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Abstract

Longevity risk arising from uncertain mortality improvement is one of the ma-
jor risks facing annuity providers and pension funds. In this paper we show
how applying trend models from non-life claims reserving to age-period-cohort
mortality trends provides new insight in estimating mortality improvement and
quantifying its uncertainty. Age, period, and cohort trends are modelled with
distinct effects for each age, calendar year, and birth year in a generalized lin-
ear models framework. The effects are distinct in the sense that they are not
conjoined with age coefficients, borrowing from regression terminology, we de-
note them as main effects. Mortality models in this framework for age-period,
age-cohort, and age-period-cohort effects are assessed using national population
mortality data from Norway and Australia to show the relative significance of
cohort effects as compared to period effects. Results are compared with the tra-
ditional Lee-Carter model. The bilinear period effect in the Lee-Carter model
is shown to resemble a main cohort effect in these trend models. However the
approach avoids the limitations of the Lee-Carter model when forecasting with

the age-cohort trend model.

Keywords: Mortality Modelling, Age-Period-Cohort Models, Generalized Linear Mod-
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1 Introduction

Quantifying trends and uncertainty in risks is one of the most important factors for
assessing the financial significance of future liabilities for insurance companies. In
non-life insurance, outstanding liabilities for existing policies are usually the largest
item on the liability side of the balance sheet. Similarly in life insurance and pension
funds, future benefit payments, contingent upon mortality experience, represent the
largest liability. The uncertainty in future mortality improvement has a significant
impact on the capital of life insurers under recent risk-based capital requirements
and on the liabilities of defined benefit pension schemes under market value based

accounting requirements.

Non-life and life insurance risk modelling traditionally used different modelling ap-
proaches to quantify trends and uncertainty given the differing nature of the risks
involved. The underlying risks of non-life insurance and life insurance companies
are driven by different risk factors. The former is concerned with uncertain trends
in future claims from different accident years, and the latter with uncertain trends
in claims from improvements in underlying mortality rates. Although the nature of
the two types of liabilities are different, the underlying approach to modelling trends
and uncertainty has been shown to be similar when expressed in a statistical frame-
work. This has been recognised and applied in particular by Venter (2008) and Gluck
and Venter (2009). The approach developed uses generalized linear models (GLM),
a framework previously used for trend modelling by Haberman and Renshaw (1996)
and Renshaw et al. (1996). The aim of this paper is to exploit the insight that non-life
trend models provide in mortality risks as well as forecasting not provided by cur-
rently used models. This paper builds a bridge between the two forms of insurance

modelling.

There are many different approaches to modelling trends and uncertainty in mortality.
Most stochastic mortality models include period effects across ages and increasingly
cohort effects have been recognised resulting in age-period-cohort models. A seminal

model for studying mortality trends and forecasting was developed by Lee and Carter



(1992). Subsequent GLM formulations were developed by Brouhns et al. (2002) and
Renshaw and Haberman (2003a). The Lee-Carter family of models has also been
extended by many authors to capture additional features in the data. The most com-
monly included feature is a cohort effect although there are many models accounting
for different age, cohort and period effects. These are summarized and compared in
Cairns et al. (2009) and Haberman and Renshaw (2011). Cohort effects are usually
added after improvement trends are modelled using period effects. However, since
these improvement trends clearly differ across ages, the period effects are modelled
with a bilinear term in age and time. The introduction of these cohort effects con-
founds the period effects in these models. The precise definition of a cohort effect is a
topic of discussion (e.g. Willets (1999, 2004) and Murphy (2009)). One of the aims of
this paper is to clearly show the importance of main cohort effects and to demonstrate
the relationship between these and bilinear terms where period effects vary by age.

Bilinear effects correspond to interaction effects using regression terminology.

The model includes age, period, and cohort effects without interacting age with either
period or cohort effects. In the trend modelling framework we formulate and assess
age-period, age-cohort, and age-period-cohort models and apply them to national
population data. The age-period and age-cohort models considered have been largely
overlooked in the mortality modelling literature. In the GLM framework, the age,

period, and cohort effects and confidence intervals are readily estimated.

We find that the age-cohort model performs well in capturing trends in mortality data
and we show empirically that it performs much better than an age-period model. We
also show that the impact of a bilinear period effect resembles that of a main cohort
effect. Consequently, the traditional Lee-Carter model has features similar to our
age-cohort model rather than our age-period model. Although we show empirically
that main cohort effects capture trends more effectively than main period effects, this
does not imply that bilinear cohort effects are to be preferred over bilinear period
effects. A comparison between bilinear effects is discussed in Renshaw and Haberman

(2006). The advantages of main effects are that they are more intuitive to model and



interpret and are very useful when forecasting.

Finally, we demonstrate the benefits of the age-cohort model by forecasting cohort
life expectancies. In contrast to period life expectancies, cohort life expectancies have
practical and intuitive interpretations. The trend models allow these to be estimated
naturally and efficiently compared to the traditional period models, even in the case

where the traditional models are modified to include cohort effects.

Organization of the paper. Section 2 introduces the notation and discusses the
structure of the data in triangle form. We outline rudimentary models for insurance
data and their connection to GLMs in Section 3. In Section 4 we fit and assess
the age, period, and cohort mortality trends for Norway and Australia using GLMs.
The impact of data period on estimating the cohort effects and improving model
estimation is studied in Section 5. Section 6 is devoted to fitting the Lee-Carter model
and showing the similarities between the bilinear period and main cohort effects. In
Section 7 we apply the trend models to forecast cohort life expectancy as well as
quantify its uncertainty to show the practical benefits of the approach. Section 8

concludes the paper.

2 Data and Notation

We apply the structure traditionally used in non-life insurance in a life insurance
context. Let row index ¢ represent the year of birth (or cohort) and column index j,
the age at death. The resulting diagonal, k = i + j, represents the calendar year of
death (or period). The year of birth and age at death are equivalent to the accident
year and development year, respectively, in the non-life setting. For a consistent
presentation of the data, we set the lowest value of birth year equal to zero. Mortality
data is typically recorded by calendar year of death; as in the left table in Figure 1.
A consequence of setting the lowest value of birth year equal to zero is that the lowest

value of calendar year of death takes value J, the maximum age.

Let D; ; denote the number of people born in year 7 having died at age j, and hence
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in calendar year k. Furthermore, let FE;; be a deterministic exposure measure, for

example the number of people born in year ¢ having attained age j.

At time I, which represents the most recent calendar year (and birth year), we have
observed deaths for Dy = {D;;, J < k < I}. In order to apply the non-life trend
models to mortality data we transform it to friangle, or in most cases trapezoid,
form by substituting birth year for calendar year as one of the axes. This is shown
in the right table in Figure 1. Both tables in Figure 1 distinctly present the same
data; the formulation on the right is similar to the way non-life insurance data is
presented. Since practically all recent stochastic mortality models are based on period
effects using life table data, this transformation is a distinct and significant shift in
perspective that we show to enhance our understanding of mortality trends. It is also
a more natural way to consider trends when it is the development of mortality by

cohort that is of most importance.

birth age at death j
year ¢ || O e J e J

calendar age at death j 0
year k 0 e 7 e J

J :
realizations of r.v. Dy_j j, realizations of r.v. D; j,

k J<k<I i J<i+j<I

A

Figure 1: Transforming life insurance data, the mortality triangle.

Remark 2.1 In the formulation of the mortality triangle, the interpretation of one
of the indices is not precise. The age at death, usually last birthday, is precise but
the calendar year of death is not. An age at death of value j could have occurred in

yvearst+j—1ltoi+ 7+ 1.



3 Generalized Linear Models in Insurance

In this section we provide a brief introduction to GLMs and outline the well known
Lee-Carter model used for mortality data. For an excellent overview of GLMs, see
McCullagh and Nelder (1989), and for its applications to insurance see Haberman

and Renshaw (1996) and England and Verrall (2002).

3.1 Generalized Linear Models

GLMs encompass a broad class of regression models including standard linear regres-
sion with a normally distributed response, logistic regression and log-linear Poisson
regression. We study the Poisson distribution with mean p; a member of the expo-
nential family with 6 = In(u), ¢ = 1 (although we relax this assumption below to
allow for overdisperion), and b(#) = exp(#). We make use of the canonical link func-
tion for the Poisson distribution, thereby simplifying the GLM framework to Poisson
regression. The log-link function implies that the impact of covariates on the response
is multiplicative in nature (additive on the log-response). With the exception of ¢,

likelihood methods are used to estimate the model parameters.

Overdispersion

A distribution where ¢ = 1, such as the Poisson, is referred to as overdispersed when ¢
is not restricted to unity. That is, when the variability of the data is greater than that
anticipated by the distribution, it is referred to as overdispersed. Overdispersion can
be a sign of incorrect model assumptions. However, where the systematic component
and the mean-variance relationship of the data are appropriate, it is usual to allow

an estimate of ¢ to differ from unity.

Quasi-likelihood is used for regression parameter estimation since the overdispersed
distribution is, strictly speaking, no longer a valid probability distribution. The dis-
persion parameter is typically estimated using Pearson residuals, given by

~ 1 (Xiy — fiig)?
5= 3 Cyohal
dz’+j§1 Vi(fi )



where d is the degrees of freedom of the model (number of observations less number of
unknown parameters) and V' (-) is the variance function of the underlying distribution.

In the case of the Poisson distribution V(u) = p.

Allowing for overdispersion provides added flexibility but is only relevant for esti-
mating second moments. The dispersion parameter plays no role in the estimation
of regression coefficients. However, it directly impacts the standard deviation of the

estimators in the form of a scalar multiplier.

3.2 The Lee-Carter Model

One of the most cited models for mortality modelling and forecasting was proposed
by Lee and Carter (1992). They observed that mortality improvements varied consid-
erably among different age groups. They intended to develop a parsimonious model
that would specify a time-varying index to account for these mortality improvements.
Their model has received a lot of attention in the literature and has been used as the
foundation of many subsequent models; Lee (2000), Cairns et al. (2006, 2009) and
Renshaw and Haberman (2003b, 2006).

The mortality rate is defined as m; ; = D; j/E; ;, where, depending on the measure
of exposure, m is either a crude or central mortality rate. Ignoring the error term,

the Lee-Carter model specifies the following structure for the log mortality rate:
In(m; ;) = a1 + az i,

Due to the multiplicative, or bilinear, structure of the second term on the right-hand
side in the above equation, the parameters o ; and sy, can only be determined up to a
constant factor. To ensure identifiability, the constraints > jo2;=1and Yeke=0
are imposed. These constraints imply that a; ; can be taken as the average, over
time, of the In(m; ;). This is typically done and establishes a link to GLM that we

investigate below.

The « parameters can be viewed as regression parameters with respect to age. The

parameter x is the time-varying parameter discussed above, known as the mortality



index. If ¥ had been a known value, then the structure would be linear with respect
to the parameters and a straightforward application of GLM could be used to fit the

model.

3.3 The Link between Lee-Carter and GLM

The Lee-Carter model is, strictly speaking, not a GLM. However, if we set

1

1
_ 1 Yy
g =T J+1 kEJ n(me—j;),

as suggested in Renshaw and Haberman (2000), we can then reformulate the model
as

ln(mf’j) = o jKk,

where,

1 =7
m;;=mi; (H mkmj-) )
k=J

The m; ; can be interpreted as a normalization of the mortality rates with respect to
the geometric mean for each age j; normalized in the sense that the geometric average
of m; ; with respect to ¢, for each age j, is equal to one. In addition define D;; =
m; ;E; j to be the resulting normalized deaths. The motivation of this normalization
is to model the response in a GLM framework. Any distribution from the exponential
family can be assumed in conjunction with the log-log link function. This link function
implies that the impact of covariates on both the response as well as the log-response
are multiplicative in nature (additive on the log-log-response). The error structure is

likewise affected. The normalized deaths are not used in our approach.

4 Mortality Trends and GLM models

An important application of mortality modelling is to estimate trends in order to
understand potential future mortality improvements. In this section, we study age-
period, age-cohort, and age-period-cohort models and estimate the models using na-
tional population mortality data from Norway and Australia. We use Norway because

it has a long history of mortality data and Australia because this provides a good



contrast, being a younger country with a diverse population. Norway also has a
relatively smaller population compared to Australia. The data was obtained from
the Human Mortality Database (2011). The Norwegian and Australian population
mortality data dates back to calendar years 1846 and 1922, respectively. Although
the reliability and relevance of the most distant data can be called into question, we
found no issues when incorporating the most distant calendar year data. That is, the
inclusion of the distant calendar year data did not noticably impact the estimation or
uncertainty of the age trend or the recent calendar year trend. However, we did find
issues when incorporating the most distant cohort year data. We comment on these

issues below.

The interpretation of main effects in these trend model is important. Compared to
bilinear effects, they are very easy to explain. A main period effect is one that impacts
all ages to the same extent for the period under consideration. Examples of main
period effects could include natural disasters and health pandemics that impact all
ages. Main period effects are difficult to support in practice, even the 1918 influenza

pandemic was not a true main period effect as age-groups were not uniformly affected.

A main cohort effect impacts all members of a particular cohort from birth until
death. The main cohort effect captures the mortality improvement experienced by
that particular cohort. This definition differs slightly from the one provided in Willets
(1999) and Murphy (2009), where cohort effects are essentially described as delayed
period effects. Main cohort effects can also be updated over time for incomplete

cohorts but we do not consider this at present.

4.1 Age-Period Models

We commence with a model that includes distinct age and period effects. This model

is a special case of the Lee-Carter model.

Model Assumptions 4.1 (Log Mortality Model: Age-Period)

e Deaths D;; are independent (overdispersed) Poisson distributed given known



exposure units E; ;.

e The regression formula is given by
ni; = Ej; + Bo+ B2, + B3itjs

where 5270 = 53,0 =0.

e The link function is given by g(u) = In(u).

Figure 2 shows the estimated regression coefficients 527]-, the age coefficients that
describe the age trend, and Bg7i+j, the calendar year coefficients that describe the
period trend. The dispersion parameter was estimated using Pearson residuals and
was found to be 33.65 for Norway and 24.62 for Australia. The dispersion parameter
estimate was used to obtain the confidence intervals shown in Figure 2. The 95%

confidence intervals appear to be very tight, especially for the age coefficients.

There are clear trends in these two sets of coefficients. For both countries, the age
effects are similar. The shape is well recognized and proportional to that of the
average log mortality rates by age. This age pattern of mortality can be fitted using
the eight-parameter model proposed by Heligman and Pollard (1980). The shape of
the curve is more linear in the Australian data than in the Norwegian for ages beyond
thirty. This suggests that Australian data conforms more to an exponential hazard
assumption for older ages. As expected, both countries portray a decay of the age
trend at the extremely old ages and exhibit high variability in this region due to small
numbers of deaths and exposures in the data. The period trend is downward sloping
showing the general mortality improvement in both countries, particularly since the

1970’s in Australia, which agrees with the findings of Booth et al. (2006).
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Figure 2: Norwegian and Australian age trends, calendar year trends,

and residuals from fitted GLM Model 4.1.

11



Residuals are plotted versus birth year to ascertain whether there is a discernable
pattern suggestive of a need for cohort effects. Figure 2 shows that the residuals
are not well behaved. There is an interesting shift in behaviour, common to both
countries, that occurs at the turn of the 20*" century, namely, that we no longer
observe large residuals. This phenomenon is explained by studying the residual plot
versus age (not included in the paper), which shows that all large residuals result
from the model’s inability to capture trends at the extremely old ages (centenarians).
Since, as of 2008, there exist no centenarians born after 1908, we consequently do not

observe large residuals for those later birth years.

Remarks 4.2:

e The residuals we present are the working residuals, those from the final iteration
of the iteratively reweighted least squares fit. They are not for use in diagnostic

checking but serve our purpose of identifying potentially omitted trends.

e The working residuals are not the residuals from a standard regression and are
bounded from below by negative unity. This is a direct consequence of the fact
that we have a non-negative response; observations of value zero yield working

residuals of value negative unity.
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4.2 Age-Cohort Models

The next model includes both age and birth year, or cohort, effects. As far as we can
determine, it has not been considered in the actuarial mortality literature to date. We
fit both Norwegian and Australian population mortality data dating back to calendar
years 1846 and 1922, respectively. We omit the ten most distant years of cohort data,
due to their instability, to ensuring reliable estimation. Omitting more than ten years

of data leads to interesting results that we explore further in Section 5 below.

Model Assumptions 4.3 (Log Mortality Model: Age-Cohort)

e Deaths D;; are independent (overdispersed) Poisson distributed given known

exposure units E; ;.
e The regression formula is given by
nij =M E;; + Bo+ Bii+ B2,
where 810 = (2,0 = 0.

e The link function is given by g(u) = In(u).

Remark 4.4 This model conforms exactly to a GLM version of the classic chain

ladder method used in non-life insurance modelling.
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Figure 3: Norwegian and Australian age trends, birth year trends, and

residuals from fitted GLM Model 4.3.
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Figure 3 shows the estimated regression coefficients 327]-, the age trend, and BM,
the birth year coefficients that describe the cohort trend. The dispersion parameter
estimates were found to be 12.66 for Norway and 8.10 for Australia; both values

substantially lower than in the age-period model.

The age trend has the same shape as fitted by the age-period model. Unlike the period
trend in the age-period model, the cohort trend is smooth. The standard deviations
of the birth year coefficients are relatively large. A lack of data and an increased
number of parameters jointly contribute to this phenomenon. We only have data for
the very old in the most distant cohorts and data for the very young in the most
recent cohorts. Furthermore, we have replaced X calendar year coefficients with, in
our case, X + 100 birth year coefficients. Note that the number of extra parameters

is the maximum age (J = 110) minus the number of the omitted cohort years (10).

The residuals are plotted versus calendar year in order to analyze the impact of
omitting period effects. The results are seen to be much improved over the age-
period model, especially for the Australian data, and do not suggest that calendar
year coefficients are required for each period. The large residuals are due to the
model’s inability to handle the centenarians rather than any misspecification with

respect to either birth year or calendar year assumptions.

4.3 Age-Period-Cohort Models

Finally a model for age, birth year, and calendar year of death effects, usually referred
in mortality modelling as an age-period-cohort model, is considered. This model has
previously been considered in Currie (2006) and Renshaw and Haberman (2006). We
fit both Norwegian and Australian population mortality data. Furthermore, as in
the age-cohort model, we omit the ten most distant years of cohort data in order to

ensure efficient estimation whilst retaining the vast majority of the data.

Model Assumptions 4.5 (Log Mortality Model: Age-Period-Cohort)

e Deaths D;; are independent (overdispersed) Poisson distributed given known

16



exposure units E; ;.

e The regression formula is given by
Nij =W E;j + Bo+ B+ B2, + B3+

where (1,0 = 2,0 = 83,0 = 0.

e The link function is given by g(u) = In(u).

Figure 4 shows the estimated regression coefficients Bg,j, the age trend, the Bl,i, the
cohort trend, and the Bg7i+j, the period trend. The dispersion parameter estimates
were found to be 7.09 for Norway and 6.76 for Australia; both values not significantly

lower than in the age-cohort model.

The age and cohort trends in this full model are almost identical to that in the age-
cohort model. The period trend, however, has changed drastically compared to the
age-period model. The period trends for the two countries are not readily interpreted
and are not comparable. The Australian period trend, especially, is very inconsistent.
This is not surprising considering what was observed in the residuals of the age-period
and age-cohort models. The residuals in the age-period model suggested factors were
missing, those in the age-cohort model did not. This model could be seen as being

overparameterized. Consequently, its results should be considered with some caution.

We have assessed the age-period and age-cohort models by studying their residuals
with respect to the omitted trend. Likelihood based goodness-of-fit statistics are
not available due to our allowance for overdispersion. Alternatives include quasi-
likelihood and residual deviance statistics. We show residual deviance statistics in
Table 1, where we observe that the age-cohort models have a much better fit than the
age-period models. The age-period-cohort models have the lowest residual deviance,
which is to be expected. As deviance statistics are only comparable on the same
dataset, we note that the results of Table 1 are all based on data that omits the most

distant ten cohorts.
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Norway Australia
Residual ~ Number of Residual ~ Number of
Deviance Parameters | Deviance Parameters
Intercept 11,733,398 1] 21,911,465 1
Age-Period 663,279 274 224,996 197
Age-Cohort 219,706 374 73,409 297
Age-Period-Cohort 118,859 537 60,675 383

Table 1: Analysis of deviance.

5 The Impact of Cohort Data Retention

We modify the mortality triangle presented in Figure 1 in order to understand the
impact of the most distant cohorts on parameter uncertainty. These cohorts represent

the older ages in the most distant calendar years.

birth age at death j

year ¢ || O J J
0 ﬁ‘

realizations of r.v. D; j,

i J<it+j<I

| B
; J

Figure b: Data retention, the mortality triangle.

In Figure 5 a threshold level ¢ is included to represent data retention; data below
the line is retained and used in the model. As seen in Section 4, for models that
include cohort effects, we omit the first ten cohorts in order to obtain tractable results
(i.e. § = 10). This is due to a significant lack of information on these most distant

cohorts. In these cohorts, the only available information comes from the extremely
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old ages, where the deaths and exposure data is already scarce and unstable.

The retention level § has a significant impact on the standard deviations (or confidence
intervals) of parameter estimators, but does not significantly impact their respective
expected values. There is a natural trade-off present. We reduce the uncertainty in
the estimation of the retained cohort coefficients by excluding the most distant, and
inherently unstable, cohorts. However, when we exclude these cohorts, we lose data
for the older ages. As a result, the uncertainty in the estimation of the older age
coefficients increases. Figure 6 shows this using the Norwegian dataset and the fit for

the age-cohort model using § = 50 and ¢ = 110.

The results show a significant improvement of the confidence intervals of the birth
year coefficients and a near negligible increase in the confidence intervals of the older
age coefficients. Furthermore, as we exclude the most distant cohorts, we no longer
observe large residuals for corresponding lagged calendar years in the residual plot.
Although it is discernable in Section 4, the elimination of these old age residuals
leaves a clear picture of potentially missing effects. It is evident, for example, that

the age-cohort model is unable to capture the influenza pandemic of 1918.

6 Mortality Modelling using Lee-Carter

In this section we fit Norwegian and Australian population mortality data using the
Lee-Carter model. The Lee-Carter model was chosen as a basis for comparison due
to its prominence and usage in the literature. Figure 7 shows the results of the Lee-
Carter fit. Age and period effects are comparable to results from the fitted GLM

models of Section 4.

In order to compare bilinear with main effects, we investigate the implied cohort effects
present in the Lee-Carter model. The age-interaction parameter in the Lee-Carter
model designates the extent to which, on average, a mortality improvement affects
each age. Since a unique age in a specific calendar year is synonymous with a unique

cohort, the combination of the mortality index with the age interaction, thus far
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Figure 7: Norwegian and Australian estimated Lee-Carter model param-

eters.

21



referred to as a bilinear period effect, has the potential to capture the corresponding
main cohort effect, and vice versa. This type of replacement was discussed in Cairns
et al. (2011), where it was suggested that cohort effects could be omitted in lieu of
well-chosen age and period effects. Our approach is to assess if main cohort effects

can replace bilinear period effects since these are more natural to model and estimate.

Norwegian Implied Lee—Carter Cohort Trend Australian Implied Lee—Carter Cohort Trend

-1

Average (age*mortality index) coefficient
-2
|
Average (age*mortality index) coefficient

1750 1800 1850 1900 1950 2000 1850 1900 1950 2000
Birth Year Birth Year
Figure 8: Norwegian and Australian implied cohort trends for the Lee-

Carter model.

Define v; ; to be the average of ag jkyi, as defined in Section 3.2, over time. We refer
to v;,; as an implied cohort effect. Figure 8 shows the implied cohort trend in the
Lee-Carter model. It is very similar to the main cohort trend from our age-cohort

model and thus provides evidence that supports the replacement argument.

7 Forecasting using the Age-Cohort Model

In this section we forecast life expectancies for our age-cohort model with § = 50, that
is, where the fifty most distant cohorts are omitted from the dataset. Due to the model

assumptions, forecasting in the age-cohort model does not require any form of time
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series extrapolation. This is in contrast to forecasting with period effects; Kuang et al.
(2008a,b) provide identifiability and forecasting solutions under this scenario. Using
the age and cohort trends, we populate the mortality triangle, shown in Figure 1, with
estimates for the unobserved death rates. Note that exposure data does not play a
role in obtaining the estimated death rates but will come to play when determining
the uncertainty around these rates. Having observed and fitted death rates for all
cohorts and ages, a cohort life expectancy table is then produced. The change in
perspective provided by the trend models described in Section 2 naturally results in
cohort life expectancies. Cohort life expectancies are much more meaningful than
period life expectancies in quantifying future longevity. Figure 9 shows the expected

lifetime at birth plotted against year of birth for Norway and Australia.

Norwegian Cohort Life Expectancy Australian Cohort Life Expectancy
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Figure 9: Norwegian and Australian life expectancy at birth.

The uncertainty of these estimated life expectancies is obtained using simulation.
First, as a means of addressing parameter uncertainty, we simulate the necessary re-
gression coefficients from a multivariate normal distribution. Recall that the regres-

sion coeflicients are maximum likelihood estimators; consequently, they are asymp-
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totically normally distributed with a covariance matrix obtained via the inverse of
the Fisher-information. Next, with the obtained simulated regression coefficients,
we simulate deaths using the overdispersed Poisson assumption. Simulation from
the Poisson distribution addresses the process uncertainty inherent in our stochastic
model. In order to simulate deaths, we require a measure of exposure; we utilize the
average exposure by age of the observed data. In other words, for the simulated data,

the cohorts are assumed to have the same exposure levels varying by age.

Figure 10 shows the results of 1,000 simulations. This figure shows the uncertainty
in the forecasted life expectancies increases as less information is known about the
cohort. Higher levels of both process and parameter uncertainty contribute to this

phenomenon.

Norwegian Cohort Life Expectancy at Birth Australian Cohort Life Expectancy at Birth
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Figure 10: Norwegian and Australian life expectancy at birth for 1,000

simulated scenarios.
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8 Conclusions

This paper has shown how trend modelling methods commonly used in non-life insur-
ance to estimate trends in claims experience can enhance the modelling of mortality
data. Although doing this is not novel, by treating mortality data in a structure
that is similar to that used in non-life insurance, the different perspective to that
traditionally used based on life table period data produces models that are relatively
easy to estimate, have more direct interpretation and a more natural application to

forecasting mortality.

Underlying periodic mortality drivers typically affect a subset of ages and can have
immediate and/or delayed consequences; examples include anti-smoking campaigns
and new drugs to treat chronic diseases common at older ages. Many stochastic
mortality models, motivated by Lee and Carter (1992), include period effects with
age interaction to capture time trends varying by age and require additional cohort
effects to capture missing trends. We model this using a mortality effect specific
to each cohort, namely, the main cohort effect. This approach greatly simplifies
model estimation and parameter uncertainty calculations as well as having improved
forecasting implications. The model was naturally applied to forecasts of cohort life

expectancies.

In conclusion, there is a caution in utilizing the commonly used bilinear period effect
with respect to forecasting. Namely, it supposes that for each age, the share of future
mortality improvements, given by projections of the mortality index, coincide with the
share of past mortality improvements. In other words, age groups that have seen the
greatest mortality improvement in the past are forecasted to experience the greatest
mortality improvement in the future. This pitfall has been widely recognized and is
addressed in a variety of ways; see e.g. Booth et al. (2002) for an Australian context.

Such issues are fortunately not inherent in our age-cohort model.
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