cause-of-death data provide another tool to investigate links between various causes
and help to determine a pattern of failure, defined as a combination of causes that
result in death; see e.g. Manton et al. (1976); Manton and Poss (1979); Manton
et al. (1980a); Manton and Myers (1987). More recently, copulas have been used
to model the dependence between competing risks; see e.g. Kaishev et al. (2007).

Unfortunately, in practice the techniques that account for cause dependence
are seldomly employed. Using individual risk factors or multiple causes requires
significant additional data that is not readily available, whilst the frailty model
and the copula framework are more complicated and less convenient to apply. The
distribution of the frailty or copula must be specified, which introduces further
assumptions.

Therefore, the most widely used approach is still based on a model developed
more than 40 years ago by Chiang (1968), in which causal forces of mortality are
used and which provides insight into causal trends and partially addresses depen-
dency issues; see also e.g. Prentice et al. (1978). For example, since 1968, the United
States decennial life tables have been published with a special report that focuses
on the impact of eliminating causes using Chiang’s approach (that will be also re-
ferred to as the force-of-mortality approach); see Bayo (1968), Greville et al. (1975),
Curtin and Armstrong (1988), Anderson (1999). Furthermore, United States offi-
cial projections and forecasts of the Institute of Actuaries of Australia are both
performed under the force of mortality approach; see Wong-Fupuy and Haberman
(2004) and LIWMPC Longevity Research Group (2010), respectively.

The multinomial logistic model provides an interesting alternative framework to
Chiang’s model since it naturally incorporates cause dependence. Consequently, it
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provides a very convenient tool for cause-elimination studies that complements the
traditional approach of Chiang, widely used in past cause-elimination and cause-
delay models; see e.g. Keyfitz (1977), Tsai et al. (1978), Manton et al. (1980b), Ol-
shansky (1987, 1988), and Manton (1991), amongst others. Therefore, we provide a
comparison between the multinomial approach and the force of mortality approach.
After introducing the methodology with respect to the multinomial logistic model
and life expectancy calculation in Section 2, total and partial cause-eliminations are
introduced by shocking causal mortality in Section 3. It is shown that the multino-
mial logistic model is less optimistic, that is, survival increases less, than in a force
of mortality approach. In Section 4, we illustrate the model in a case study using
data for France obtained from the World Health Organization. Section 5 concludes
the paper.

2 Methodology

In this section we provide the theoretical details of our proposed causal mortal-
ity model. We also outline the construction of residual life expectancy using an
abridged life table.

2.1 Multinomial Logistic Model

Multinomial logistic regression techniques are catered to modelling probabilistic
response variables for competing outcome categories; see e.g. Menard (2002) and
Borooah (2002). Let Di(x, t) denote the random deaths from cause i for age x at
time t and let L(x, t) denote the subsequent survivors that complement the deaths.
Furthermore, consider n causes and define Y (x, t) to be the vector of cause-specific
deaths and survival. We have

Y (x, t) = (D1(x, t), D2(x, t), . . . , Dn(x, t), L(x, t))′.

We assume Y (x, t) follows a multinomial distribution, whose probability mass func-
tion, omitting the arguments (x, t), is given by

Pr[D1 = d1, . . . Dn = dn, L = l] =
E!

d1! · · · dn!l!
qd11 · · · qdnn pl,

where,
n∑

k=1

qk(x, t) + p(x, t) = 1,

such that qi(x, t) describes the probability of death as a result of cause i, p(x, t) the
probability of survival, and

E(x, t) = l(x, t) +
n∑

k=1

dk(x, t),

where l(x, t), d(x, t) are realizations of the random variables L(x, t), D(x, t), and the
resulting measure of exposure is given by E(x, t). We adopt survival as the baseline
category in the multinomial logistic framework, which produces the model

log
qi(x, t)

p(x, t)
= X(x, t)βi, i = 1, . . . , n,

4



where X(x, t) is the design matrix that specifies how covariates are used in the
regression formula and βi the regression parameters especially suited to cause i.
Given the regression parameters and the design matrix, the probabilities are given
as follows:

qi(x, t) =
exp{X(x, t)βi}

1 +
∑

k exp{X(x, t)βk}
, i = 1, . . . , n,

p(x, t) =
1

1 +
∑

k exp{X(x, t)βk}
.

2.2 The Regression Formula

Given the multinomial framework, we address the structure of the regression for-
mula. The regression links our response to any potential covariates and is typically
some combination of age, period, and cohort. There is a vast literature which in-
vestigates this component of aggregate mortality modelling starting with the sem-
inal work of Lee and Carter (1992); in addition, some overviews are provided by
e.g. Cairns et al. (2011) and Haberman and Renshaw (2011).

The nature of our data suggests the exclusion of any overt cohort covariate. The
practical reason is twofold. First, we generally have a limited number of periods,
which hinders our ability to identify any significant cohort trend. Second, cause-
specific data are presented in age-groups and therefore, the age-groups would need
to be converted to single ages before any consideration of cohort could be taking
into account. There is also an overriding theoretical reason why we avoid cohort
considerations. Namely, causes-of-death have an intuitive relationship with periodic
developments, particularly due to medical innovations.

Whether a covariate should be treated as categorical or continuous is a second
point of consideration. Categorical covariates offer more flexibility but can over-
burden the model. We consider categorical age and continuous period covariates.
Categorical age is both intuitive and convenient. Intuitive, since it is likely that
the various age-groups exhibit contrasting behaviour with respect to the different
causes-of-death. Convenient, since we have a limited number of age-groups. Like-
wise, continuous period is both intuitive and convenient. Intuitive, since mortality
over time is typically classified as a trend whose underlying behaviour is of a func-
tional form. Convenient, since implementing continuous time avoids resorting to
time-series analysis for forecasting purposes. Lastly, to treat both age and period
as categorical would be most flexible, but would also be suspectible to overfitting.

Finally, it has been observed in the literature that various age-groups react
differently to time; see for example, Booth et al. (2001). Therefore, we allow for
age-period interaction. The linear regression formula we adopt is as follows:

ηi(x, t) = β0,i + β1,i,x + f(t; β̃i,x),

where

ηi(x, t) = log
qi(x, t)

p(x, t)
.

Note that the linear regression parameters are distinct for each cause i. Further-
more, the subscript x on β1,i and β̃i indicates the relevant age-group and the tilde on
β̃i signifies it is a vector of parameters. Parameters are estimated using maximum
likelihood.

5



2.3 Residual Life Expectancy

In order to present easily-interpretable outcomes we choose to use (residual) life
expectancy. Since we work with age-groups rather than individual ages, we make
use of the abridged life table method; see e.g. Chiang (1984). This method mirrors
that of a standard life table, with some modifications to allow for the interval
age-groups. It requires an assumption on the relationship between central and
crude mortality rates governed by a parameter denoted ax. This parameter takes
the interpretation of the average proportion of the year lived for those that died.
Throughout the paper, we assume ax ≡ 0.5. Even if this is an assumption that
could be challenged for infant mortality, it is widely used and accepted for adult
age mortality, which is the focus of this paper.

3 Causal Mortality Shocks

A particular interest in the field of mortality concerns the impact of medical inno-
vation in the form of cures and any corresponding increase in longevity; the cure
for cancer being a particularly prevalent example. In contrast to the study of ag-
gregate mortality, our causal approach provides the framework in which valuable
insight can be gained.

In this section, we outline how causal mortality is shocked in the multinomial
logistic model, and compare it with the approach based on modelling forces of
mortality. By causal mortality shock, we mean that mortality for a specific cause
suddenly increases, decreases or is eliminated due to some event, such as an epidemic
or the discovery of a new cure. The remaining cause-specific mortality rates are
subsequently also affected by the change applied to the shocked mortality.

3.1 Shocks in the Multinomial Model

First, we acknowledge the possibility that the elimination of a cause can initiate
a marked increase in some causes, whilst decreasing or not affecting others. How-
ever, any such relationship is, strictly speaking, unobservable. To understand these
particular relationships is a non-trivial matter and is not the aim of this paper. In
this paper, we approach the problem from a probabilistic point of view with no
prior knowledge. Hence, if one of the competing outcome categories is eliminated,
we assign its probability proportionally to the other outcomes, where survival is
merely one of these outcomes. That is, although survival probability will certainly
increase as a result of a cure for cancer, it will not do so on a one-to-one basis with
the decrease in cancer-specific mortality.

Suppose we introduce a shock ρi ≥ 0 to cause i, where values of ρi > 1 signify a
marginal increase in mortality, and vice versa. Note that ρi = 0 corresponds to the
elimination of deaths by cause i. The resulting probabilities are adjusted as follows:

qi(x, t) =
ρi exp{X(x, t)βi}

1 +
∑

k ρk exp{X(x, t)βk}
, i = 1, . . . , n,

p(x, t) =
1

1 +
∑

k ρk exp{X(x, t)βk}
.

From the above, it is evident that we adjust for mortality shocks on an annual
probability basis. Previous studies have considered the effects of mortality shocks
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on an instantaneous probability basis; see e.g. Chiang (1968), Tsai et al. (1978),
Manton et al. (1980b). That is, such studies have adjusted the causal force of
mortality, which is representative of instantaneous probability of death by cause.
Consider the survival probability as written in terms of the force of mortality:

p(x, t) = exp

[
−
∫ 1

0

µ(x+ s, t)ds

]
,

where µ(x, t) =
∑

k µ
(k)(x, t). That is, the total force of mortality, µ(x, t), is the

addition of the forces of mortality attributed to each cause. The effects of causal
mortality shocks are imposed by shocking the appropriate component of the force
of mortality. For example, cause j elimination is achieved by removing the relevant
component of the total force of mortality and subsequently recalculating the survival
probability; resulting in:

p(x, t) = exp

[
−
∫ 1

0

∑
k 6=j

µ(k)(x+ s, t)ds

]
.

Compared with our annual approach, probability redistribution on an instantaneous
basis favors survival. In other words, when cause j is eliminated in our method,
deaths from causes i 6= j increase comparatively more and survival increases com-
paratively less than previous findings that modelled causal forces of mortality. A
formal proof is provided below.

3.2 A Comparison of Annual and Instantaneous Mortality

In this section we compare the impact of cause-elimination on the survival proba-
bility under the annual approach (based on the multinomial logistic model) and the
instantaneous approach (based on force of mortality modelling). We show that un-
der cause-elimination, the instantaneous approach increases survival comparatively
more than the annual approach.

Given the force of mortality, a survival probability may be written as

p(x, t) = exp

[
−
∫ 1

0

∑
k

µ(k)(x+ s, t)ds

]
=
∏
i

p′i(x, t),

where p′j(x, t) is the net survival probability for cause j,

p′j(x, t) = exp

[
−
∫ 1

0

µ(j)(x+ s, t)ds

]
.

The net survival probability is interpreted as the survival probability if no causes-
of-death other than cause j exist, as opposed to the crude survival probability,
pj(x, t) = 1 − qj(x, t), that competes with other causes. In the instantaneous ap-
proach, the elimination of cause j results in

p(−j)(x, t) = exp

[
−
∫ 1

0

∑
k 6=j

µ(k)(x+ s, t)ds

]
= p(x, t)/p′j(x, t),
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where the superscript (−j) in p(−j)(x, t) indicates the elimination of cause j. Under
the constant force of mortality assumption,

µ((x+ δ), (t+ τ)) = µ(x, t), 0 ≤ δ, τ < 1,

the net survival probability for cause j is known to be,

p′j(x, t) = p(x, t)qj(x,t)/q(x,t);

see e.g. Bowers et al. (1986) for a proof. Thus, to find the new survival probability
when cause j is eliminated, one has to divide the current survival probability by
p(x, t)qj(x,t)/q(x,t).

In contrast, the elimination of cause j in the annual approach that employs the
multinomial logistic model results in a survival probability given by

p(−j)(x, t) = p(x, t) ·

[
1 +

qj(x, t)

p(x, t) +
∑

k 6=j qk(x, t)

]
.

Given that both approaches result in a proportional effect on the annual survival
probability, we investigate the relation between these two proportions. That is, we
show that

1

p(x, t)qj(x,t)/q(x,t)
> 1 +

qj(x, t)

p(x, t) +
∑

k 6=j qk(x, t)
.

By applying some simple algebra, we find the above inequality by proving the
following:

(1− qj(x, t))q(x,t) > p(x, t)qj(x,t). (1)

Inequality (1) is proved by using Newton’s generalized binomial theorem and by
noting that 0 < qj(x, t) < q(x, t) < 1; see Appendix A for a detailed proof. This
implies that under cause-elimination, the instantaneous approach increases survival
comparatively more than the annual approach.

4 Case Study

4.1 Data

The World Health Organization (WHO) maintains a comprehensive cause-of-death
mortality database (World Health Organization (2012)). This database provides
the mid-year population and number of deaths by cause for various countries over
the last 50 to 60 years. We obtained data for France from 1952 to 2008. The data
is generally divided into five-year age-groups. We consider France due to its size
and influence in Europe.

To ensure consistency accross countries, the WHO database classifies the causes
according to the International Classification of Diseases (ICD); see Table 1. Under
the ICD, the underlying cause-of-death is specified as the disease or injury which
initiated the train of morbid events leading directly to death, or the circumstances
of the accident or violence which produced the fatal injury. We consider the five
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main ICD causes, which are: diseases of the circulatory system, cancer, diseases of
the respiratory system, external causes, and infectious and parasitic diseases. The
major causes accounted for more than 80% of deaths in recent years, and made up
approximately 60% – 70% of deaths 50 years ago. The cause classification that is
used throughout the paper is introduced in Table 2.

Table 1: International Classification of Diseases - Coding system

The International Classification of Diseases changed three times between 1950 and 2010. The

aim of these changes was to account for progress in science and technology and to achieve more

refined descriptions.

Table 2: Cause-of-Death Codification

Cause Code
Infectious and parasitic diseases 1
Cancer 2
Circulatory system 3
Respiratory system 4
External causes 5
Other 6

Some adjustments are made in order to analyze data consistently over time.
First, the number of deaths of unknown age are distributed proportionally across the
age range, as recommended by the Human Mortality Database (Human Mortality
Database (2012)).

Second, age-groups of 85 and above and ages one to four are made. Thus, our
database is composed of nineteen groups, the first for infants less than one year old,
a second for children aged one to four, thereafter in groups of five years, ending
with the group aged 85 and above.

Third, the data contains central exposure-to-risk rather than initial exposure-
to-risk. Consequently, the ratio of cause-specific deaths to exposure produce central
death rates mi(x, t) for cause i; see e.g. Pitacco et al. (2009) (Ch. 2) for an overview
of basic mortality models. Central death rates are typically assumed to relate to
death probabilities as follows:

q(x, t) =
m(x, t)

1 + (1− ax)m(x, t)
.

As mentioned in Section 2.3, we define ax ≡ 0.5 and obtain the relationship

q(x, t) =
2m(x, t)

2 +m(x, t)
.
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Finally, an adjustment is necessary due to the changes of classification over
time. Indeed, the ICD changed three times between 1950 and 2010, from ICD-7 to
ICD-10. This was done in order to account for progress in science and technology
and to achieve more refined cause descriptions. Consequently, the raw data are not
directly comparable over time. To make them comparable, comparability ratios are
used.

At the time of a change in classification, some countries recorded the cause-of-
death according to both the previous classification as well as the newly adopted
one. This double death registration makes it possible to analyze the impact of a
change of classification. Unfortunately, many countries did not apply this approach
for all causes. That is, they recorded deaths under both classifications for a subset
of the data. Some countries did not even apply it for a single cause. Therefore,
we develop our own comparability ratios in order to smooth the death rates across
the classifications. This approach facilitates a consistent analysis across countries
should such a comparison be of interest.

The comparability ratios are determined by requiring the average of the death
rates over the last two years of a classification to coincide with the average of the
death rates over the first two years of the newly adopted classification. That is, a
comparability ratio is defined as the sum of the death rates in the first two years
of a newly adopted classification divided by the sum of the death rates in the last
two years of the previous classification. Since France adopted ICD 8 in 1968, ICD
9 in 1979 and ICD 10 in 2000, three sets of comparability ratios are developed.
In order to obtain comparable data over the complete period under consideration,
the number of deaths in a new classification is divided by the comparability ratio
linking this classification with the previous one, etc. This ensures that mortality
rates are continuous at the junction points between classifications. The following
analysis is applied to the adjusted death rates for women in France.

4.2 Model Fitting

We begin by studying the observed mortality rates. Figure 1a presents the log-
mortality rates over time for the age-group 65–69; and Figure 1b presents them
over age-group for calendar year 2008. We opt to display this age-group and cal-
endar year since they are most relevant to retirement systems and most recent,
respectively.

Figure 1a suggests minor quadratic behaviour, however, a linear time component
appears sufficient to capture the period trend. Furthermore, the plots over age-
group exhibit the various familiar components of the average log-mortality age
pattern; see e.g. Heligman and Pollard (1980). We adopt the following regression
formula for women in France:

ηi(x, t) = β0,i + β1,i,x + β2,i,x · t.

The resulting fit is presented in Figures 1a and 1b with dashed lines. The dataset
contains 7, 581 observations and is fit using 228 parameters. That is, for each of
the 6 causes and 19 age-groups, 2 parameters are used: a linear function of time.
The fit is generally very good, with variations by cause.

A subset of the regression output, namely the parameter estimates and accom-
panying standard errors for causes 1–3, are presented in Table 3. Of note is that
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Figure 1: Observed (log) Mortality Rates for Women in France

(a) Over time (age 65–69)

(b) Over age-group (calendar year 2008)
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the standard errors of the regression estimators are rather large. As a result of large
parameter uncertainty, we obtain statistical significance with respect to the F-test
but not with respect to the t-test; see statistical references such as Lehmann (1959)
for elaboration on the analysis of variance. The test results indicate that the chosen
covariates are relevant but estimated with a lack of precision. The plots, of which
we present a subset in Figure 1, show that each regression parameter is necessary.
Figures 2a and 2b present the (residual) life expectancy at birth and at retirement

Table 3: Regression Parameter Estimates and Standard Errors for Infectious and
Parasitic Diseases (1), Cancer (2), Diseases of the Circulatory System (3)

Cause 1 Cause 2 Cause 3
Parameter Age Estimate Standard Estimate Standard Estimate Standard

Group Error Error Error
intercept -6.4808 11.0090 -9.1761 31.7094 -8.5239 29.2695
age 1–4 -1.6096 28.7990 0.3439 42.3802 -1.6447 62.2479

5–9 -3.3859 56.6987 -0.3051 47.8764 -2.4305 90.4259
10–14 -3.8401 67.5356 -0.3768 48.9295 -1.6767 73.0729
15–19 -3.1747 53.4661 -0.1843 46.3265 -1.4852 58.8771
20–24 -2.5047 39.8852 -0.0839 44.0787 -1.0398 49.1690
25–29 -1.7471 33.5019 0.3527 40.1939 -0.6175 45.1855
30–34 -1.5229 29.4201 0.9086 36.8240 -0.2465 39.7657
35–39 -1.5923 27.1170 1.5028 34.4846 0.1551 36.7145
40–44 -1.5785 27.2555 2.0658 33.3180 0.5866 34.4277
45–49 -1.5345 26.0755 2.5646 32.6741 1.1029 32.4697
50–54 -1.6048 24.3584 2.9824 32.3589 1.6592 31.2255
55–59 -1.5112 22.5744 3.3243 32.1661 2.2283 30.4129
60–64 -1.3390 20.8704 3.6416 32.0389 2.8555 29.8728
65–69 -1.0809 18.2866 3.9908 31.9483 3.5299 29.5888
70–74 -0.7616 16.4663 4.3412 31.8809 4.1973 29.4312
75–79 -0.5057 15.0162 4.6934 31.8338 4.8440 29.3547
80–84 -0.3434 14.1773 5.0085 31.8034 5.4037 29.3169
85+ -0.1393 13.3679 5.3489 31.7832 6.0128 29.2958

t -0.0619 0.5384 -0.0192 1.0673 -0.0551 1.3468
t*age 1–4 -0.0146 1.5816 -0.0086 1.4766 0.0271 2.4092

5–9 0.0096 2.5651 0.0025 1.5965 0.0198 3.5771
10–14 0.0167 2.8696 0.0022 1.6334 -0.0001 3.3784
15–19 0.0027 2.5683 0.0025 1.5457 0.0260 2.3083
20–24 -0.0011 1.9784 0.0089 1.4383 0.0309 1.9364
25–29 -0.0325 2.1237 0.0085 1.3222 0.0204 1.8900
30–34 -0.0262 1.7662 0.0084 1.2205 0.0291 1.6552
35–39 -0.0043 1.3749 0.0118 1.1461 0.0282 1.5655
40–44 -0.0063 1.4035 0.0119 1.1128 0.0262 1.5015
45–49 -0.0011 1.2911 0.0134 1.0939 0.0258 1.4425
50–54 0.0175 1.0589 0.0125 1.0854 0.0228 1.4079
55–59 0.0253 0.9410 0.0135 1.0798 0.0216 1.3830
60–64 0.0285 0.8634 0.0145 1.0762 0.0236 1.3652
65–69 0.0382 0.7421 0.0134 1.0738 0.0219 1.3567
70–74 0.0415 0.6805 0.0133 1.0720 0.0244 1.3516
75–79 0.0505 0.6275 0.0133 1.0707 0.0267 1.3492
80–84 0.0604 0.5984 0.0145 1.0698 0.0331 1.3480
85+ 0.0748 0.5748 0.0162 1.0692 0.0420 1.3473

age, respectively, for women in France. The observed life expectancy is plotted with
points, the fitted life expectancy with dashed lines. As a result of our model selec-
tion criteria, the life expectancy fit is good. The observed life expectancy appears
to be decaying, which the fit is able to capture.

4.3 Causal Mortality Shocks

Figures 3a and 3b present the impact of eliminating cancer (cause 2) on life ex-
pectancy at birth and retirement age, respectively. The cure for cancer results in
an increase of 3.43 years of life for newborns and 2.21 years for 65 year-olds in 2008.
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Figure 2: Life Expectancy for Women in France

(a) At birth (b) At retirement age (65)

For life insurance companies and pension funds, a cure for cancer would then have
dramatic implications.

It is evident that the hypothetical gain in life expectancy from eliminating can-
cer is larger in more recent calendar years; most especially for older ages as demon-
strated in Figure 3b. The importance of cancer as a cause-of-death has been increas-
ing with time and is most relevant for older adults. This is intuitive, but difficult
to discern from observed data only, such as plots provided in Figure 1.

For example, one might perceive a decrease in cancer deaths for a specific age-
group. To gain insight into the behaviour of cancer mortality, it should be considered
in relation to total mortality. It is plausible that an age-group is transitioning to
better overall mortality, but that cancer prevalence is increasing as a cause-of-death,
rather than decreasing. Finally, the age-groups must be aggregated to obtain the
impact of cancer on life expectancy over time. This is a difficult obstacle that the
multinomial model overcomes.

Figure 3: The Impact of Eliminating Cancer on Fitted Life Expectancy

(a) At birth (b) At retirement age (65)
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4.4 Forecasting Residual Life Expectancy

Time is treated as a continuous covariate in the model. Therefore, we avoid having
to delve into time-series analysis for forecasting purposes. However, as with any
form of forecasting, the implications of projections must be carefully considered. In
addition to the inherent issues when forecasting, an additional cause for concern
in our case study is the large parameter uncertainty. Consequently, we limit the
forecasting period to a ten year horizon.

For the forecasting period, we emphasize the uncertainty driven by potential
causal shocks rather than those originating from the process and estimated pa-
rameters. A crude idea of uncertainty is provided by comparing the forecasted
life expectancy under the scenario that cause i is eliminated for each i. Figure
4 presents the fitted and forecasted life expectancy, where the forecast labelled i
represents the scenario that cause i is eliminated. For example, the scenario of a
cure for cancer is represented by forecast 2, which has a very large impact on life
expectancy at birth as well as life expectancy at retirement age. The projection
labelled 0 represents the scenario of no causal shocks. Deaths from cancer (cause

Figure 4: Forecasted Life Expectancy conjoined with Cause-Elimination

(a) At birth

(b) At retirement age (65)

2) and the circulatory system (cause 3) are especially relevant, which is evident in
Figure 4 by the magnitude and sustainability of the increase in life expectancy. Dis-
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eases of the circulatory system were the most important causes of death about 50
years ago. While cancer already became the most important cause for middle ages
(see Figure 4a), it is expected to become the most prevalent one at older ages in the
next 10 years (Figure 4b). Therfore, a cure for cancer will have even more impact
in ten years than today, especially at older ages. Deaths from the remaining causes
(causes 1, 4, 5) display a similar fit (see Figure 1a), but are less than those from
cancer and the circulatory system and therefore less relevant to life expectancy.

5 Conclusions

The aim of this paper is to provide an alternative approach to cause-of-death mortal-
ity modelling. This is especially relevant under current European pension reforms.
Previous work has considered modelling causal forces of mortality. A consequence
of the instantaneous perspective is that survival is treated differently from death.
In the multinomial logistic framework that utilizes annual probabilities, survival is
a competing outcome and is treated the same way as the other outcomes. Conse-
quently, the annual approach assigns less probability to survival as a result of cause-
elimination than does the instantaneous approach. A result of cause-elimination is
that the probabilities of the remaining outcomes are adjusted. Without any prior
knowledge of the governing behaviour between the various outcomes, we adjust all
remaining outcomes similarly; that is, proportional to their probability.

The multinomial logistic framework is easy to implement. It is also easy to
quantify the impact of cause-elimination or shocks on mortality metrics such as life
expectancy, since the model provides an intuitive framework for any combination
of shocks on the various considered causes. Given the accessibility of this modelling
framework, it can readily be used in practice. Finally, the framework allows for a
straightforward implementation of information with respect to known links between
the various causes; although such links are not investigated in this paper.

Treating time as a continuous covariate is appealing since it avoids having to
delve into time-series analysis for forecasting purposes and consequently, projections
are a trivial exercise. However, as with any form of forecasting, the implications of
projections must be carefully evaluated. Thus, a shift from continuous to categorical
time is worthy of exploration, and must be carefully considered to avoid violating
the law of parsimony.

In addition to exploring potential improvements to the modelling framework,
we intend to apply the model to multiple countries and contrast our results with
instantaneous modelling approaches. Such a comparison will provide a broadened
perspective on the analysis of causal mortality data.
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A A Comparison of Annual and Instantaneous

Mortality

We prove Inequality (1) from Section 3.2 by using Newton’s generalized binomial
theorem. For 0 < a, b < 1, we have

(1− b)a = 1− ab+
a(a− 1)

2
b2 − a(a− 1)(a− 2)

3 · 2
b3 + . . . ,

(1− a)b = 1− ab+
b(b− 1)

2
a2 − b(b− 1)(b− 2)

3 · 2
a3 + . . . ,

such that

(1−b)a−(1−a)b =
a(a− 1)

2
b2−b(b− 1)

2
a2−a(a− 1)(a− 2)

3 · 2
b3+

b(b− 1)(b− 2)

3 · 2
a3+. . .

Each pair on the right hand side is positive for 0 < b < a < 1. That is,

a(a− 1) · · · (a− k)bk+1(−1)k+1 > b(b− 1) · · · (b− k)ak+1(−1)k+1, k ∈ Z+.

To show this we note that 0 < b < a < 1 and 0 < (k − a) < (k − b) for k ∈ Z+.

b < a ⇒ bk < ak

⇒ (1− a)bk < (1− b)ak

⇒ (1− a) · · · (k − a)bk < (1− b) · · · (k − b)ak

⇒ (a− 1) · · · (a− k)bk(−1)k < (b− 1) · · · (b− k)ak(−1)k

⇒ (a− 1) · · · (a− k)bk(−1)k+1 > (b− 1) · · · (b− k)ak(−1)k+1

⇒ a(a− 1) · · · (a− k)bk+1(−1)k+1 > b(b− 1) · · · (b− k)ak+1(−1)k+1.

Consequently, we obtain the following inequality:

(1− b)a > (1− a)b, 0 < b < a < 1.

Inequality (1) is proved by taking a = q(x, t), b = qj(x, t), and noting that 0 <
qj(x, t) < q(x, t) < 1.
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