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Abstract

Reverse mortgages provide an alternative source of funding for retirement income
and health care costs. The two main risks that reverse mortgage providers face are
house price risk and longevity risk. Recent real estate literature has shown that the
idiosyncratic component of house price risk is large. We analyse the combined impact
of house price risk and longevity risk on the pricing and risk profile of reverse mortgage
loans in a stochastic multi-period model. The model incorporates a new hybrid hedonic-
repeat-sales pricing model for houses with specific characteristics, as well as a stochastic
mortality model for mortality improvements along the cohort direction (the Wills-
Sherris model). Our results show that pricing based on an aggregate house price index
does not accurately assess the risks underwritten by reverse mortgage lenders, and
that failing to take into account cohort trends in mortality improvements substantially
underestimates the longevity risk involved in reverse mortgage loans.
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1 Introduction

A growing literature addresses the pricing and risk management of reverse mortgages and

other equity release products. More and more sophisticated pricing techniques are being

used and a range of different models have been developed for the health-related termination

of equity release products. Several studies including Wang et al. (2008), Li et al. (2010)

and Yang (2011) assess the impact of longevity risk on the pricing and risk management of

reverse mortgages.

A key risk factor - house price risk - has received relatively less research attention. Previous

studies have typically assessed house price risk based on market-wide house price indices. For

example, Chen et al. (2010), Yang (2011) and Lee et al. (2012) model house price risk using a

nationwide house price index for the United States, whereas Hosty et al. (2008) and Li et al.

(2010) use a nationwide index for the UK. Wang et al. (2008) average house prices in eight

capital cities in Australia. Sherris and Sun (2010), Alai et al. (2013) and Cho et al. (2013) use

city-level data for Sydney, Australia. Reverse mortgage loans implicitly include no-negative

equity guarantees that are basically a portfolio of options on individual properties, instead

of an option on a portfolio of properties. Therefore, pricing reverse mortgage loans based

on aggregate house price data does not take into account the large idiosyncratic component

in house price risk. Recent real estate research has shown that the trends and risks in

houses prices vary substantially across different submarkets within a city (see, e.g., Bourassa

et al., 1999, 2003; Ferreira and Gyourko, 2012; Hanewald and Sherris, 2013). Standard

property valuation techniques take into account the characteristics of the property and of

the surrounding neighbourhood (see, e.g., Shao et al., 2013, for a recent literature review).

One major reason that idiosyncratic house price risk is not widely accounted for in the

current literature is the limited public access to individual house transactions data (Li et al.,

2010).
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The aim of our study is to assess how idiosyncratic house price risk and longevity risk impact

the pricing and risk analysis of reverse mortgage loans. We model house price risk using

a hybrid hedonic-repeat-sales model for projecting future values of properties with specific

characteristics (Shao et al., 2013). The model is estimated using a large data set on individual

property transactions. Different mortality assumptions are tested to assess the impact of

longevity risk: we compare the results obtained using deterministic mortality improvements

and two different stochastic mortality models respectively developed by Cairns et al. (2006)

and Wills and Sherris (2008). We also test the sensitivity of the results with respect to the

assumptions on non-mortality related causes of reverse mortgage termination, including entry

into long-term care, prepayment and refinancing. We use the pricing technique developed in

a recent paper by Alai et al. (2013). Our paper extends the work presented in the six-page

conference paper by Shao et al. (2012), where the same house price model was used to study

the impact of idiosyncratic house price risk on reverse mortgage pricing, but mortality rates

employed in Shao et al. (2012) were taken from the 2008 period life table of the Australian

population without taking into account mortality improvements.

The results of our study show that pricing reverse mortgage loans based on an average house

price index results in a substantial misestimation of the risks in reverse mortgages. The

financial risks are underestimated for reverse mortgage loans issued with low loan-to-value

ratios and overestimated for loans with high loan-to-value ratios. Longevity risk is another

important risk factor. The comparison of the different mortality models shows that the key

factor is the assumption with respect to the trend, rather than with respect to the uncertainty

of future mortality rates. The results are found to be relatively robust to the assumptions

on non-mortality causes of termination.

The remaining part of this paper is arranged as follows. Section 2 describes the data. Sec-

tion 3 develops a pricing framework for reverse mortgages allowing for idiosyncratic house

price risk and longevity risk. We explain how to estimate and project disaggregated house
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price indices and stochastic discount factors and describe the stochastic model used to fore-

cast future mortality rates. Based on these building blocks, values of No-Negative Equity

Guarantees (NNEG) embedded in reverse mortgage loans and the mortgage insurance pre-

mium rates are calculated in Section 4. Robustness tests are also performed to test whether

the results are sensitive to the assumptions with respect to termination rates. The last

section concludes.

2 Data

Our study is based on Australian data. Residex Pty Ltd, a Sydney-based company, provides

a large data set containing individual house transactions in the Sydney Statistical Division

over the period 1971-2011. Sydney is the largest city in Australia. About one fifth of

Australia’s population resided in the Sydney Statistical Division as of June 2010 according

to numbers published by the Australian Bureau of Statistics. We also use data on Sydney

rental yield rates obtained from Residex, Australian GDP growth rates from the Australian

Bureau of Statistics, and zero-coupon bond yield rates from the Reserve Bank of Australia.

The economic time series are available for the period 1992-2011.

We use mortality rates for the Australian male and female population aged 50-109, obtained

from the Human Mortality Database. Mortality data are available for the period 1921-2009,

but only data for 1970-2009 are used due to the obvious change in mortality trends before

and after 2007. Cocco and Gomes (2012) document that the average annual increases in life

expectancy are much larger after 1970 than before in eight OECD countries. To investigate

whether a similar trend break occurs in Australian data, we plot the averaged log mortality

rates (averaged across age groups) for males and females in Fig. 1. There is a noticeable trend

break in the early 1970s. We therefore use mortality data from 1970 onward. This choice

is also justified by changes in the reporting of Australian population and death statistics in

1971 (Andreeva, 2012).
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Fig. 1. Average log mortality rates for Australian males and females, ages 50-100, 1921-2009.

3 A reverse mortgage pricing framework allowing for idiosyncratic

house price risk and longevity risk

3.1 The reverse mortgage contract

We model a reverse mortgage loan with variable interest rates and a single payment at

issuance. The outstanding loan amount accumulates until the borrower dies or permanently

leaves the house due to non-mortality reasons. This contract design is the most common form

of equity release products in the United States (Consumer Financial Protection Bureau, 2012)

and in Australia (Deloitte and SEQUAL, 2012). We focus on single female borrowers who

are the most common reverse mortgage borrowers in the United States (Consumer Financial

Protection Bureau, 2012). In Australia, the majority of reverse mortgage borrowers are

couples, and single females are the second most common borrowers (Deloitte and SEQUAL,

2012).

The outstanding reverse mortgage loan amount for a single borrower aged x is a function of
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the random termination time Tx:

LTx = L0 exp

(
Kx+1∑
t=1

(
r

(1)
t + κ+ π

))
, (1)

where L0 is the issued net loan amount, Kx = [Tx] is the curtate termination time of the

contract, r
(1)
t is the quarterly risk-free rate which is assumed to be the one-quarter zero-

coupon bond yield rate, κ is the quarterly lending margin, and π is the quarterly mortgage

insurance premium rate charged following the assumptions in Chen et al. (2010). The loan-

to-value ratio is defined as the ratio of the loan amount L0 to the house price H0 at the

issuance of the loan.

We assume that the property can be sold immediately when the contract is terminated.

The sale proceeds (less transaction costs) are used to repay the outstanding loan and the

remaining amount goes to the borrower’s estate. In case the sale proceeds are insufficient

to repay the outstanding loan, the lender or the lender’s insurer are responsible for the

shortfall. The risk that the loan balance exceeds the house price at termination is referred

to as cross-over risk.

Reverse mortgages in the United States and in Australia include a No-Negative Equity

Guarantee (NNEG), which caps the borrower’s repayment at the house price HTx at the

time of termination Tx. The net home equity of the borrower is the property value less the

required loan repayment:

Net EquityTx = HTx −min{LTx , HTx} = max{HTx − LTx , 0}, (2)

which guarantees that the net home equity of the borrower is non-negative and gives an

explicit description of the no-negative equity guarantee (NNEG) in the reverse mortgage

loan. The NNEG protects the borrower against the downside risk in future house prices. The

guarantee is comparable to a put option with the collateralised property as the underlying
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asset and an increasing strike price (see, e.g., Chinloy and Megbolugbe, 1994).

This paper adopts the valuation approach developed in Alai et al. (2013) and applied in Cho

et al. (2013) to value reverse mortgage loans from the lender’s perspective. We calculate the

values of NNEG based on quarterly payments. The possible loss of the lender is a function

with respect to future house prices:

LossTx = max{LTx − (1− c)HTx , 0}
Kx+1∏
s=1

ms, (3)

where c captures the transaction cost in the sale of properties, and ms is the risk-adjusted

discount factor during the sth quarter.

The NNEG is the expected present value of the provider’s expected future losses:

NNEG =
ω−x−1∑
t=0

E
[
t|q

c
x Losst+1

]
, (4)

where ω is the highest attainable age, and t|q
c
x = Pr(t < Tx ≤ t + 1) is the probability that

the contract is terminated between t and t+1. Extending the work by Alai et al. (2013) and

Cho et al. (2013), we allow the termination probability to be a random variable. Following

these papers, we assume that the costs for providing the NNEG are charged to the borrower

in the form of a mortgage insurance premium with a fixed premium rate π accumulated

on the outstanding loan amount. The expected present value of the accumulated mortgage

insurance premium is given by:

MIP = π
w−x−1∑
t=0

E

[
tp
c
x Lt

t∏
s=0

ms

]
, (5)

where tp
c
x = Pr(Tx > t) is the probability that the contract is still in effect at time t, and

m0 is defined to be 1. The accumulated mortgage insurance premium should be sufficient to

fund the losses arising to the lender from the embedded NNEG. We calculate the value of
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quarterly mortgage insurance premium rate π by equating NNEG and MIP.

To assess the impact of stochastic mortality, we also calculate the difference between the

NNEG and MIP, but allowing for uncertainty in the probabilities t|q
c
x and tp

c
x. We denote

this shortfall as SF :

SF =
ω−x−1∑
t=0

[
t|q

c
x Losst+1

]
− π

w−x−1∑
t=0

[
tp
c
x Lt

t∏
s=0

ms

]
. (6)

Note that the two terms in Equation (6) differ from NNEG and MIP by the missing expec-

tation operator after the summation symbols. SF is expected to have an expected value of

zero but the dispersion can be large if mortality shows very volatile improvements. The Tail

Value-at-Risk of the shortfall are used to assess the impact of stochastic mortality on the

risks underwritten by reverse mortgage providers.

3.2 The hybrid house price model

In the residential house price literature, the value of a house, Vit, is generally expressed as

Vit = QitPt, where Qit is the quality measure of the house and Pt is the house price index

(Englund et al., 1998; Quigley, 1995). A range of models are developed to disentangle the

two components. Standard models include the hedonic model, the repeat-sales model and

the hybrid hedonic-repeat-sales model. A typical hedonic model expresses the logarithm of

the house price as a function of a property’s characteristics, locations, amenities, and other

variables that add values to the house (Bourassa et al., 2011). The hedonic model has the

heterogeneity problem and possible specification errors. The repeat-sales model addresses

these shortcomings by differencing the regression equation in the hedonic model. The repeat-

sales model requires observations on properties that are transacted multiple times. The

hybrid hedonic-repeat-sales house price model, first proposed by Case and Quigley (1991),

combines the advantages of the hedonic model and the repeat-sales model.
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A recent study by Shao et al. (2013) compares methods of constructing disaggregated house

price indices and develops a new hybrid hedonic-repeat-sales house price model. The model

is given by three stacked equations. The first equation is a modified hedonic house price

regression on houses that are transacted only once in the sample period. The regression can

be expressed as follows:

Vit = α + T ′β +X ′γ +X ′∆T + ηi + ξit, (7)

where Vit is the natural logarithm of the value of an individual house i at time t, α is the

intercept, T is a vector of time dummy variables, X is a vector of property characteristics, β

and γ are vectors of coefficients, ∆ is a matrix of coefficients of the interactions between time

dummy variables and house characteristics, ηi captures the specification error, and ξit is the

disturbance term. The sum of the specification error and the disturbance term is denoted

by εit = ηi + ξit.

The second stacked equation is to use Equation (7) again on houses that are transacted more

than once, but excluding the last sale of each property.

The third stacked equation is the differenced Equation (7), which expresses the differenced

log house prices with respect to time dummy variables and their interaction terms with house

characteristics:

Vit − Vis = D′β +X ′∆D + ξit − ξis, (8)

where D is a vector containing the differenced time dummy variables. If the first sale is at

time s and the second at t, the values of the sth and tth components in D are respectively -1

and 1 with other components being zeros.
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For houses i and j (i 6= j), the assumptions with respect to the error terms are:

E(ξit) = 0, E(ηi) = 0 ;

E(ξ2
it) = σ2

ξ , E(η2
i ) = σ2

η ;

E(ξitξjs) = 0 if (i− j)2 + (t− s)2 6= 0 ;

E(ηiηj) = 0 if i 6= j;

E(ηiξit) = 0.

(9)

Based on the above assumptions, the covariance matrix of the three stacked equations that

accounts for the dependence between repeated sales of the same property can be expressed

as follows:

Cov =


σ2
εIM 0 0

0 σ2
εIN −σ2

ξIN

0 −σ2
ξIN 2σ2

ξIN

 , (10)

where σ2
ε is the variance of εit, σ

2
ξ is the variance of ξit, M is the number of houses with

single transactions, N is the number of pairs of repeat-sales in the repeat-sales equation,

and Id denotes a d-dimensional identity matrix. It can be shown that the variance of εit is

σ2
ε = σ2

η + σ2
ξ .

We estimate a version of the hybrid hedonic-repeat-sales model developed by Shao et al.

(2013) that includes more detailed geographic variables in the vector X containing the prop-

erty’s characteristics. In particular, we additionally include a property’s geographic coordi-

nates (longitude, latitude) and dummy variables indicating whether the property’s postcode

area is located directly next to the central business district, the Sydney harbour, the coast-

line, a park or an airport. To avoid multicollinearity problems, we exclude the postcode

dummy variables that are included in the model estimated by Shao et al. (2013). Another

difference is that we use the hybrid model to estimate monthly house price indices, while

Shao et al. (2013) focus on yearly indices.
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The estimated parameters γt and βt are used to construct the aggregate house price index

using the following equation:

Pt = 100 exp
(
γt + X̄0βt

)
, (11)

where X̄0 is a row vector of average values of characteristics in the base year. The price

index for a particular type of house, denoted as k, is calculated as:

P k
t = 100 exp

(
γt +Xkβt

)
= Pt exp

((
Xk − X̄0

)
βt
)
, (12)

where Xk is a row vector of the characteristic variables for houses of the type k.

3.3 Projection of future house prices and discount factors

This section projects future house price indices based on the historical indices constructed

in Section 3.2. Stochastic discount factors are then generated based on the projections.

3.3.1 Aggregate house price index projection

Following Alai et al. (2013) and Cho et al. (2013), a Vector Auto-Regression (VAR) model

is used to project future average house price growth rates and future risk-adjusted discount

factors. The VAR model is given by:

Yt = κ+

p∑
i

ΦiYt−i + Σ1/2Zt, (13)

where Yt is a vector of K state variables, p is the lag length in the model, Φi is a K-

dimensional matrix of parameters, Σ is the covariance matrix, Σ1/2 is the Cholesky decom-

position of Σ, and Zt is a vector of independently distributed standard normal variables.

Five state variables are included in the model (K = 5): one-quarter zero-coupon bond yield
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Table 1. Information criteria for VAR models with
different lags.

Criterion VAR(1) VAR(2) VAR(3) VAR(4)

AIC -15.862 -17.547 -17.552 -17.394
BIC -14.935 -15.834 -15.042 -14.073
AICc -15.792 -17.287 -16.937 -16.193

rates r
(1)
t , the spread of five-year1 over one-quarter zero-coupon bond yield rates r

(20)
t − r(1)

t ,

Australian GDP growth rates gt, Sydney average house price index growth rates ht, and

Sydney rental yield rates yt. All the variables are converted to continuously compounded

quarterly rates. The data covers the period Sep-1992 to Jun-2011. Individual house price

indices are not included in this VAR model since individual risk should not be priced ac-

cording to the CAPM theory. Systematic mortality risk is also not priced in the model,

following the assumption of independence between mortality and macroeconomic variables

as, for example, in Blackburn and Sherris (2013).2

The optimal lag length of the VAR model is selected based on three commonly used in-

formation criteria: Akaike’s information criterion (AIC), the Schwarz-Bayesian information

criterion (BIC) and Akaike’s information criterion corrected for small sample sizes (AICc).

BIC puts more values on the parsimony of the model setup than AIC. AICc addresses the

problem of the small sample size compared to the larger number of parameters involved in

the VAR model. The values of the three information criteria are shown in Table 1. Although

AIC suggests an optimal lag length of three, the value for VAR(2) is very close, and both BIC

and AICc show that the optimal lag length is two. The estimation results for the parameters

Φ1 and Φ2 and the covariance matrix Σ in the VAR(2) model are given in Table 2.

1Alai et al. (2013) and Cho et al. (2013) use the spread of ten-year over one-quarter zero-coupon bond
yield rates. We compared VAR models based on Akaike’s information criterion and Schwarz’s Bayesian
information criterion, and choose the spread of five-year over one-quarter zero-coupon bond yield rates.

2Several studies report significant short-term correlations between mortality rates and macroeconomic
indicators such as GDP growth rates and unemployment rates. The pro-cyclical link has been explained by
a causal effect of economic conditions on mortality rates (see, e.g., Granados et al., 2008; Hanewald, 2011;
Ruhm, 2007). We are not aware of a study documenting a causal effect of mortality rates on asset prices
and risk premia in the real estate or reverse mortgage market.
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Table 2. Parameter estimates and covariance matrix in the VAR(2)
model.

Parameter Estimates

Variable r
(1)
t r

(20)
t − r(1)

t gt ht yt

Constant 0.165∗ 0.101 1.267∗∗∗ 1.442 -0.018

r
(1)
t−1 1.272∗∗∗ -0.369∗∗∗ 0.852∗∗∗ -0.603 -0.010

r
(20)
t−1 − r

(1)
t−1 0.304∗∗ 0.781∗∗∗ -0.240 3.667 -0.069

gt−1 0.013 -0.002 1.141∗∗∗ -0.223 0.005
ht−1 0.010 -0.012 0.008 -0.134 -0.003
yt−1 0.850∗∗ -0.092 0.725 -6.758 1.196∗∗∗

r
(1)
t−2 -0.306∗∗ 0.177 -0.685∗∗ -0.672 0.027

r
(20)
t−2 − r

(1)
t−2 -0.047 -0.125 -0.014 -6.614∗∗∗ 0.093∗

gt−2 -0.020 -0.001 -0.839∗∗∗ -0.658 0.008
ht−2 0.014∗ -0.001 0.003 0.510∗∗∗ -0.003
yt−2 -0.996∗∗∗ 0.276 -0.997 9.228 -0.216

Covariance Matrix

Variable r
(1)
t r

(20)
t − r(1)

t gt ht yt

r
(1)
t 0.011+ -0.002 0.013+ -0.016 . 0.000

r
(20)
t − r(1)

t -0.002 0.011+ -0.003 0.007 0.001+

gt 0.013+ -0.003 0.045+ 0.026 -0.001
ht -0.016 0.007 0.026 3.250+ -0.017−

yt 0.000 0.001+ -0.001 -0.017− 0.001+

∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01. + > 2*std error; − < 2*std error.
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3.3.2 Stochastic discount factors

Following Alai et al. (2013), stochastic discount factors that reflect the key risks in reverse

mortgage cash flows are used to value the reverse mortgage. The discount factor is modelled

as:

mt+1 = exp(−r(1)
t − λ′tλt − λ′tZt+1), (14)

where λt is the time-varying market price of risk, which is assumed to be an affine function

of the state variables Yt in the VAR (2) model (Ang and Piazzesi, 2003):

λt = λ0 + λ1Yt. (15)

To derive stochastic discount factors based on the VAR model, zero-coupon bond prices are

assumed to be exponential linear functions of contemporaneous and one-quarter lagged state

variables (Shao et al., 2012):

pnt = exp(An +B′nYt + C ′nYt−1), (16)

where An, Bn and Cn are parameters that can be solved for using the following differenced

equations (proof in Shao et al., 2012):


An+1 = An +B′n(κ− Σ1/2λ0) +

1

2
B′nΣBn,

Bn+1 = (Φ1 − Σ1/2λ1)′Bn + Cn − e1,

Cn+1 = Φ′2Bn.

(17)

The initial values of the three parameters in Equations (17) are A1 = 0, B1 = −e1, and

C1 = 0, where e1 denotes a vector with the first component of one and other components of

zeros. The estimated quarterly yield rate with n quarters to maturity at time t is expressed
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Table 3. Correlation coefficients between stochastic discount factors and
state variables.

Variable mt r
(1)
t r

(20)
t − r(1)

t gt ht yt

mt 1.000
r(1) -0.940∗∗∗ 1.000

r
(20)
t − r(1)

t 0.235∗∗ -0.261∗∗ 1.000
gt -0.296∗∗ 0.396∗∗∗ -0.362∗∗∗ 1.000
ht 0.108 -0.298∗∗∗ 0.346∗∗∗ -0.155 1.000
yt -0.315∗∗∗ 0.262∗∗ 0.602∗∗∗ -0.299∗∗∗ 0.202∗ 1.000

∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

as r̂
(n)
t = −(An +B

′
nYt +C

′
nYt−1)/n. The market price of risk is obtained by minimising the

sum of squared deviations of the estimated yield rates from the observed rates:

min
λ

{∑
n

(
r̂

(n)
t − r

(n)
t

)2
}
. (18)

Equations (14) and (15) link the stochastic discount factors to the state variables in the VAR

model. Table 3 reports the correlations between the estimated stochastic discount factors

and the state variables. All correlations, except those with the growth rates of the aggregate

house price index, are economically and statistically significant. The estimated stochastic

discount factors reflect the risks in the state variables.

3.3.3 Disaggregated house price index projection

Disaggregated house price indices for properties with specific characteristics are then linked

to the average house price index using a VAR with exogenous variables (VARX(p̃, q̃)) model,

where the average house price index is the exogenous variable. The model is given by:

hdt = κ̃+

p̃∑
i=1

Φ̃i h
d
t−i +

q̃∑
j=0

Ω̃j ht−j + Σ̃1/2Z̃t, (19)
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where hdt is a vector of growth rates of the disaggregated house price indices, ht is the growth

rate of the aggregate house price index, Z̃t is a vector of independent standard normal

random variables, p̃ is the lag length for the state variables, and q̃ is the lag length for the

exogenous variable. The optimal lag lengths for the VARX model are selected based on the

three information criteria reported in Table 4. All three criteria suggest that a VARX(1,0)

is the optimal specification.

Table 4. Information criteria for VARX models with different
lag lengths (p̃, q̃).

Criteria (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

AICC 9.927 10.231 10.533 11.643 12.131 12.366
AIC 9.317 9.504 9.650 9.327 9.428 9.552
BIC 13.025 13.521 14.009 15.977 16.489 16.725

Using the estimates of the VARX(1,0) model, price indices for houses with specific character-

istics are simulated. The simulation accounts for parameter uncertainty in the VARX model.

We assume that the two parameters Φ̃i and Ω̃j are independent and are normally distributed

and estimate the variance based on the sample. Fig. 2 shows the projected aggregate price

index for Sydney and the indices for houses located in different regions of Sydney, including

the central business district, the coastline, the Sydney harbour, the airport vicinity, and sub-

urbs that have a park. The regional classification is based on the postcode area classification

in Hanewald and Sherris (2013). The prices of houses in these different regions are more

volatile than the average house prices in Sydney.

3.4 Termination of reverse mortgages

Termination triggers of reverse mortgages include mortality, move-out due to health-related

issues, voluntary prepayment and refinancing (Ji et al., 2012). To model the different ter-

mination triggers we use a variant of the multi-state Markov model developed by Ji et al.

(2012). Similar models have been used by Alai et al. (2013) and Cho et al. (2013). We
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Fig. 2. Projection of price indices for houses in different regions of Sydney. Dark-shaded ar-
eas represent 95%-confidence intervals without incorporating parameter uncertainty. Light-
shaded areas are 95%-confidence intervals that take into account parameter uncertainty.
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extend this line of research by allowing mortality rates to be random variables. In the fol-

lowing, we first describe the calibration of the Wills-Sherris stochastic mortality model and

the projection of future mortality rates. We then describe the modelling of the termination

triggers.

3.4.1 Stochastic mortality

Wills and Sherris (2008) develop a multi-variate stochastic mortality model to describe the

volatile improvement of mortality rates over time. The model describes changes in age-

specific mortality rates along the cohort direction as a function of age, time effects and

multiple stochastic risk factors. Observed correlations between the year-to-year changes in

mortality rates of different age groups are incorporated in the multivariate distribution of the

stochastic risk factors. The Wills-Sherris model allows for a more flexible and realistic age

dependence structure than, for example, the one-factor model by Lee and Carter (1992) and

the two-factor model by Cairns et al. (2006). An explicit expression for the age dependence

structure can be derived in the Wills-Sherris model. The Wills-Sherris model has been

applied in several studies analysing the pricing and risk-management of financial products

exposed to longevity risk (see, e.g. Hanewald et al., 2012; Ngai and Sherris, 2011; Wills and

Sherris, 2010).

The model is formulated for the changes of log mortality rates along the cohort direction:

∆c lnµ(x, t) = lnµ(x, t)− lnµ(x−1, t−1) where µ(x, t) is the force of mortality for a person

aged x at time t with x = x1, x2, · · · , xN and t = t1, t2, · · · , tT . These cohort changes are

assumed to follow:

∆c lnµ(x, t) = ax+ b+ σε(x, t), (20)

where a, b and σ are parameters to be estimated, and ε(x, t) follows a standard normal distri-

bution that drives the fluctuation of mortality improvements. To account for age dependence,

ε(x, t) is expressed as a linear combination of independent standard normal random vari-
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ables: εt = [ε(x1, t), ε(x2, t), · · · , ε(xN , t)]′ = Ω
1
2Wt, where Ω is a covariance matrix that

reflects the age dependence structure and Wt is a vector of independent standard normal

random variables.

In the Wills-Sherris model, the log changes in mortality rates along the cohort direction are

mixed effects that can be decomposed into age and period effects. Fig. 3 shows the average

values (averaged over time) of the log changes in mortality rates along the cohort direction

for different ages. There is a linear trend in these log changes, providing justification for

the specification of the Wills-Sherris model. Similar to the Lee-Carter model and the two-

factor CBD model, mortality changes can be decomposed into age and time effects. The

decomposition of the mixed effects in the Wills-Sherris model is shown in the following

equation:

∆c lnµ(x, t) = [ax+ b− g(x)] + [g(x) + σε(x, t)] , (21)

where g(x) is an implicit function of age that captures the trend of the stochastic improve-

ments in mortality rates over time. For example, if g(x) is lower for smaller x, it suggests

that mortality improvements are more pronounced for younger ages. In Equation (21),

[ax+ b− g(x)] is the age effect and [g(x) + σε(x, t)] captures the period effect. For mortal-

ity projections, we are not interested in the value of g(x) since the effect of g(x) is cancelled

in the cohort direction.

The Wills-Sherris model is estimated for male and female mortality rates for ages 50-100 and

years 1970-2009 using a linear regression of Equation (20). The estimated parameters â, b̂

and σ̂ are given in Table 5, and the covariance matrix of the parameters is shown in Table 6.

The estimate for a is negative for males and positive for females. This is consistent with

Fig. 3, where the log changes in mortality rates show a slightly downward sloping trend for

males and an positive trend for females. This pattern implies that over the sample period

the changes in log mortality rates along the cohort direction have been larger for males at

younger ages and for females at older ages.
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Fig. 3. Average changes in log mortality rates along the cohort direction for different ages
for Australian males (left) and females (right), 1970-2009.

Table 5. Parameter estimates for the Wills-Sherris model based on data for Australia, 1970-
2009.

Parameter Male Female

â (×10−4) -16.94 6.39∗∗∗

b̂ (×10−2) 7.07∗∗∗ 3.12∗∗

σ̂ (×10−2) 6.15∗∗∗ 6.73∗∗∗

∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 6. Covariance matrix of estimated parameters in the Wills-Sherris model.

Parameter
Male Female

â b̂ â b̂

â 2.36×10−8 – 3.53×10−8 –

b̂ -1.78×10−6 1.39×10−4 -2.66×10−6 2.08×10−4
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Fig. 4. Binary black-white residuals from the Wills-Sherris model for males (left) and females
(right). The horizontal and vertical axes are respectively the age and the time. Black cells
indicate negative residuals; white cells indicate non-negative residuals.

The estimated residuals from the Wills-Sherris model based on Australian male and female

mortality data are plotted in Fig. 4. The residuals do not show distinct patterns and are

consistent with the assumption of a multi-variate normal distribution. The age dependence

structure is estimated as the covariance matrix of the calculated residuals.

To simulate future mortality rates, the Cholesky decomposition of the covariance matrix Σ

is needed. But due to the fact that the number of years in the data is smaller than the

number of ages, the Cholesky decomposition cannot be directly calculated. Instead, Wills

and Sherris (2008) suggest using the eigenvalues and eigenvectors of the covariance matrix.

Ω has orthogonal eigenvectors, that is:

V V ′ = I, (22)

where V is the eigenvector matrix of Ω and I is the identity matrix. According to the

property of eigenvectors, the following equation holds:

Ω = V ΛV −1 = V ΛV ′ = (V Λ
1
2 )(V Λ

1
2 )′, (23)
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where Λ is a diagonal matrix of Ω’s eigenvalues.

Equation (23) implies that Ω can be expressed as the product of a matrix and its transpose,

which is a generalised Cholesky decomposition. V Λ
1
2 can be used to simulate multi-variate

normal random variables ε(x, t) based on the following equation:

εt = (V Λ
1
2 )Wt. (24)

To extrapolate mortality rates for the oldest old (101-110), we assume that the age depen-

dence structure for these ages is the same as that for age 100. This assumption is justified by

the fact that the generalised Cholesky decomposition of the age dependence matrix, V Λ
1
2 , is

very stable for ages above 100. Values of V Λ
1
2 for selected ages are shown in Fig. 5. The top

two figures show the values of V Λ
1
2 respectively for males and females aged 60, 80, 90 and

100, suggesting that the values for these different cohorts are very different. The bottom two

figures show the values of V Λ
1
2 for ages 96 to 100. The values for the oldest old are almost

the same and the lines overlap.

Based on the estimates of parameters in the Wills-Sherris model and the simulated multi-

variate random variables, future mortality rates are projected. Male and female cohort

survival probabilities derived from the projected mortality rates are shown in Fig. 6.

3.4.2 In-force probabilities

We follow Ji et al. (2012) and Cho et al. (2013) in modelling the different triggers for reverse

mortgage termination, but allow mortality rates to be random variables. The mortality rate

of borrowers is assumed to be lower than that of the population of the same age, in order to

reflect the better health of retirees that still live at home compared to those that have moved

to aged care facilities. At-home mortality rates are derived by applying age-specific scaling

factors to the population mortality rates (Cho et al., 2013; Ji et al., 2012). The probability
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of moving out due to health-related reasons, mainly because of entry into a long-term care

(LTC) facility, is assumed to be a proportion of the mortality rate. Furthermore, voluntary

prepayment and refinancing are specified as functions of the contract duration in years.

These two termination triggers are assumed to be competing risk factors with mortality and

LTC incidence.

Thus, the probability that the reverse mortgage contract is still in force at time t is a function

of the mortality rate and of other termination factors:

tp
c
x = exp

{
−
∫ t

0

(θx+s + ρx+s)µ̂x+sds

} t∏
i=1

[
(1− qprei )(1− qrefi )

]1/4

, (25)

where θx+s is the scaling factor for at-home mortality rates at age x + s, ρx+s is the age-

specific factor that captures LTC incidence, µ̂x+s is the projected quarterly force of mortality

derived from the Wills-Sherris model, qprei is the annual duration-dependent probability of

prepayment, and qrefi is the annual duration-dependent probability of refinancing. Due to

lack of public access to detailed data on these rates or probabilities, assumptions based on

the UK experience given in Institute of Actuaries UK (2005), Hosty et al. (2008), Ji et al.

(2012) and Cho et al. (2013) have been employed in this paper. The parameter assumptions

are summarised in Table 7. Furthermore, Equation (25) implies an assumption that the

force of termination is constant within one year. Mortality rates are projected on an annual

basis in Section 3.4.1. Quarterly mortality rates are obtained by assuming a constant force

of mortality between integer ages.

4 Results

We present results calculated based on the projected house price indices and mortality rates

to show the impact of idiosyncratic house price risk and of longevity risk on the pricing of

reverse mortgages. Robustness tests are performed to test the sensitivity of the results to
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Table 7. Assumptions on termination triggers adopted from Ji et al. (2012) and Cho et al.
(2013).

At-home mortality LTC incidence Prepayment Refinancing
Age scaling factor factor Duration Probability Duration Probability

65-70 0.950 0.100 1-2 0.00% 1-2 1.00%
75 0.925 0.150 3 0.15% 3 2.00%
80 0.900 0.200 4-5 0.30% 4-5 2.50%
85 0.875 0.265 6+ 0.75% 6-8 2.00%
90 0.850 0.330 9-10 1.00%
95 0.825 0.395 11-20 0.50%

100+ 0.800 0.460 21+ 0.25%

different mortality models and to the assumptions about non-mortality termination rates.

4.1 Base case results

We model reverse mortgage loans issued to a single 65-year-old female borrower with a

property valued at $800,000 at the issuance of the loan. $800,000 is about the 2010 median

house price value in the data set we analyse. We assume that the mortgage rate has a

quarterly lending margin of 0.4% following Chen et al. (2010): κ = 0.4% in Equation (1).

The transaction cost of selling the property are assumed to be 6 % of the house price: c = 6%.

In the base case, future mortality rates are projected based on the Wills-Sherris model.

Different house price indices for properties with specific characteristics are compared to assess

the impact of idiosyncratic house price risk. Panel A of Table 8 reports the results for a case

when the house value is modelled using the aggregate house price index for Sydney. Panels

B to G show the results for reverse mortgages on houses in the different regions of Sydney

described in Section 3.3.3. Panels H and I illustrate the impact of the property’s number

of bathrooms or bedrooms. Shao et al. (2013) have identified these variables as important

determinants of differences in house price dynamics. We also compare three different initial

loan-to-value (LTV) ratios (0.2, 0.4 and 0.6) in each panel.
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Table 8 reports the annualised value for the mortgage insurance premium rate π, the value of

the NNEG together with the corresponding standard error, and the 95% Tail Value-at-Risk

(TVaR) of the provider’s shortfall. The mortgage insurance premium rate π charged for the

no-negative equity guarantee is calculated by equating the values for NNEG and MIP. Based

on the value for π, the provider’s actual shortfall SF is calculated allowing for uncertainty

in the survival probability as described in Section 3.1. The TVaR of the provider’s shortfall

is calculated to show the impact of stochastic mortality rates.

Mortgage insurance premium rates and NNEG values vary substantially across Panels A to

I, which shows that location and house characteristics are important factors in impacting

the risk of reverse mortgages. Using market-average house price dynamics substantially

underestimates the risks for reverse mortgages with LTV ratios of 0.2 and 0.4 written on

properties in specific regions of Sydney or with specific characteristics. For these LTV ratios,

the mortgage insurance premium, the NNEG value and the TVaR are all higher in Panels

B to I than the corresponding values in Panel A.

The comparison gives different results for an LTV ratio of 0.6: in this case, the NNEG value

in Panel A, where the Sydney index is assumed, is higher than the NNEG in most other

Panels. This can be explained as follows. At a LTV ratio of 0.6, the loan balance is very

likely to exceed the house price at termination. The expected loss for the provider in that

case is larger when the aggregate index is used because the aggregate index has a lower

growth rate and a lower volatility than most of the disaggregated indices (see Fig. 2).

These comparisons show that reverse mortgage providers should model the house price risk

in reverse mortgages using house price models that are disaggregated according to the prop-

erty’s location and characteristics. We illustrate this point with the following example.

Suppose a reverse mortgage provider issues contracts to several 65-year-old female borrow-

ers with different houses represented in Panels B to G of Table 8. We assume the number

of properties is the same in each category. Each loan should be charged the corresponding
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mortgage insurance premium given in Table 8. The average annual mortgage insurance pre-

mium for this portfolio is 0.41%. This value (and each individual premium rate) is higher

than the annual mortgage insurance premium rate of 0.19% calculated based on the Sydney

aggregate index. In this example, pricing based on the Sydney aggregate index substantially

undervalues the no-negative equity guarantee.

4.2 Sensitivity analysis: deterministic mortality

To assess the impact of longevity risk on reverse mortgage pricing we compare the results

obtained using alternative assumptions on the development of future mortality rates. We

first consider a simple deterministic mortality model in which future mortality rates are

assumed to decrease at age-specific constant rates. The model is given by:

∆ lnµ(x, t) = ∆ lnµx, (26)

where ∆ lnµ(x, t) = lnµ(x, t) − lnµ(x, t − 1) denote the year-to-year change in the log

mortality rate at age x and ∆ lnµx is the sample mean of the historical changes in the log

mortality rates. We estimate this model using mortality data for ages 50-100. Data on

mortality rates for the oldest old are scanty and the changes in mortality rates are very

volatile. We assume that mortality rates for individuals aged 101 - 110 remain constant

at the rates in 2009. The assumed age-specific annual decreases in log mortality rates are

shown in Fig. 7. The implied survival curve derived from the deterministic model is compared

with that derived from the Wills-Sherris model in Fig. 7. The deterministic model does not

account for uncertainty in survival trends and substantially underestimates future mortality

improvements compared to the average projection of the Wills-Sherris model.

The first three columns of Table 8 give the mortgage insurance premium rate, NNEG and

TVaR values when the deterministic mortality model is adopted. The values for LTV ratios

of 0.2 and 0.4 are mostly smaller than those based on the Wills-Sherris model, suggesting
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Fig. 7. Average changes in log mortality rates over time and a comparison of the survival
probabilities for a 65-year-old female in the deterministic mortality model and in the Wills-
Sherris model.

that the risk is underestimated when the provider fails to employ an appropriate mortality

model to quantify and forecast mortality improvements.

The main impact of longevity risk on the pricing of reverse mortgages results from the as-

sumed trend in mortality improvements rather than from the uncertainty around the trend.

This can be seen by comparing the TVaR0.95 values of the lender’s shortfall under the de-

terministic mortality model and the Wills-Sherris model. The TVaR0.95 values are small

compared to the NNEG and relatively similar under both models. In addition, the impact of

longevity risk is smaller than the effect of including idiosyncratic house price risk. A possible

reason is the assumption that longevity risk is not priced in the market and not included in

the stochastic discount factors derived from the VAR model.

4.3 Sensitivity analysis: the two-factor Cairns-Blake-Dowd (CBD) model

To further test the results’ sensitivity to the mortality assumptions we consider the popular

two-factor stochastic mortality model developed by Cairns et al. (2006). The model is given

by:

logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄), (27)
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Fig. 8. Binary black-white residuals from the CBD model. The horizontal and vertical axes
are respectively the age and the time. Black cells indicate negative residuals; white cells
indicate non-negative residuals.

where q(t, x) is the death probability of a person aged x at time t, x̄ is the average age in

the population, and κ
(1)
t and κ

(2)
t capture the period effect.

The residuals from the CBD model estimated for Australian males and females (ages 50-

100) are plotted in Fig. 8. The figures show pronounce clustering of residuals from the CBD

model. A possible reason can be the fact that the actual age effect shows more curvature

than the logit-linear specification in the two-factor CBD model.

The residuals from the Wills-Sherris model and from the two-factor CBD model are com-

pared. We average the age-specific residuals over time and calculate their standard devi-

ations. The resulting values are shown in Fig. 9. The residuals from the two-factor CBD

model are generally smaller and much less volatile than the residuals from the Wills-Sherris

model but show patterns in Fig. 8. This reflects the different model assumptions for cohort,

period and age trends as well as the different number of factors for volatility and assumptions

for dependence between cohorts.

We also compare the projected survival curve for a 65-year-old female based on the CBD

model with that based on the Wills-Sherris model. The survival curves are shown in Fig. 10.
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Fig. 9. Comparison of residuals from the Wills-Sherris model and the two-factor CBD model,
males (left) and females (right).

The survival probabilities projected using the CBD model are much lower than those esti-

mated from the Wills-Sherris model and very similar to those calculated from the determinis-

tic mortality model. The uncertainty around the average survival curves is very comparable

in the two stochastic mortality models.

The last three columns of Table 8 show the mortgage insurance premium rates, NNEG and

TVaR values based on the CBD model. All values are very close to those calculated based on

the deterministic model. The values are generally less than those calculated under the Wills-

Sherris model for low LTV ratios (0.2 and 0.4) and greater for high LTV ratios (0.6). These

differences are explained by the different longevity trends projected in the Wills-Sherris

model. In situations where the accumulated loan amount exceeds the house value (more

likely for contracts with high LTV ratios), a longer life expectancy increases the chance that

the house price catches up. This effect is comparable to the price of an in-the-money put

option: the longer the time to maturity, the lower the price of an in-the-money option and

the higher the price of an out-of-the-money option.
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Table 8. Valuation of the mortgage insurance premium rate π and the NNEG for reverse
mortgages with different loan-to-value (LTV) ratios.

Model Deterministic Wills-Sherris Cairns-Blake-Dowd
LTV 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

A. Overall Sydney house price index
π (p.a.) 0.003% 0.230% 3.246% 0.009% 0.360% 2.583% 0.003% 0.237% 3.126%
NNEG 71 12,794 400,017 279 22,393 335,952 90 13,147 379,366
S.E. 17 498 2,131 36 639 2,038 18 491 2,094
TVaR 0.000 0.000 0.000 0.467 6.048 12.913 0.179 5.278 13.487

B. Price index for houses near the central business district
π (p.a.) 0.218% 0.720% 1.829% 0.239% 0.711% 1.621% 0.218% 0.716% 1.819%
NNEG 6,043 42,421 186,092 7,298 46,370 181,302 6,036 42,138 184,776
S.E. 470 1,673 4,092 494 1,680 3,876 463 1,651 4,048
TVaR 0.000 0.000 0.000 6.654 17.148 29.594 6.424 17.779 31.168

C. Price index for houses near to coastlines
π (p.a.) 0.076% 0.255% 1.184% 0.088% 0.302% 1.183% 0.076% 0.257% 1.173%
NNEG 2,062 14,238 110,932 2,624 18,645 124,031 2,070 14,284 109,598
S.E. 289 879 2,399 308 939 2,402 286 866 2,359
TVaR 0.000 0.000 0.000 4.387 11.923 21.331 3.893 11.512 22.120

D. Price index for houses near to an airport
π (p.a.) 0.243% 0.492% 0.967% 0.247% 0.484% 0.901% 0.242% 0.491% 0.966%
NNEG 6,748 28,189 88,181 7,570 30,584 90,594 6,735 28,142 87,983
S.E. 565 1,552 3,146 572 1,554 3,087 558 1,538 3,123
TVaR 0.000 0.000 0.000 8.041 19.035 31.435 8.063 19.653 32.754

E. Price index for houses near to a park
π (p.a.) 0.111% 0.494% 2.720% 0.134% 0.596% 2.267% 0.112% 0.495% 2.662%
NNEG 3,049 28,339 311,635 4,051 38,270 280,287 3,076 28,376 302,862
S.E. 350 1,129 3,250 374 1,205 3,059 345 1,110 3,181
TVaR 0.000 0.000 0.000 5.391 13.544 21.830 4.951 13.445 22.989

F. Price index for houses near to harbour
π (p.a.) 0.146% 0.506% 1.754% 0.173% 0.579% 1.652% 0.146% 0.506% 1.729%
NNEG 4,007 29,090 176,722 5,228 37,101 185,682 4,024 29,034 173,539
S.E. 394 1,218 3,075 414 1,285 3,013 386 1,195 3,014
TVaR 0.000 0.000 0.000 6.119 14.260 23.117 5.858 14.269 24.042

G. Price index for all houses excluding B - F
π (p.a.) 0.040% 0.377% 3.392% 0.058% 0.519% 2.649% 0.041% 0.381% 3.291%
NNEG 1,079 21,307 426,785 1,721 32,963 348,165 1,116 21,539 408,843
S.E. 190 801 2,762 211 913 2,574 188 787 2,697
TVaR 0.000 0.000 0.000 2.766 9.418 16.412 2.167 8.928 16.983

H. Price index for houses with less than or equal to two bathrooms
π (p.a.) 0.010% 0.247% 3.078% 0.019% 0.374% 2.485% 0.011% 0.253% 2.968%
NNEG 269 13,752 370,431 561 23,275 318,003 294 14,080 352,317
S.E. 86 566 2,239 99 692 2,148 87 558 2,198
TVaR 0.000 0.000 0.000 1.028 6.913 13.748 0.634 6.170 14.350

I. Price index for houses with more than two bathrooms
π (p.a.) 0.058% 0.418% 2.868% 0.081% 0.540% 2.376% 0.059% 0.420% 2.781%
NNEG 1,577 23,759 335,272 2,412 34,438 298,788 1,612 23,871 321,653
S.E. 209 893 2,871 232 1,005 2,717 205 874 2,807
TVaR 0.000 0.000 0.000 3.391 10.145 17.505 2.914 9.912 18.420

S.E. is the standard error of the NNEG value. TVaR is the Tail Value-at-Risk of the lender’s shortfall at
the significance level of 95%. ‘Deterministic’, ‘Wills-Sherris’ and ‘Cairns-Blake-Dowd’ denote different
mortality models.
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Fig. 10. Comparison of survival probabilities of the cohort 65 from the Wills-Sherris model
and the two-factor CBD model.

4.4 Sensitivity analysis: LTC incidence, prepayment and refinancing

Other termination triggers such as move-out due to health related reasons, voluntary pre-

payment and refinancing are also important risk factors faced by reverse mortgage providers.

In the base case analysis we use assumptions on these rates and probabilities shown in Table

7. This section tests the sensitivity of the base case results by varying the assumptions on

the LTC incidence, prepayment probabilities and refinancing probabilities. The results are

shown in Table 9.

The numerical results show that the annual mortgage insurance premium rates are stable

for different assumptions on these termination rates and probabilities. Even in a joint stress

test where the LTC incidence, prepayment probabilities and refinancing probabilities are

decreased or increased by 50% at the same time, annual mortgage insurance premium rates

show limited variations. The values of the NNEG and the TVaR are also stable in the

different scenarios. Based on the results shown in Tables 8 and 9, we conclude that the

impact of idiosyncratic house price risk and longevity risk is much larger than that of non-

mortality termination triggers like LTC incidence, prepayment and refinancing.
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Table 9. Sensitivity analysis: valuation of the mortgage insurance premium π and the
NNEG for reverse mortgages for alternative assumptions about LTC incidence, prepay-
ment and refinancing probabilities.

Base LTC Incidence Prepayment Refinancing Joint
↓ 50% ↑ 50% ↓ 50% ↑ 50% ↓ 50% ↑ 50% ↓ 50% ↑ 50%

A. Overall Sydney house price index
π (p.a.) 0.360% 0.377% 0.337% 0.388% 0.335% 0.384% 0.338% 0.430% 0.293%
NNEG 22,393 24,232 20,315 25,189 19,945 25,974 19,310 31,566 15,665
S.E. 639 657 611 698 585 727 561 814 492
TVaR 6.048 6.067 5.945 6.485 5.642 6.811 5.366 7.290 4.914

B. Houses near the central business district
π (p.a.) 0.711% 0.690% 0.719% 0.719% 0.701% 0.728% 0.692% 0.710% 0.688%
NNEG 46,370 46,433 45,593 48,933 43,952 51,721 41,545 54,367 38,674
S.E. 1,680 1,666 1,673 1,753 1,611 1,855 1,521 1,914 1,453
TVaR 17.148 16.877 17.253 17.625 16.703 18.694 15.732 18.835 15.398

C. Houses near to coastlines
π (p.a.) 0.302% 0.304% 0.296% 0.314% 0.291% 0.315% 0.290% 0.327% 0.272%
NNEG 18,645 19,363 17,727 20,175 17,245 21,076 16,485 23,638 14,517
S.E. 939 946 922 994 888 1,046 842 1,115 784
TVaR 11.923 11.901 11.818 12.540 11.340 13.236 10.733 13.882 10.119

D. Houses near to an airport
π (p.a.) 0.484% 0.471% 0.490% 0.485% 0.482% 0.490% 0.477% 0.475% 0.480%
NNEG 30,584 30,682 30,144 31,914 29,323 33,612 27,821 35,087 26,291
S.E. 1,554 1,542 1,550 1,607 1,504 1,697 1,423 1,740 1,376
TVaR 19.035 18.779 19.133 19.476 18.627 20.627 17.573 20.746 17.282

E. Houses near to a park
π (p.a.) 0.596% 0.596% 0.583% 0.625% 0.568% 0.627% 0.565% 0.652% 0.526%
NNEG 38,270 39,580 36,289 41,942 34,964 43,894 33,365 49,497 28,943
S.E. 1,205 1,208 1,187 1,280 1,137 1,349 1,076 1,433 1,001
TVaR 13.544 13.419 13.530 14.132 12.991 14.979 12.241 15.458 11.720

F. Houses near to harbour
π (p.a.) 0.579% 0.578% 0.569% 0.603% 0.556% 0.606% 0.553% 0.625% 0.519%
NNEG 37,101 38,295 35,347 40,351 34,141 42,258 32,559 47,240 28,569
S.E. 1,285 1,288 1,265 1,365 1,210 1,440 1,146 1,530 1,063
TVaR 14.260 14.099 14.248 14.926 13.622 15.821 12.844 16.306 12.247

G. All houses excluding B - F
π (p.a.) 0.519% 0.530% 0.496% 0.554% 0.486% 0.552% 0.487% 0.597% 0.435%
NNEG 32,963 34,840 30,535 36,809 29,573 38,235 28,428 44,928 23,692
S.E. 913 924 890 983 850 1,032 808 1,120 734
TVaR 9.418 9.390 9.335 9.957 8.906 10.514 8.429 11.047 7.892

H. Houses with less than or equal to two bathrooms
π (p.a.) 0.374% 0.389% 0.352% 0.401% 0.348% 0.398% 0.351% 0.441% 0.307%
NNEG 23,275 25,048 21,234 26,087 20,804 26,946 20,107 32,439 16,458
S.E. 692 709 666 751 639 785 610 870 543
TVaR 6.913 6.945 6.797 7.373 6.482 7.758 6.156 8.274 5.670

I. Houses with more than two bathrooms
π (p.a.) 0.540% 0.549% 0.521% 0.574% 0.509% 0.573% 0.509% 0.612% 0.461%
NNEG 34,438 36,185 32,138 38,214 31,075 39,776 29,816 46,166 25,157
S.E. 1,005 1,015 981 1,083 934 1,137 888 1,232 805
TVaR 10.145 10.073 10.106 10.723 9.606 11.337 9.075 11.846 8.544

S.E. is the standard error of the NNEG value. TVaR is the Tail Value-at-Risk of the lender’s shortfall at
the significance level of 95%. The LTV ratio is 0.4 and mortality is forecasted based on the Wills-Sherris
model.
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5 Conclusions

This paper addresses the pricing and risk analysis of reverse mortgages allowing for idiosyn-

cratic house price risk and longevity risk. The impact of idiosyncratic house price risk and

longevity risk are shown to be large.

To model idiosyncratic house price risk, disaggregated house price indices are constructed

using the hybrid hedonic-repeat-sales house price model developed in Shao et al. (2013). A

VAR(2) model is employed to generate economic scenarios that include projections of a city-

level house price index. Based on the VAR model stochastic discount factors that reflect the

macroeconomic risks impacting reverse mortgage cash flows are calculated. Disaggregated

house price indices are projected using a VARX(1,0) model with the aggregate house price

index as the exogenous variable. The Wills-Sherris stochastic mortality model is calibrated

and employed to forecast future mortality rates. Other termination triggers, including move-

out due to health related reasons, voluntary prepayment and refinancing, are linked to the

projected stochastic mortality rates.

We find that pricing reverse mortgages based on an average house price index substantially

underestimates the risks underwritten by the provider for low loan-to-value ratios of 0.2 and

0.4. Failing to accurately incorporate the cohort trend of improvements in mortality rates

also underestimates the risk for low LTV ratios. Opposite effects are found for a high LTV

ratio of 0.6. These results agree with the findings of Alai et al. (2013), who find that reverse

mortgages with LTV ratios of over 50% have different risk profiles than contracts with lower

loan to value ratios.

Our results are also in line with other studies that focus on analysing the impact of longevity

risk on reverse mortgage pricing and risk management. Li et al. (2010) compare NNEG

values using period life tables for 2007 and a cohort life table derived from the Lee-Carter

model. They find that NNEG values are typically larger when cohort life tables are used,
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but the differences are not statistically significant. Wang et al. (2008) and Yang (2011)

analyse the securitization of longevity risk in reverse mortgages. Wang et al. (2008) focus

on longevity bonds for reverse mortgages. They test the sensitivity of the present value of

the bond values to different mortality assumptions and find that the impact of mortality

shocks is very limited. Yang (2011) develops “collateralised reverse mortgage obligations”.

She compares the fair spreads for different tranches using the two-factor CBD model, the

Lee-Carter model and a static mortality table. She finds that assuming a static mortality

table overestimates the fair spread for all tranches, with differences of up to 30% for the

senior tranche.

Our results suggest that risk factors associated with a property’s characteristics and a

stochastic mortality model based on cohort trends should be used in the pricing of reverse

mortgage loans. The study provides new and improved insight into the design of reliable

and affordable home equity release products.

Acknowledgement

The authors acknowledge the financial support of the Australian Research Council Centre

of Excellence in Population Ageing Research (project number CE110001029). Shao also

acknowledges the financial support from the Australian School of Business and the China

Scholarship Council. Opinions and errors are solely those of the authors and not of the

institutions providing funding for this study or with which the authors are affiliated.

References

Alai, D., Chen, H., Cho, D., Hanewald, K., and Sherris, M. (2013). Developing equity release

markets: Risk analysis for reverse mortgages and home reversions. UNSW Australian

School of Business Research Paper No. 2013ACTL01 .

Andreeva, M. (2012). About mortality data for australia. Technical report, Human Mortality

Database. Background and documentation.

35



Ang, A. and Piazzesi, M. (2003). A no-arbitrage vectorautoregression of term structure

dynamics with macroeconomic and latent variables. Journal of Monetary Economics ,

50(4), 745–787.

Blackburn, C. and Sherris, M. (2013). Consistent dynamic affine mortality models for

longevity risk applications. Insurance: Mathematics and Economics , 53(1), 64–73.

Bourassa, S. C., Hamelink, F., Hoesli, M., and MacGregor, B. D. (1999). Defining housing

submarkets. Journal of Housing Economics , 8(2), 160–183.

Bourassa, S. C., Hoesli, M., and Peng, V. S. (2003). Do housing submarkets really matter?

Journal of Housing Economics , 12(1), 12–28.

Bourassa, S. C., Hoesli, M., Scognamiglio, D., and Zhang, S. (2011). Land leverage and

house prices. Regional Science and Urban Economics , 41(2), 134–144.

Cairns, A. J., Blake, D., and Dowd, K. (2006). A two-factor model for stochastic mortality

with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance,

73(4), 687–718.

Case, B. and Quigley, J. M. (1991). The dynamics of real estate prices. The Review of

Economics and Statistics , 22(1), 50–58.

Chen, H., Cox, S. H., and Wang, S. S. (2010). Is the home equity conversion mortgage in

the United States sustainable? Evidence from pricing mortgage insurance permiums and

non-recourse provisions using the conditional Esscher transform. Insurance: Mathematics

and Economics , 46(2), 371–384.

Chinloy, P. and Megbolugbe, I. F. (1994). Reverse mortgages: Contracting and crossover

risk. Real Estate Economics , 22(2), 367–386.

Cho, D., Sherris, M., and Hanewald, K. (2013). Risk management and payout design of re-

verse mortgages. UNSW Australian School of Business Research Paper No. 2013ACTL07 .

Cocco, J. F. and Gomes, F. J. (2012). Longevity risk, retirement savings, and financial

innovation. Journal of Financial Economics , 103(3), 507–529.

Consumer Financial Protection Bureau (2012). Reverse mortgages. Report to Congress.

Technical report, Iowa City, Iowa.

Deloitte and SEQUAL (2012). Australias reverse mortgage market reached $3.3bn at 31

December 2011. Deloitte Media Release.

36



Englund, P., Quigley, J. M., and Redfearn, C. L. (1998). Improved price indexes for real

estate: Measuring the course of Swedish housing prices. Journal of Urban Economics ,

44(1), 171–196.

Ferreira, F. and Gyourko, J. (2012). Heterogeneity in neighborhood-level price growth in the

United States, 1993-2009. The American Economic Review , 102(3), 134–140.

Granados, J. et al. (2008). Macroeconomic fluctuations and mortality in postwar Japan.

Demography , 45(2), 323–343.

Hanewald, K. (2011). Explaining mortality dynamics: The role of macroeconomic fluctua-

tions and cause of death trends. North American Actuarial Journal , 15(2), 290–314.

Hanewald, K. and Sherris, M. (2013). Postcode-level house price models for banking and

insurance applications. Economic Record . Forthcoming.

Hanewald, K., Piggott, J., and Sherris, M. (2012). Individual post-retirement longevity risk

management under systematic mortality risk. Insurance: Mathematics and Economics ,

52(1), 87–97.

Hosty, B. G. M., Groves, S. J., Murray, C. A., and Shah, M. (2008). Pricing and risk capital

in the equity release market. British Actuarial Journal , 14(1), 41–91.

Institute of Actuaries UK (2005). Equity release report technical supplement: Pricing con-

siderations. Technical report, Institute of Actuaries, UK, Equity Release Working Party.

Ji, M., Hardy, M., and Li, J. S.-H. (2012). A semi-Markov multiple state model for reverse

mortgage terminations. Annals of Actuarial Science, 6(2).

Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of

the American Statistical Association, 419(2), 659–671.

Lee, Y.-T., Wang, C.-W., and Huang, H.-C. (2012). On the valuation of reverse mortgages

with regular tenure payments. Insurance: Mathematics and Economics , 51(2), 430–441.

Li, J. S. H., Hardy, M. R., and Tan, K. S. (2010). On pricing and hedging the no-negative-

equity guarantee in equity release mechanisms. Journal of Risk and Insurance, 77(2),

499–522.

Ngai, A. and Sherris, M. (2011). Longevity risk management for life and variable annu-

ities: The effectiveness of static hedging using longevity bonds and derivatives. Insurance:

Mathematics and Economics , 49(1), 100–114.

37



Quigley, J. M. (1995). A simple hybrid model for estimating real estate price indexes. Journal

of Housing Economics , 4(1), 1–12.

Ruhm, C. J. (2007). A healthy economy can break your heart. Demography , 44(4), 829–848.

Shao, A. W., Sherris, M., and Hanewald, K. (2012). Equity release products allowing for

individual house price risk. In 11th Emerging Researchers in Ageing Conference. Brisbane,

Australia.

Shao, A. W., Sherris, M., and Hanewald, K. (2013). Disaggregated house price indices.

UNSW Australian School of Business Research Paper No. 2013ACTL09 .

Sherris, M. and Sun, D. (2010). Risk based capital and pricing for reverse mortgages revisited.

UNSW Australian School of Business Research Paper No. 2010ACTL04 .

Wang, L., Valdez, E. A., and Piggott, J. (2008). Securitization of longevity risk in reverse

mortgages. North American Actuarial Journal , 12(4), 345–371.

Wills, S. and Sherris, M. (2008). Integrating financial and demographic longevity risk models:

An Australian model for financial applications. Australian School of Business Research

Paper No. 2008ACTL05 .

Wills, S. and Sherris, M. (2010). Securitization, structuring and pricing of longevity risk.

Insurance: Mathematics and Economics , 46(1), 173–185.

Yang, S. S. (2011). Securitisation and tranching longevity and house price risk for reverse

mortgage products. The Geneva Papers on Risk and Insurance-Issues and Practice, 36(4),

648–674.

38


	Reverse Mortgage Pricing cover
	Reverse Mortgage Pricing
	Introduction
	Data
	A reverse mortgage pricing framework allowing for idiosyncratic house price risk and longevity risk
	The reverse mortgage contract
	The hybrid house price model
	Projection of future house prices and discount factors
	Aggregate house price index projection
	Stochastic discount factors
	Disaggregated house price index projection

	Termination of reverse mortgages
	Stochastic mortality
	In-force probabilities


	Results
	Base case results
	Sensitivity analysis: deterministic mortality
	Sensitivity analysis: the two-factor Cairns-Blake-Dowd (CBD) model
	Sensitivity analysis: LTC incidence, prepayment and refinancing

	Conclusions


